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We investigate the influence of crystal local fields and excitonic effects on the spectrum of the second
harmonic generation of three polytypes of silicon carbide by using time-dependent density-functional theory
including many-body effects, namely, quasiparticle corrections through the scissors operator, crystal local field
effects, and excitonic interaction. The relation between the scalar density response and the components of the
rank 3 tensor d (2) is established by calculating the response along different polarization directions. We find that
local-field effects, although necessary for a rigorous description in the theory, yield only small contributions to
the spectra, whereas excitonic effects have a strong influence on the second harmonic generation. We compare
static values of the second harmonic coefficients to recent measurements and obtain very good agreement.

DOI: 10.1103/PhysRevB.83.115205 PACS number(s): 71.15.Mb, 42.65.An, 42.65.Ky, 78.20.−e

I. INTRODUCTION

The ab initio calculation of second-harmonic generation
(SHG) in solids is still a great challenge, both for theoretical
developments and computational resources. The problem has
been revisited several times, as computational schemes and
hardware have improved. In recent work1,2 we presented a
formalism to calculate the frequency-dependent macroscopic
second-harmonic susceptibility within the time-dependent
density-functional theory (TDDFT) framework, thus taking
advantage of recent developments in this field concerning
the inclusion of many-body effects. Doing so, we are able to
include crystal local-field and excitonic effects in a straightfor-
ward way and have shown that both effects are crucial to obtain
quantitative agreement with experiment. In this paper we
elaborate on the importance of the two effects by studying them
for hexagonal SiC polytypes. The polymorphism is realized by
different stacking orders of Si-C bilayers of either cubic (c)
or hexagonal (h) types in the z direction.3 One can define the
hexagonality H of the polytype by the ratio H = h/(h + c),
where h and c are the numbers of hexagonal and cubic layers,
respectively. The polymorphism preserves the point group
of the crystal symmetry, thus allowing direct comparison of
the components of the susceptibility. This provides a way of
studying the influence of different electronic structures on the
local-field and excitonic effects.

SiC polytypes have been studied extensively in the context
of ab initio calculations of SHG. Chen et al.4 use a scheme to
calculate the static second-harmonic coefficients in the inde-
pendent particle approximation of various SiC polytypes. In a
later work5 the same authors use a refined scheme to describe
nonlinear local-field effects for the static susceptibility and find
a dependence of local-field corrections on the hexagonality.
They report a decrease in most coefficients when local fields
are accounted for. Rashkeev et al.,6 using a computational
scheme similar to that of Chen et al.,4 while neglecting local-
field and many-body effects, are able to calculate the imaginary
part of the frequency-dependent SHG susceptibility, from
which, through a Kramers-Kronig relation, they infer the real
part, which then enables them to construct the modulo of the
susceptibility. Performing a transition-by-transition analysis

of the spectra, they can assign single spectral features to single
band transitions, thereby suggesting nonlinear spectroscopy as
a probe for the electronic structure. All these works assume
that the quasiparticle effects7,8 can be reproduced by a scissors
operator.9,10 This assumption has been investigated in detail
by Adolph and Bechstedt.11 They compared the optical matrix
elements calculated with a scissor operator with those obtained
by a GW calculation. They found that the scissors operator
approach describes the quasiparticle results remarkably well11

for all the SiC polytypes considered in this paper.
Thus most of the previous works4–6,11 have mainly focused

on the applicability of the theoretical approach used to calcu-
late the nonlinear optical properties and, as far as SiC polytypes
are concerned, on the dependence of the static susceptibility
on the hexagonality of these systems. Furthermore, Kleinmann
permutation relations have been tested on the full spectra and
found to be applicable only in the low-frequency range.12 Thus
only few works have been concerned with the full spectrum or
its dependence on local-field and excitonic effects.

