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Direction dependence of spin relaxation in confined two-dimensional systems
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The dependence of spin relaxation on the direction of the quantum wire under Rashba and Dresselhaus (linear
and cubic) spin-orbit coupling is studied. Comprising the dimensional reduction of the wire in the diffusive
regime, the lowest spin relaxation and dephasing rates for (001) and (110) systems are found. The analysis of spin
relaxation reduction is then extended to nondiffusive wires where it is shown that, in contrast to the theory of di-
mensional crossover from weak localization to weak antilocalization in diffusive wires, the relaxation due to cubic
Dresselhaus spin-orbit coupling is reduced and the linear part is shifted with the number of transverse channels.

DOI: 10.1103/PhysRevB.83.115301 PACS number(s): 85.75.−d, 73.20.Fz, 75.76.+j, 75.40.Gb

I. INTRODUCTION

Spin dynamics in semiconductors have been studied for
decades, but still the prime condition for building spintronic
devices; namely, the understanding of spin relaxation, is
not satisfactorily fulfilled. In the following we focus on
materials where the dominant mechanism for spin relaxation
is governed by the D’yakonov-Perel spin relaxation (DPR).1

This mechanism results from lifting the spin degeneracy,
which is due to time-inversion symmetry and spatial-inversion
symmetry and leads to the effect of slower spin dephasing the
faster the momentum relaxes (motional narrowing2–4). In one
of the most-studied systems (GaAs/AlGaAs), DPR is the most
relevant mechanism in the metallic regime.5

Preserving time-inversion symmetry, the spin splitting can
be due to bulk-inversion asymmetry (BIA)6 and also due to
the asymmetry arising from the structure of the quantum
well (QW); the structure-inversion asymmetry (SIA).7 In
Refs. 8 and 9 it was shown how the spin relaxes in a quasi-
one-dimensional (quasi-1D) electron system in a QW grown
in the [001] direction, depending on the width of the wire,
where the normal of the boundary was pointing in the [010]
direction. It is already known that, in a (001) two-dimensional
(2D) system with BIA and SIA, we get an anisotropic spin
relaxation.10–12 This has also been studied numerically in
quasi-1D GaAs wires.13 In this work, in Sec. II, we present
analytical results concerning this anisotropy for the 2D case
as well as the case of a QW with spin- and charge-conserving
boundaries.

We also extend our analysis to other growth directions
(see Sec. III). Searching for long spin decoherence times
at room temperature, the (110) QW attracted attention.14,15

The properties of spin relaxation in systems with this
growth direction have also been related to weak localiza-
tion (WL) measurements.16 We present analytical explana-
tions for dimensional spin relaxation reduction and discuss
the crossover from WL to weak antilocalization (WAL);
see Sec. IV.

As we will show in the following sections, the cubic
Dresselhaus spin-orbit coupling (SOC) always gives rise to
a limitation of the spin relaxation time in the diffusive case
W � le, with the wire width W and the elastic mean-free path
le. However, some of the experiments are done on ballistic
wires, and we need to modify the theory used in Refs. 8,9
to enable us to study the crossover from diffusive to ballistic
wires. In Sec. V we show how the spin relaxation, which is
due to cubic Dresselhaus SOC, reduces with the number of
channels in the QW. In the following we set h̄ = 1.

We consider the following Hamiltonian with SOC:

H = 1

2me

(p + eA)2 + V (x) − 1

2
γσ [B + BSO(p)], (1)

where me is the effective electron mass, A is the vector poten-
tial due to the external magnetic field B, BT

SO = (BSOx,BSOy)
is the momentum-dependent SO field, σ is a vector with
components σ i , i = x,y,z being the Pauli matrices, γ is the
gyromagnetic ratio with γ = gμB with the effective g factor of
the material, and μB = e/2me is the Bohr magneton constant.
For example, III-V and II-VI semiconductors such as GaAs
and InSb have the zinc-blend structure. This BIA causes an
SO interaction which, to lowest order in the wave vector k, is
given by6

−1

2
γ BSO,D = γD

∑
i

êiki

(
k2
i+1 − k2

i+2

)
, (2)

where the principal crystal axes are given by i ∈ {x,y,z},i →
[(i − 1)mod 3] + 1 and the spin-orbit coefficient for the
bulk semiconductor γD . We consider the standard white-
noise model for the impurity potential V (x), which vanishes
on average [〈V (x)〉 = 0], is uncorrelated [〈V (x)V (x′)〉 =
δ(x − x′)/(2πντ )], and is weak [εF τ � 1]. Here, ν =
me/(2π ) is the average density of states per spin channel,
εF is the Fermi energy, and τ is the elastic scattering time. To
address both the WL corrections as well as the spin relaxation
rates in the system, we analyze the Cooperon17