In this paper, we follow our previous approach1,2 but
advance two important steps farther in order to obtain the
second-harmonic susceptibility for any symmetry of the
system considered. First, we employ a systematic way of
including crystal local-field corrections in the optical limit,
thus being able to show the dependence of the second-
harmonic susceptibility on the microscopic electric field; and
second, we include many-body effects such as excitons by
using TDDFT. The paper is organized as follows. In Sec. II
we present the formalism used to obtain the second-harmonic
susceptibility from TDDFT, taking great care to obtain the
correct elements of the second-harmonic tensor. In Sec. III
we proceed to show how the inhomogeneity of the material
affects the SHG due to crystal local-fields effects and then,
in Sec. IV, show the dependence of excitonic effects on the
hexagonality. Finally, in Sec. V we compare our results with
previous calculations and experimental data in the static limit.

II. METHOD

We use TDDFT generalized to second-order responses
to calculate the second-harmonic susceptibility as outlined
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previously.2,13 We formulate the macroscopic second-order
polarizability in terms of the total electric fields E as

PM(q1 + q2,ω) = d (2)(q1 + q2,q1,q2,2ω,ω)E(q1)E(q2).

(1)

In this theoretical section we use d (2) instead of the more widely
used χ (2), because it allows us to keep track of the symmetry
properties. We recall that if the last two indices of the tensors
are the same, we have d

(2)
ijj = χ

(2)
ijj , and if they are different, we

have the relation 2dijk = χijk .14 Later, when discussing results,
we show χ (2) quantities, since they are more commonly used.

The macroscopic second-harmonic susceptibility d (2) is
expressed in terms of the averaged microscopic second-order
current density response as

d (2) = iπ

ω3
M(q)χjjj(q1,q2,q3) N(q1) N(q2). (2)

The terms M(q) and N(q) come from averaging the micro-
scopic total fields2 and are thus first-order quantities,

M(q) =
[

1 + 4πα̃(q,q)
1

ω2

q
q

q
q

]−1

, (3)

N(q) =
[

1 + 4π
1

ω2

q
q

q
q

α̃(q,q)

]−1

, (4)

which depend on the linear current density response χjj via the
definition of the quasisusceptibility α̃:

α̃(q1,q2,ω) = − 1

ω2
[χjj(q1,q2,ω) − ρ(q1)δq1−q2 ]. (5)

In the optical limit, that is, q → 0, we note that transverse and
longitudinal responses coincide for uniform electric fields,15

and thus we can express Eq. (2) solely in terms of its
longitudinal projections:

(q1 + q2)d (2)q1q2

= −iεM (q1 + q2,2ω)χρρρ(q1 + q2,q1,q2,2ω,ω)εM

× (q1,ω)εM (q2,ω), (6)

where q are polarization directions that coincide, in this
limit, with the propagation directions, because for a longi-
tudinal field, polarization and propagation are parallel. We
also note that in this limit the linear prefactor, Eqs. (3)
and (4), are both identical to the macroscopic dielectric
functions εM .16

The microscopic second-order density response χρρρ is
obtained via the second-order TDDFT Dyson equation,

χρρρ(1,2,3)

= χ (0)
ρρρ(1,2,3) +

∫
d4d5χ (0)

ρρρ(1,4,3)fuxc(4,5)χρρ(5,2)

+
∫

d4d5χ (0)
ρρρ(1,2,4)fuxc(4,5)χρρ(5,3) +

∫
d4d5d6d7

×χ (0)
ρρρ(1,5,4)fuxc(5,6)χρρ(6,2)fuxc(4,7)χρρ(7,3)

+
∫

d4d5d6χ (0)
ρρ (1,4)gxc(4,5,6)χρρ(6,3)χρρ(5,2)

+
∫

d4d5χ (0)
ρρ (1,4)fuxc(4,5)χρρρ(5,2,3), (7)

where we used the shorthand 1 = r1, t1, etc., χρρ is the linear
density response, and χ (0)

ρρ and χ (0)
ρρρ are the independent particle

(Kohn-Sham) responses.
The linear kernels

fvxc(1,2) = u(1,2) + fxc(1,2), (8)

which are the sum of the Coulomb potential u(1,2) =
u(1)δ(1,2) and the exchange correlation kernel, allow the
inclusion of many-body effects. The difference between the
microscopic and the macroscopic response is due to the local
fields that stem from the spatial inhomogeneity of the crystal.
The second-order kernel gxc(1,2,3) = δfxc(1,2)/δρ(3) is set
to 0 throughout the following, since it is assumed to yield only
negligible contributions.

The density response function χρρρ is the response of a
scalar quantity to a scalar field and is hence a scalar; in
contrast, we aim to calculate the third rank tensor d (2), which, in
general, has 27 components. This relation between the tensor
components of d (2) and the scalar longitudinal density response
is given by Eq. (6). Writing it with the vector components of
q, we have∑

ijk

(q1i
+ q2i

)d (2)
ijkq1j

q1k

= −iεM (q1 + q2,2ω)χρρρ(q1 + q2,q1,q2,2ω,ω)

× εM (q1,ω)εM (q2,ω). (9)

This means that to obtain single tensor components we have
to perform TDDFT calculations along different polarization
directions.

There are four different kinds of tensor components,
according to their index structure: the diagonals d

(2)
iii , two

different block diagonals d
(2)
iij and d

(2)
ijj , and the off-diagonals

d
(2)
ijk . We also note that for SHG the last two indices are inter-

changeable, that is, d
(2)
ijk = d

(2)
ikj . Depending on the symmetry,

some components can be 0, which facilitates the solution
of Eq. (9) for some symmetry groups. This also means that
for the same tensor component, it might be necessary to do
a calculation with different polarizations, depending on the
symmetry group of the crystal.

a. Components d
(2)
iii : For components of this form it is

sufficient to perform a calculation with the polarizations in
q1 = q2 = ei , where ei is the unit vector in the Cartesian
direction i ∈ {x,y,z}. Equation (9) thus reads

d
(2)
iii = −iεM (ei ,2ω)χρρρ(2ei ,ei ,ei)εM (ei ,ω)εM (ei ,ω).

(10)

This is obviously true for any symmetry.
b. Components d

(2)
iij and d

(2)
ijj : In most crystal symmetries

the components d
(2)
iij and d

(2)
ijj are not simultaneously nonzero.

The exceptions are groups C1 and C6v , which we have to
consider separately. In the general case it is sufficient to make
a calculation with the polarizations q1 = ei and q2 = ej . With
this choice of polarization directions, Eq. (9) reads

2diij + dijj = −iεM (ei + ej ,2ω)χρρρ

× (ei + ej ,ei ,ej )εM (ei ,ω)εM (ej ,ω). (11)
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So since one of the two components on the left-hand side is 0,
this equation yields the non-zero component.

For the symmetry groups C1 and C6v the two components
are not independent. Therefore we have to perform an
additional TDDFT calculation, with the polarizations q1 = ei

and q2 = −ej yielding Eq. (9) as

2d
(2)
iij − d

(2)
ijj = −iεM (ei − ej ,2ω)χρρρ

× (ei − ej ,ei , − ej )εM (ej ,ω)εM (−ej ,ω).

(12)

Adding or subtracting this from Eq. (11) yields the single
component.

c. Components d
(2)
ijk: For the symmetry groups (Td , T ,

D6, and D4) the off-diagonal elements are the only nonzero
components. Then it is sufficient to do a single calculation with
q1 = q2 = ei + ej + ek , yielding the component directly; for
example, for the cubic Td , Note that the factor in front of d

(2)
ijk

in this expression can change depending on how many of these
components are nonzero in a specific symmetry group.

3d
(2)
ijk = −iεM [(ei + ej + ek),2ω]χρρρ

× [2(ei + ej + ek),ei + ej + ek,ei + ej + ek]

× εMei + ej + ek,ω)εM (ei + ej + ek,ω). (13)

In the case of the symmetry groups C1, C2, D3, C3, D2d ,
S4, D2, and C6, there is no generally applicable combination.
Instead, one has to decide for each symmetry which is the best
way to obtain the component.