Ĉ(Q = p + p′)−1 = 1

τ

(
1 −

∫
dϕ

2π

1

1 + Iτ [v(Q + 2eA + 2meâS) + Hσ ′ + HZ]

)
, (3)
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where the integral is performed over all angles of velocity v
on the Fermi surface, Hσ ′ = −(Q + 2eA)âσ ′, and the Zeeman
coupling to the external magnetic field yields

HZ = − 1
2γ (σ ′ − σ )B. (4)

The coupling between the orbital motion and the spin
S = (σ + σ ′)/2 is described by the SOC operator â. The spin
quantum number is 1 instead of 1/2 due to the electron-hole
excitation. It follows that, for weak disorder and without
Zeeman coupling, the Cooperon depends only on the total
momentum Q and the total spin S. Expanding the Cooperon
to second order in (Q + 2eA + 2meâS) and performing the
angular integral which is, for 2D diffusion (elastic mean-free
path le smaller than wire width W ) continuous from 0 to 2π ,
yields

Ĉ(Q) = 1

De(Q + 2eA + 2eAS)2 + HγD

. (5)

The effective vector potential due to SO interaction is AS =
meα̂S/e, where α̂ = 〈â〉 is averaged over angle. The SO term
HγD

, which cannot be rewritten as a vector potential, is in our
case due to the appearance of cubic Dresselhaus SOC.

A. Example

To get an idea of the procedure we recall the situation
presented in Refs. 8 and 9. For a (001) quasi-1D wire in [100]
direction the Dresselhaus term, Eq. (2), is given by6

−1

2
γ BSO,D = α1(−êxkx + êyky) + γD

(
êxkxk

2
y − êykyk

2
x

)
.

(6)

Here, α1 = γD〈k2
z 〉 is the linear Dresselhaus parameter, which

measures the strength of the term linear in wave vectors
kx and ky in the plane of the 2D electron system (2DES).
When 〈k2

z 〉 ∼ 1/a2 � k2
F (a is the thickness of the 2DES, kF

is the Fermi wave number), that term exceeds the cubic Dres-
selhaus terms which have coupling strength γD . Asymmetric
confinement of the 2DES, an SIA, yields the Rashba term
which does not depend on the growth direction:

− 1
2γ BSO,R = α2(êxky − êykx), (7)

with α2 being the Rashba parameter.7,18 Therefore, the
Cooperon Hamiltonian, in the case of Rashba and linear and
cubic Dresselhaus SOC is given by

Hc := Ĉ−1

De

= (Q + 2eAS)2 + (
m2

eεF γD

)2(
S2

x + S2
y

)
, (8)

with the effective vector potential

AS = me

e
α̂S = me

e

(−α̃1 −α2 0

α2 α̃1 0

)⎛
⎜⎝

Sx

Sy

Sz

⎞
⎟⎠ , (9)

with α̃1 = α1 − meγDεF /2.
It can be easily shown that the Hamiltonian Eq. (8) has only

nonvanishing eigenvalues due to (m2
eεF γD)2 in the 2D case.

The term with (S2
x + S2

y ), which is due to cubic Dresselhaus
SOC, is not reduced by reason of the boundary in the diffusive

case. However, two triplet eigenvalues of this term depend on
the wire width:

EQD1 = q2
s3

2
, (10)

EQD2,3 = q2
s3

2

(
3

2
± sin(QSOW )

2QSOW

)
, (11)

with q2
s3/2 = (m2

eεF γD)2. In the following we are going to
diagonalize the whole Hamiltonian and change the direction
of the wire in the (001) plane.

II. SPIN RELAXATION ANISOTROPY IN THE
(001) SYSTEM

A. Two-dimensional system

We rotate the system in-plane through the angle θ (the
angle θ = π/4 is equivalent to [110]). This does not effect the
Rashba term but changes the Dresselhaus term to11,12

1

γD

HD[001] = σyky cos(2θ )
(〈
k2
z

〉 − k2
x

)
− σxkx cos(2θ )

(〈
k2
z

〉 − k2
y

)
− σykx

1

2
sin(2θ )

(
k2
x − k2

y − 2
〈
k2
z

〉)
+ σxky

1

2
sin(2θ )

(
k2
x − k2

y + 2
〈
k2
z

〉)
, (12)

with the wave vectors ki . The resulting Cooperon Hamiltonian,
including Rashba and Dresselhaus SOC, then reads

Hc = [Qx + αx1Sx + (αx2 − q2)Sy]2

+ [Qy + (αx2 + q2)Sx − αx1Sy]2 + q2
s3

2

(
S2

x + S2
y

)
, (13)

where we set

q2
s3

2
= (

m2
eεF γD

)2
, (14)

αx1 = 1

2
meγD cos(2θ )

[
(mev)2 − 4

〈
k2
z

〉]
, (15)

αx2 = −1

2
meγD sin(2θ )

[
(mev)2 − 4

〈
k2
z

〉]
(16)

=
⎛
⎝q1 −

√
q2

s3

2

⎞
⎠ sin(2θ ) (17)

= 2meα̃1 sin(2θ ), (18)

with q1 = 2meα1 and q2 = 2meα2. We see that the part of the
Hamiltonian which cannot be written as a vector field and is
due to cubic Dresselhaus SOC does not depend on the wire
direction in the (001) plane.

1. Special case: Only linear Dresselhaus SOC equal
to Rashba SOC

As a special example for the 2D case, we set qs3 = 0 and
q1 = q2. To simplify the search for vanishing spin relaxation
we go to polar coordinates. Applying free wave functions (with
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kx and ky) to Hc [Eq. (13)], we end up with (singlet part left
out)

Hc

q2
2

=

⎛
⎜⎝

2 + Q2 fθφ −2I exp(2Iθ )

4 + Q2 fθφ

c.c. 2 + Q2

⎞
⎟⎠ , (19)

with kx/q2 = Q cos(φ), ky/q2 = Q sin(φ), and

fθφ = (I − 1)
√

2 exp(Iθ )[cos(φ + θ ) − sin(φ + θ )]Q. (20)

Vanishing spin relaxation is found at Q = 0 for arbitrary values
of θ (the spin with vanishing spin relaxation is pointing along
the [110] direction19). Another solution is found at Q = 2 with
the condition θ + φ = 3π/4, which is equivalent to the [110]
crystallographic direction.11

B. Quasi-one-dimensional wire

In the following we consider spin- and charge-conserving
boundaries. Due to the SOC we have the following modified
Neumann condition:9(

− τ

De

n · 〈vF [γ BSO(k) · S]〉 − I∂n

)
C|∂S = 0, (21)

where 〈...〉 denotes the average over the direction of vF and k,
which we rewrite for the rotated x-y system as

[−I∂y + 2e(AS)y]C

(
x,y = ±W

2

)
= 0 ∀x, (22)

where n is the unit vector normal to the boundary ∂S and x is
the coordinate along the wire. In order to do a diagonalization
taking only the zero-mode into account, we have to simplify the
boundary condition. A transformation acting in the transverse
direction is needed according to Eq. (13): Ĉ → ˜̂C = UAĈU

†
A,

by using the transformation

U = 14 − I sin(qsy)
1

qs

Ay + [cos(qsy) − 1]
1

q2
s

A2
y, (23)

with Ay = (αx2 + q2)Sx − αx1Sy and qs =√
(αx2 + q2)2 + α2

x1.

1. Spin relaxation

We diagonalize the Hamiltonian, Eq. (13), after applying
the transformation U , taking only the lowest mode into
account. The spectrum of the Hamiltonian for small wire
width, Wqs < 1, is given by

E1/2(Qx > 0) = Q2
x ± Qx

(
2qsm −

(
α2

x1 + α2
x2 − q2

2

)2

12qsm

W 2

)

+ 3

2

q2
s3

2
+ q2

sm ∓ q2
s3

2Qx

(
α2

x1+α2
x2−q2

2

)2
W 2

96qsm

−
( q2

s3
2 + q2

sm

)(
α2

x1 + α2
x2 − q2

2

)2

24q2
sm

W 2 , (24)

E1(Qx = 0) = q2
s3 + q2

sm −
(
α2

x1 + α2
x2 − q2

2

)2 + qs32

2 q2
s

12
W 2,

(25)

E2(Qx = 0) = q2
s3

2
+ q2

sm + q2
s3

2

q2
2α2

x1

3q2
sm

W 2, (26)