A. Computational details

For the TDDFT calculation with our implementation,27 we
use density-functional theory (DFT) ground states obtained
with the ABINIT package,17 which gives the Kohn-Sham

energies and wave functions in terms of a basis of plane
waves. The local density approximation for the exchange and
correlation potential is used and the atomic core electrons
are approximated by norm-conserving pseudopotentials of the
Troullier-Martins form.18 The primitive unit cells of the three
polytypes have 4, 8, and 12 atoms, respectively, and we used a
cutoff of 50 Ha for the basis of all polytypes. The experimental
cell parameters are a = 5.8 Bohr for all compounds and
c = 9.37, 18.99, and 28.55 for 2h, 4h, and 6h, respectively.

Calculations of the second-harmonic spectra are done with
a random sampling of the Brillouin zone for hexagonal
polytypes. Convergence was reached with 1600 k points for 2h
d (2)

zzz, 2400 for 2h d (2)
xzx , and 800 for all 4h and 6h components.

Convergence of the local-field effects with respect to the num-
ber of included G vectors was reached at 23 for 2h d (2)

xzx , 59 for
2h d (2)

zzz, 39 for 4h d (2)
xzx , and d (2)

zzz and 43 for all 6h components.
The number of conduction bands necessary for convergence
in the considered energy range was 12, 24, and 36 for the
2h, 4h, and 6h components, respectively. The basis size for the
DFT wave functions when used in the TDDFT calculation was
sufficiently converged with 300 plane waves for all polytypes.

Quasiparticle effects are accounted for by shifting the
conduction states by a constant (scissors) shift of 	 = 0.8 eV,
which has been demonstrated to yield results in excellent
agreement with GW calculations.11

III. LOCAL-FIELD EFFECTS

When calculating d
(2)
ijk according to Eq. (6), crystal local-

field effects are included in χρρρ and in the εM . The nonin-
teracting (Kohn-Sham) response function χ (0)

ρρρ in momentum
space is represented as a rank 3 tensor in terms of reciprocal
lattice vectors G:

χ
(2)
0 (q1 + q2 + G,q1 + G1,q2 + G2,2ω,ω)

= 2

V

∑
nn′n′′k

〈nk|e−i(q1+q2+G)r|n′
k+q1+q2

〉
(Enk − En′k+q1+q2 + 2ω + 2iη)

[
(fnk − fn′′k+q2 )

〈n′
k+q1+q2

|ei(q1+G1)r|n′′
k+q2

〉〈n′′
k+q2

|ei(q2+G2)r|nk〉
(Enk − En′′k+q2 + ω + iη)

+ (fnk − fn′′k+q1 )
〈n′

k+q1+q2
|ei(q2+G2)r|n′′

k+q1
〉〈n′′

k+q1
|ei(q1+G1)r|nk〉

(Enk − En′′k+q1 + ω + iη)

+ (fn′k+q1+q2 − fn′′k+q1 )
〈n′

k+q1+q2
|ei(q2+G2)r|n′′

k+q1
〉〈n′′

k+q1
|ei(q1+G1)r|nk〉

(En′′k+q1 − En′k+q1+q2 + ω + iη)

+ (fn′k+q1+q2 − fn′′k+q2 )
〈n′

k+q1+q2
|ei(q1+G1)r|n′′

k+q2
〉〈n′′

k+q2
|ei(q2+G2)r|nk〉

(En′′k+q2 − En′k+q1+q2 + ω + iη)

]
. (14)

This enters in the TDDFT Dyson equation, (7), where the
Coulomb potential in momentum space u(q + G) = 4π

|q+G|2
connects it with the full χρρρ . The second place in which local-
field effects enter is in the macroscopic dielectric functions
εM , which relate the microscopic response to the macroscopic
susceptibility. These quantities also contain local-field effects

and are calculated according to the Adler-Wiser relation,19–21

εM (ω) = lim
q→0

1

ε−1
G=0,G=0(q,ω)

, (15)

where, again, a careful consideration of the G dependence is
crucial.
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FIG. 1. (Color online) Influence of local fields on the imaginary
part of the components of the linear dielectric tensor for the SiC
polytypes 2h, 4h, and 6h, where calculations accounting for local
fields are denoted LFE and those where they are neglected as
IPA + SO. Both calculations include quasiparticle effects via the
scissors operator (SO). For the perpendicular component ε⊥, local-
field effects decrease with decreasing hexagonality and vanish for 6h,
while the local-field effect for the ε‖ component is independent of the
hexagonality.