E3 = Q2
x + q2

s3

2
+

( q2
s3
2 + q2

sm

)(
α2

x1 + α2
x2 − q2

2

)2

12q2
sm

W 2, (27)

with qsm =
√

(αx2 − q2)2 + α2
x1. First we notice that the only

θ dependence is in the term qsm, which disappears if the
Dresselhaus SOC strength α̃1, which is shifted due to the cubic
term, equals the Rashba SOC strength α2 and the angle of
the boundary is θ = (1/4 + n)π, n ∈ Z. Assuming the term
proportional to W 2/Qx to be small, the absolute minimum can
be found at

E1/2,min = 3

2

q2
s3

2
+

(
q2

sm − q2
s3
2

)(
α2

x1 + α2
x2 − q2

2

)2

24q2
sm

W 2, (28)

which is independent of the width W if αx1(θ = 0) = −q2

and/or the direction of the wire is pointing in

θ = 1

2
arcsin

(
2
〈
k2
z

〉
(meγD)2

[
(mev)2 − 2

〈
k2
z

〉] − q2
2(

m3
ev

2γD − 4
〈
k2
z

〉
meγD

)
q2

)
.

(29)

The second possible absolute minimum, which dominates
for sufficiently small width W and qsm �= 0 [compare with
E2(Qx = 0)], is found at

E3,min = q2
s3

2
+

( q2
s3
2 + q2

sm

)(
α2

x1 + α2
x2 − q2

2

)2

12q2
sm

W 2. (30)

The minimal spin-relaxation rate is found by analyzing the
prefactor of W 2 in Eq. (30), see Fig. 1. We see immediately
that, in the case of vanishing cubic Dresselhaus or in the case
where αx1(θ = 0) = −q2, we have no direction dependence
of the minimal spin relaxation. Notice the shift of the absolute
minimum away from q1 = q2 due to qs3 �= 0. In the case of
q1 < (qs3/

√
2) we find the minimum at θ = (1/4 + n)π, n ∈

Z, or else at θ = (3/4 + n)π, n ∈ Z, which is indicated by
the dashed line in Fig. 1.

2. Spin dephasing

Concerning spintronic devices it is interesting to know how
an ensemble of spins initially oriented along the [001] direction
dephases in a wire of different orientation θ . To do this analysis
we only have to know that the eigenvector for the eigenvalue
E1 at Qx = 0 [Eq. (25)], is the triplet state |S = 1; m = 0〉 =
(|↑↓〉 + |↓↑〉)/√2 ≡ |→〉=̂(0,1,0)T . This is equal to the z

component of the spin density whose evolution is described
by the spin diffusion equation.9 As an example we assume the
case where the cubic Dresselhaus term can be neglected and
where the Rashba and linear Dresselhaus SOC are equal. We
notice that the spin dephasing is then width independent, given
by

1

τs(W )
= 2Deq

2
2 [1 − sin(2θ )] (31)

which is plotted in Fig. 2. At definite angles the spin
dephasing time diverges—as for the in-plane polarized states
with eigenvalue E2(Qx = 0). We have longest spin dephasing
time at θ = (1/4 + n)π, n ∈ Z. For θ = (3/4 + n)π, n ∈ Z
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0
π
4
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2

3 π
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0

1

θ

q 1
/
q 2

FIG. 1. (Color online) Dependence of the W 2 coefficient in
Eq. (30) on the lateral rotation (θ ). The absolute minimum is found
for αx1(θ = 0) = −q2 (here: q1/q2 = 1.63) and for different SO
strength we find the minimum at θ = (1/4 + n)π, n ∈ Z if q1 <

(qs3/
√

2) [dashed line: q1 = (qs3/
√

2)] and at θ = (3/4 + n)π, n ∈
Z otherwise. Here we set qs3 = 0.9. The scaling is arbitrary.

we get the 2D result, T2 = 1/(4q2
2De), which is given by the

eigenvalue of the spin relaxation tensor:1,9,20

1

τsij

= τγ 2[〈BSO(k)2〉δij − 〈BSO(k)iBSO(k)j 〉] (32)

to the triplet state |S = 1; m = 0〉.
This gives an analytical description of the numerical

calculation done by J.Liu et al.13

Switching on cubic Dresselhaus SOC leads to finite spin
dephasing time for all angles θ . In addition, T2 is than width
dependent. In the case of strong cubic Dresselhaus SOC, where
q2

s3/2 = q2
1 = q2

2 , the dephasing time T2 is angle-independent
and, for q2

s3/2 > q2
1 = q2

2 , the minima in T2(θ ) change to
maxima and vice versa.