Therefore we have to analyze local-field effects in the
linear dielectric tensor as well. Due to the crystal symmetry
the hexagonal polytypes have an optical anisotropy with
two independent components of the dielectric tensor, which
are commonly denoted ε‖ = εzz and ε⊥ = 1

2 (εxx + εyy). In
Fig. 1 we show the local-field effect contribution in these two
components for the three polytypes. Note that here and in
the following local field, calculations are always performed
including quasiparticle effects via the scissors operator. We
can see a clear trend for the ε⊥ component, where the effect
decreases with decreasing hexagonality and almost vanishes
for the 6h polytype. The effect for the ε‖ component, however,
seems to be independent of the hexagonality, being of the same
magnitude for all three polytypes. We also note that the relative
local-field effect in the ε‖ component is of the same size as for
the ε⊥ in 2h.

Since local-field effects stem from the microscopic fields
that are due to the inhomogeneity of the crystal, we would
like to link this dependence of the local-field effect to the
electronic densities of the different polytypes and thus explain
the different behavior in terms of the different electronic
densities. Inhomogeneity of a density can be considered as
the variation from a mean value. To quantify inhomogeneity
in this sense, we consider the Fourier transform of the density,
which decomposes the density into its constituent frequencies.
The reasoning here is that for a homogeneous density, only
one Fourier component will be present, while inhomogeneous
densities have a more complex decomposition.

We perform a discrete Fourier transform on the real-space
DFT densities for the different polytypes and consider the
(b1,0,0) and (0,b2,0) = (0,0,b3) directions, which correspond
to the ‖ and ⊥ directions, respectively. Inspection of the
three-dimensional Fourier-transformed density shows that,

0 5 10
0

0.2

0.4
2h
4h
6h

0 5 10
0

0.2

0.4

G [Å−1]G [Å−1]

ρ
⊥(
G

)

ρ
(G

)

FIG. 2. (Color online) Fourier decomposition of the electronic
densities of the three polytypes 2h, 4h, and 6h along the directions b1

and b2 = b3, which correspond to the ‖ and ⊥ directions, respectively.
Values are normalized to the maximum of each transform, which
occurs at G = 0 and is not shown here. The different number of
points in the b1 direction for the different polytypes is due to the
different size of the unit cell in that direction.

indeed, these directions yield the only significant contribution.
In Fig. 2 we compare the result for the three polytypes. First,
we note the strong dependence on hexagonality of the density
in the ⊥ direction, where the values at the first G decrease
with decreasing hexagonality. Indeed, the 6h polytype exhibits
no significant deviation from the maximum at G = 0 (not
shown in Fig. 2) and can thus be interpreted as being almost
completely homogeneous. This behavior is consistent with the
absence of local-field effects for this component of 6h. We find
the same consistency for the z direction, where all densities
show the same dispersion and no polytype-related dependence
is discernible in the spectra. Furthermore, we note that the
value of the peak at G = 2.5 Å−1 is the same as for the peak
for the 2h in the ⊥ direction at the same G values, indicating the
same importance of local-field effects for the ε⊥ of 2h and the
ε‖ for all polytypes. Also, this corresponds to the observations
we made for Fig. 1.

The analysis of the electronic density is thus consistent with
the influence of local-field effects on the linear dielectric ten-
sor. As far as the second-harmonic susceptibility is concerned,
however, it is not enough to consider only the linear εM that
enter in Eq. (9), but also the contribution of the second-order
TDDFT Dyson equation, (7) where local fields are accounted
for as well, must be considered. Figure 3 shows the zzz and xzx

component of the macroscopic second-order susceptibility for
the same polytypes as in Fig. 1. While the influence of the
local field on the xzx component can be seen to be roughly
the same as for ε⊥, the overall trend is not as clear as in the
linear case. This is partly due to the fact that xzx accounts for
effects in two crystallographic directions, but also due to the
more complex mixing of effects in the Dyson equation. For
the zzz component the comparison with the linear case is more
complicated to interpret, since the only discernible local-field
effects in χ (2) occur in the 2h component, while in ε‖ it is
roughly the same for all polytypes.