0 π

4

π

2

3 π

4

π 5 π

4

3 π

2

7 π

4

2 π

1.0

0.5

5.0

10.0

50.0

0.4

0.3

0.2

0.1

0.

θ

T
2
D

e
q2 2

FIG. 2. (Color online) The spin dephasing time T2 of a spin
initially oriented along the [001] direction in units of (Deq

2
2 ) for

the special case of equal Rashba and linear Dresselhaus SOC. The
different curves show different strengths of cubic Dresselhaus in
units of qs3/q2. In the case of finite cubic Dresselhaus SOC, we
set W = 0.4/q2. If qs3 = 0, T2 diverges at θ = (1/4 + n)π, n ∈ Z
(dashed vertical lines). The horizontal dashed line indicated the 2D
spin dephasing time, T2 = 1/(4q2

2 De).

3. Special case: θ = 0

In this case the longitudinal direction of the wire is [100].
If we neglect the term proportional to W 2/Qx in Eq. (24), the
lowest spin relaxation is found to be

1

Deτs

= q2
s3

2
+

(
α2

x1 − q2
2

)2(
q2

s + q2
s3
2

)
W 2

12q2
s

(33)

or

1

Deτs

= 3q2
s3

4
+

(
α2

x1 − q2
2

)2(
q2

s − q2
s3
2

)
W 2

24q2
s

, (34)

depending on whether

−q2
s3

4
+

(
α2

x1 − q2
2

)2(
q2

s + 3 q2
s3
2

)
W 2

24q2
s

(35)

is negative or positive. This shows that the cubic Dresselhaus
term adds not only a constant term to the relaxation rate but is
also width dependent. However, this width dependence does
not reduce the spin relaxation rate below q2

s3/2.

III. SPIN RELAXATION IN QUASI-ONE-DIMENSIONAL
WIRE WITH [110] GROWTH DIRECTION

To get the spin-relaxation in a [110] QW with Rashba and
Dresselhaus SOC again we have to rotate the spatial coordinate
system of the Dresselhaus Hamiltonian Eq. (2), but now with
the rotation matrix

R =

⎛
⎜⎝

1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

⎞
⎟⎠ . (36)

We get

HD[110]

γD

= σx

( − k2
xkz − 2k2

ykz + k3
z

) + σy(4kxkykz)

+ σz

(
k3
x − 2kxk

2
y − kxk

2
z

)
. (37)

The confinement in z direction (z ≡[110]) leads to 〈kz〉 =
〈k3

z 〉 = 0 and 〈k2
z 〉 = ∫ |∇φ|2dz. The Hamiltonian for the QW

in the [110] direction then has the following form:16

H[110] = −γDσzkx

( 1
2

〈
k2
z

〉 − 1
2

(
k2
x − 2k2

y

))
. (38)

Including the Rashba SOC (q2) and noting that its Hamiltonian
does not depend on the orientation of the wire,16 we end up
with the following Cooperon Hamiltonian:

C−1

De

= (Qx − q̃1Sz − q2Sy)2 + (Qy + q2Sx)2 + q̃2
3

2
S2

z . (39)

with q̃1 = 2me
γD

2 〈k2
z 〉 − γD

2
meεF

2 , q2 = 2meα2, and q̃3 =
[3meε

2
F (γD/2)]. We see immediately that, in the 2D case, states

polarized in the z direction have vanishing spin relaxation as
long as we have no Rashba SOC. Compared with the (001)
system, the constant term due to cubic Dresselhaus does not
mix spin directions. Here we set the appropriate Neumann
boundary condition as follows:

(−i∂y + 2meα2Sx)C

(
x,y = ±W

2

)
= 0 ∀x. (40)
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The presence of Rashba SOC adds a vector potential propor-
tional to Sx . Applying a non-Abelian gauge transformation as
before to simplify the boundary condition, we diagonalize the
transformed Hamiltonian [Appendix (A1)] up to second order
in q2W in the zero-mode approximation.

A. Special case: without cubic Dresselhaus SOC

The spectrum is found to be

E1 = Q2
x + 1

12
�2(q2W )2, (41)

E2,3 = Q2
x + 1

24
�2[24 − (q2W )2]

± �

24

√
�2(q2W )4 + 4Q2

x[24 − (q2W )2]2, (42)

with the lowest spin relaxation rate found at finite wave vectors
Qxmin = ± �

24 [24 − (q2W )2],

1

Deτs

= �2

24
(q2W )2. (43)

We set � =
√

q̃2
1 + q2

2 .

B. With cubic Dresselhaus SOC

If cubic Dresselhaus SOC cannot be neglected, the absolute
minimum of spin relaxation can also shift to Qxmin = 0.
This depends on the ratio of Rashba and linear Dressel-
haus SOC. If q2/q1 � 1, we find the absolute minimum
at Qxmin = 0,

Emin1 = q̃3 + q̃2
1 + q2

2

2
− �c + 1

12
�c(q2W )2, (44)

with

�c = 1
2

√(
q̃3 + q̃2

1

)2 + 2
(
q̃2

1 − q̃3
)
q2

2 + q4
2 . (45)

If q2/q1 � 1, we find the absolute minimum at Qxmin ≈
± �

24 [24 − (q2W )2],

Emin2 = Q2
xmin

− Qxminq2

(
q̃2

1

q2
2

+ 2

)
− q̃2

3

16Qxminq2

+�̃2 + q̃3

2

(
q̃2

1

q2
2

+ 1

)
−

{
q̃3q̃

2
1

12
− q̃2

3q2

3072Q3
xmin

− q2
2

24

(
q̃3 − q̃2

1

) + q4
2

24
−

(
q̃2

1

24
+ q2

2

12

)
q2Qxmin

− q2

Qxmin

[(
q̃2

3

128
+ q̃3q̃

2
1

192

)
− q̃3q

2
2

96

]}
W 2. (46)

We can conclude that reducing the wire width W will not
cancel the contribution to the spin relaxation rate due to cubic
Dresselhaus SOC.

IV. WEAK LOCALIZATION

In Refs. 8 and 9 the crossover from WL to WAL due to
changing wire width and SOC strength was explained in the

case of a (001) system. Whether WL or WAL is present de-
pends on the suppression of the triplet modes of the Cooperon.
The suppression in turn is dominated by the absolute minimum
of the spectrum of the Cooperon Hamiltonian Hc. The findings,
presented in Sec. II B, therefore point out that, for example, the
crossover width at which the system changes from WL to WAL
can shift with the wire direction θ . Recently, experimental
results on WL and WAL by J. Nitta et al.21 seem to show
a strong dependence on growth direction. Our presented
results can also support the method proposed in Ref. 22—
to determine the relative strength of Rashba and Dressel-
haus SOC from WL or WAL measurements without fitting
parameters—with inclusion of the cubic Dresselhaus term for
wire directions different from [100] and [010] in an analytical
manner.

In the (110) system the situation is different. In the 2D case
it was shown by Pikus et al.16 that, in the absence of the Rashba
terms, the negative magnetoconductivity cannot be observed.
In the case of a wire geometry we can conclude from Eqs. (41)–
(46) that we have no width dependence if Rashba SOC
vanishes. A change of the quantum correction to the static con-
ductivity therefore cannot be achieved in this wire geometry
by changing the wire width. The reason is the vector potential
in the boundary condition [Eq. (40)], which only depends on
Rashba SOC.

V. DIFFUSIVE-BALLISTIC CROSSOVER

In the following we assume a (001) 2D system
with both Rashba and linear and cubic Dresselhaus SO
coupling.

Experiments measuring WL in diffusive QW with SOC23,24

are in great agreement with theoretical calculations by S.
Kettemann.8 But considering, for example, the work of
Refs. 25 and 26, one realizes that the scope of application
of the theory has to be extended to also describe the
crossover to the ballistic regime; le > W . We have shown
in Sec. II B that the presence of cubic Dresselhaus SOC in
the sample leads to a finite spin relaxation even for wire
widths QSOW � 1, regardless of the boundary direction in
a (001) system. To account for the ballistic case we have to
modify the derivation of the Cooperon Hamiltonian, Eq. (8).
It has to be noticed that, in the case of only few channels the
electron-electron interaction can play a crucial role concerning
the spin relaxation.27 But as long as the quantum wires are
in the regime where the spin relaxation is dominated by
DPR, the electron-electron and also the electron-phonon
interaction are incorporated by substituting 1/τ with the
total scattering rate 1/τ (T ).4 In the case of a wire where
the mean-free path le is comparable to the wire width W ,
we cannot integrate in Eq. (3) over the Fermi surface in a
continuous way. Instead, we assume kF /W to be finite and
sum over the number of discrete channels N = [kF W/π ],
where [. . .] is the integer part. Because HγD ∼ ε2

F this
constant term due to cubic Dresselhaus should reduce if we
reduce the number of channels. If we expand the Cooperon
to second order in (Q + 2eA + 2meâS) before averaging
over the Fermi surface, 〈. . .〉, and use the Matsubara trick,
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we get