To better understand how the crystal local fields enter into
the macroscopic second-order susceptibility, we note that in
the limiting case G = 0 and fxc = 0, that is, no local-field
effects and no exchange and correlation (here referred to as the
independent particle approximation; IPA), the εM prefactors
of the χρρρ cancel with the linear terms of the TDDFT Dyson
equation:

(q1 + q2)d (2)
IPAq1q2 = −iχ (0)

ρρρ(q1 + q2,q1,q2,2ω,ω). (16)
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FIG. 3. (Color online) Local-field effects (LFEs) for the xzx

(upper panels) and zzz (lower panels) components of χ (2) (in a.u.)
for the three SiC polytypes compared with an independent particle
calculation (IPA + SO) where no local-field effects are accounted
for. Both calculations include quasiparticle effects via the scissors
operator (SO).

This exact cancellation in the absence of local fields means that
in the presence of local fields there is still some considerable
cancellation, since the local-field effects in the εM are not very
strong.

IV. EXCITONIC EFFECTS

As for the local-field effects, excitonic effects are included
in two places in Eq. (9), the εM and the χρρρ via the second-
order TDDFT Dyson equation, (7). However, while in the
local-field case the two contributions have the tendency to
cancel each other, the situation is different for the excitonic
effects. In the calculation of εM as well as in the TDDFT
Dyson equation, we use the model kernel

fxc = − α

|q + G|2 , (17)

which corrects the absence of a long-range interaction for
the optical limit and has been shown to yield excellent
results for the linear response compared to the solution of
the Bethe-Salpeter equation.22,23 The value of α is thus an
effective parameter that reproduces the Bethe-Salpeter result.
The simplicity of this kernel has the drawback that it is a
static approximation to what is generally a dynamic problem.
Therefore, the value used for α should change slightly with the
energy range one is considering. This means, especially, that
for the static limit of χ (2)(ω), one has to use a different value
of α.

We show the influence of this kernel on the linear
macroscopic dieletric function in Fig. 4. In Fig. 5 we show
the effect the long-range kernel has on the macroscopic
second-order susceptibility for the different polytypes by
comparing it to the results where only local fields are accounted
for. We note that there is no apparent dependence of the
excitonic effects on the hexagonality, but both components
and all polytypes show a dramatic increase in the intensity
of χ (2).
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FIG. 4. (Color online) Influence of the long-range kernel,
Eq. (17), on the macroscopic dielectric function with α = 0.5.

While the microscopic χρρρ (not shown here) differs by
orders of magnitude, depending on whether or not local
fields are included, the effect of the long-range kernel in
the second-order TDDFT Dyson equation turns out to be
negligible; that is, its inclusion does not affect the resulting
χρρρ . Therefore, in this scheme, almost all excitonic effects
of the second-order susceptibility stem from the εM and how
they are incorporated into the equation. Considering, however,
the influence of the long-range kernel on the εM as shown
in Fig. 4, we note that it is weaker than in the nonlinear
case, and above all it only increases the peaks at the onset of
absorption.