C−1

De

= 2f1

(
Qy + 2α2Sx + 2

(
α1 − γDv2 f3

f1

)
Sy

)2

+ 2f2

(
Qx − 2α2Sy − 2

(
α1 − γDv2 f3

f2

)
Sx

)2

+ 8γ 2
Dv4

[(
f4 − f 2

3

f2

)
S2

x +
(

f5 − f 2
3

f1

)
S2

y

]
, (47)

with me = 1 and functions fi(ϕ) (Appendix B) which depend
on the number Nof transverse modes. In the diffusive case we
can perform the continuous sum over the angle ϕ in Eqs. (B3)–
(B7), and we recover the old result with f1 = f2 = 1/2, f3 =
1/8, and f4 = f5 = 1/16:

Hc = (
Qy + 2α2Sx + 2

(
α1 − 1

2γDεF

)
Sy

)2

+ (
Qx − 2α2Sy − 2

(
α1 − 1

2γDεF

)
Sx

)2

+ (γDεF )2
(
S2

x + S2
y

)
. (48)

A. Spin Relaxation at QSOW � 1

In the first section we analyzed the lowest spin relaxation in
wires of different direction in a (001) system. We have shown,
that for every direction, there is still a finite spin relaxation at
a wire width which fulfills the condition QSOW � 1 due to
cubic Dresselhaus SOC. It is clear that this finite spin relaxation
vanishes when the width is equal to the Fermi wave length
λF . In the following we show how this finite spin relaxation
depends on the number N of transverse channels. We show
in Ref. 28 that the findings are consistent with calculations
going beyond the perturbative ansatz. This is possible, in
a similar manner as has been done previously in Ref. 29,
for wires without SOC, which showed the crossover of the
magnetic phase shifting rate, which had been known before in
the diffusive and ballistic limit only.

To find the spectrum of the Cooperon Hamiltonian with
boundary conditions as in Sec. (II B), we stay in the zero-
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FIG. 3. (Color online) The lowest eigenvalues of the confined
Cooperon Hamiltonian Eq. (47), equivalent to the lowest spin
relaxation rate, are shown for Q = 0 for different numbers of modes,
N = kF W/π . Different curves correspond to different values of
α2/qs .
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FIG. 4. (Color online) The lowest eigenvalues of the confined
Cooperon Hamiltonian Eq. (47), equivalent to the lowest spin
relaxation rate, are shown for Q = 0 for different numbers of modes,
N = kF W/π . Different curves correspond to different values of
α1/qs .

mode approximation in the Q space and proceed as before.
According to Eq. (47), the non-Abelian gauge transformation
for the transversal direction y is given by

U = exp

(
−I

[
2α2Sx + 2

(
α1 − γDv2 f3

f1

)
Sy

]
y

)
. (49)

To concentrate on the constant width-independent part of the
spectrum we extract the absolute minimum at Q = 0; see
Figs. 3 and 4. A clear reduction of the absolute minimum
is visible. Due to the factor f3/f1 in the transformation U , the
decrease of the minimal spin relaxation also depends on the
ratio of Rashba and linear Dresselhaus SOC.

From Eq. (47) it is clear that, not only is the HγD
affected

by the reduction of the number N of channels, but also the
shift of the linear Dresselhaus SOC, α1, in the orbital part. A
model to extract the ratio of Rashba and linear Dresselhaus
SOC developed in Ref. 30 by Scheid et al. did not show much
difference between the strict 1D case and the nondiffusive case
with wires of finite width. The results presented here should
allow for extending the model to finite cubic Dresselhaus SOC.
Deducing from our theory, the direction of the SO field should
change with the number of channels due to the mentioned
N -dependent shift.

VI. CONCLUSIONS

Summarizing the results, we have characterized the
anisotropy and width dependence of spin relaxation in a
(001) QW. There are special angles θ which are optimal
for spin transport in quantum wires of finite width; namely,
the [110] and the [110] directions. At [110] we find the the
longest spin dephasing time T2. If the absolute minimum of
spin relaxation is found at [110] or [110] direction depends
on the strength of cubic Dresselhaus and wire width. The
findings for the spin dephasing time are in agreement with
numerical results. The analytical expression for T2 allows us
to see directly the interplay between the cubic Dresselhaus
SOC and the dimensional reduction, having an effect on T2.
In addition we analyzed the special case of a (110) system
and found the minimal spin relaxation rates depending on
Rashba and linear and cubic Dresselhaus SOC in the presence
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of boundaries. This results can be used to understand width and
direction-dependent WL measurements in QWs. Finally, we
have shown how the reduction of channels in the wire reduces
the finite spin relaxation rate which is due to cubic Dresselhaus
SOC and does not reduce if the wire is small (Wqs � 1)
and diffusive (W � le). The change in channel number also
changes the shift of linear Dresselhaus SOC strength, α̃1. This
has to be considered if extracting SOC strength from wires
with only few transverse channels.
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APPENDIX A: HAMILTONIAN IN [110] GROWTH
DIRECTION

The Cooperon Hamiltonian in the zero-mode approxima-
tion is given as follows

Hc,0 =

⎛
⎜⎝

A B C

B∗ D E

C∗ E∗ F

⎞
⎟⎠ + Mq3, (A1)

with

A = 1

4q2W

{
q2

[
4Q2

x + 3
(
q̃2

1 + q2
2

)]
W

− 16Qxq̃1 sin

(
q2W

2

)
+ (

q̃2
1 − q2

2

)
sin(q2W )

}
, (A2)

B = I
[
4Qx sin

(
q2W

2

) − q̃1 sin(q2W )
]

√
2W

, (A3)

C = −q2
(
q̃2

1 + q2
2

)
W + (

q2
2 − q̃2

1

)
sin(q2W )

4q2W
, (A4)

D = q2
(
2Q2

x + q̃2
1 + q2

2

)
W + (

q2
2 − q̃2

1

)
sin(q2W )

2q2W
, (A5)

E = I
[
4Qx sin

(
q2W

2

) + q̃1 sin(q2W )
]

√
2W

, (A6)

F = 1

4q2W

{
q2

[
4Q2

x + 3
(
q̃2

1 + q2
2

)]
W

+ 16Qxq̃1 sin

(
q2W

2

)
+ (

q̃2
1 − q2

2

)
sin(q2W )

}
, (A7)

and the term due to cubic Dresselhaus SOC

Mq3 = q3

⎛
⎜⎝

1
4 sin c(q2W ) + 3

4 0 1
4 sin c(q2W ) − 1

4

0 1
2 − 1

2 sin c(q2W ) 0
1
4 sin c(q2W ) − 1

4 0 1
4 sin c(q2W ) + 3

4

⎞
⎟⎠ . (A8)

APPENDIX B: SUMMATION OVER THE FERMI SURFACE

The Cooperon Hamiltonian in the 2D case is given by

Hc = τv2
{〈cos2(ϕ)〉(Q + 2meα̂S)2

x

+〈sin2(ϕ)〉(Q + 2meαS)2
y

+ 4m2
eγDv2〈cos2(ϕ) sin2(ϕ)〉(Q + 2meαS)x.Sx

− 4m2
eγDv2〈sin2(ϕ) cos2(ϕ)〉(Q + 2meαS)y.Sy

+ (
2m3

eγDv2
)2[〈cos2(ϕ) sin4(ϕ)〉S2

x

+〈sin2(ϕ) cos4(ϕ)〉S2
y

]}
, (B1)

with wave vector Q and SOC matrix α̂ as defined in Eq. (9)
but here with α̃1 = α1. We set

me ≡ 1, (B2)

f1 := 〈sin2(ϕ)〉, (B3)

f2 := 〈cos2(ϕ)〉, (B4)

f3 := 〈sin2(ϕ) cos2(ϕ)〉, (B5)

f4 := 〈sin4(ϕ) cos2(ϕ)〉, (B6)

f5 := 〈sin2(ϕ) cos4(ϕ)〉. (B7)

Using the Matsubara trick we write∫ 2π

0

dϕ

2π
= 2

πN

N∑
s=1

1√
1 − (

s
N

)2
. (B8)

This gives us

f1 = 2

πN

N−1∑
s=1

s2

N2
√

1 − (
s
N

)2
, (B9)

f2 = 2

πN

N∑
s=1

√
1 −

(
s

N

)2

, (B10)

f3 = 2

πN

N∑
s=1

(
s

N

)2
√

1 −
(

s

N

)2

, (B11)

f4 = 2

πN

N∑
s=1

(
s

N

)4
√

1 −
(

s

N

)2

, (B12)

f5 = 2

πN

N∑
s=1

(
s

N

)2[
1 −

(
s

N

)2] 3
2

. (B13)

Writing Eq. (B1) in a compact way gives us Eq. (47).
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