The overall increase in χ (2) can be understood by consider-
ing again the limiting case of G = 0, but this time keeping the
fuxc according to Eq. (17). In this case it is possible to solve
the TDDFT Dyson equation, (7), analytically and thus obtain
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FIG. 5. (Color online) Excitonic effects (EXC) for the xzx (upper
panels) and zzz (lower panels) components of χ (2) (in a.u.) for the
three SiC polytypes compared with a calculation where only local
fields are accounted for, i.e., Fig. 3. The value of α is 0.523 and both
calculations include quasiparticle effects via the scissors operator.
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FIG. 6. (Color online) Static second-harmonic coefficients for the SiC polytypes considered. Values from (A) the present work, (B) Chen
et al.,5 (C) Rashkeev et al.,6 (D) Adolph and Bechstedt,11 and (E) Wu and Guo.24 Experimental values, where available, are taken from Sato
et al.26 and are shown as horizontal lines, with the margin of error as a shadow. The value of α for the EXC calculation is 0.2 taken from
Botti et al.25

an expression for the effect of the kernel on the susceptibility.
We find (here, explicitly for the zzz component)

d (2)
zzz(ω)

χ (0)(2ez,ez,ez,2ω,ω)
= A(ez,2ω)A(ez,ω)A(ez,ω), (18)

where

A(q,ω) = 1 − α

4π
[εM (q,ω) − 1]. (19)

This means that when εM is smooth, the change of d (2)
zzz

with the long-range kernel is directly proportional to α.
In contrast, when εM is changing significantly, the change
directly affects the spectrum of χ (2). This explains why in all
spectra in Fig. 5 the low-energy peaks are most prominently
increased, because it is this feature in the εM that changes
most. For the high-energy range, when the εM are close to 1,
we do not see considerable change. This is consistent with the
behavior of Eq. (19), which is close to 1 when εM is close
to 1.

V. STATIC COEFFICIENTS

Since experimental data are only available for static values
of the considered polytypes, in Fig. 6 we report our results for
χ (2)(0) for the different components and polytypes. In this limit
we have χ (2)

zxx = 1
2χ (2)

xzx because of Kleinmann symmetry.14

Also shown are results of previous theoretical studies that
report the coefficients in the different approximations, inde-
pendent particles (IPA), IPA with quasiparticle shift accounted
for by the scissors operator (IPA + SO), local-field effects
(LFE), and excitonic effects (EXC). We note an overall
agreement between the reported results, with the exception of
the results of Wu and Guo,24 which seem to use a definition of
χ (2) that is twice as large as ours. The general trend observed

in all polytypes and components is that the values decrease
when the quasiparticle shift is included and decrease even
further when local fields are accounted for. We also report
our results including excitonic effects, here using a different
value of α, taken from Botti et al.,25 where it is shown to give
the correct static dielectric constant. The need for a different
value of this parameter for the static limit comes from the fact
that fxc is generally not static and the α value used for the
spectral results above is designed to reproduce the dynamic
features of the spectrum, whereas here we are in the static
limit. We note from Fig. 6 that when we account for excitonic
effects in this way, we obtain a very good agreement with the
experimental values. The effect of the excitonic kernel is again
an increase, as observed in the spectra. Here we see, however,
that this increase largely just compensates the combined
decrease in the quasiparticle shift and local-field effects, so
that the excitonic results are very close to the IPA results.
This means that early calculations of the second-harmonic
coefficients that yielded satisfactory results largely profited
from a cancellation of effects. It also means, of course, that
for the static coefficients, one can consider the IPA a sufficient
approximation.

VI. CONCLUSION

In this paper we have investigated the influence of crystal
local fields and excitonic effects on the SHG spectra of silicon
carbide polytypes. The scalar density response function is re-
lated to the macroscopic tensor components by the polarization
directions of its matrix elements, which has to be carefully
analyzed to yield the desired components. We find that most
influences of the local fields and excitonic effects can be traced
back to the behavior of the linear dielectric function, which
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features in the equation for the macroscopically averaged
second-harmonic susceptibility. Local-field effects, although
essential in the formulation of the theory, turn out to be only
of minor influence on the spectra, but yield a slight overall
decrease in the components. Excitonic effects, in contrast,
are shown to influence the spectra dramatically, leading to
an increase in the calculated second-harmonic spectra of up
to 100%.

The accuracy of our method can only be assessed in the
static limit, due to the lack of experimental data for a higher
frequency range. We show not only that our calculations
are in agreement with previous ones when lower levels
of approximations are used, but also that the combination
of local-field and excitonic effects as described by our

method yields excellent agreement with recent experimental
measurements.
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