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Lifshitz transition with interactions in high magnetic fields
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Motivated by a discontinuous transition observed in CeIn3 in high magnetic fields, the effects of Landau
quantization and interaction on a Lifshitz transition are studied. The Landau quantization leads to a quasi-one-
dimensional behavior for the direction parallel to the field. Repulsive Coulomb interactions give rise to a gas
of strongly coupled particles. The density correlation function is calculated for a special long-ranged potential.
It is concluded that in the ground state, an electron pocket is emptied in a discontinuous fashion as a function
of the chemical potential. This discontinuity is gradually smeared by the temperature, in agreement with the
experiment.
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I. INTRODUCTION

CeIn3 is a cubic heavy fermion metal that orders antifer-
romagnetically with TN = 10.1 K.1 The Néel temperature is
reduced with pressure and tends to zero at a critical pressure
Pc of approximately 2.5 GPa. At Pc, the compound exhibits
pressure-induced superconductivity with a maximum Tc of
about 170 mK.2 The superconducting dome is believed to
be mediated by the antiferromagnetic fluctuations, which
predominantly arise from “hot spots” on the Fermi surface.3,4

This phase diagram consisting of an antiferromagnetic and a
Kondo phase separated by a quantum critical point is consistent
with the picture proposed by Doniach.5

The Néel ordered state is also suppressed as a function
of magnetic field at HN = 61 T at ambient pressure.6 The
Fermi surface cross sections above and below HN differ,
leading to the postulation that the transition is associated with
a Fermi surface reconstruction with the 4f electrons being
localized above HN (small Fermi surface). This contrasts with
the Fermi surface at high pressures (P > Pc) where the pockets
found have a large Fermi surface,6 since pressure increases the
hybridization of the 4f electrons and renders states that are
more itinerant in the paramagnetic phase.7

Small heavy f -carrier pockets located near the hot spots
of antiferromagnetic fluctuations were observed within the
Néel ordered phase.6,8 These pockets collapse and become
depopulated for fields larger than 41 T. Although there is
insufficient experimental evidence to determine if the Lifshitz
transition is caused by electron or hole pockets, in Refs. 6 and 8
the pockets are believed to be hole pockets. Harrison et al.6

proposed that the disappearance of the pockets is associated
with a Lifshitz transition.9 Further studies of the H -P phase
diagram10 revealed that there are two transition lines for CeIn3,
i.e., one corresponding to the transition from the Néel state into
the paramagnetic phase and a second transition line at lower
magnetic fields caused by the reconstruction of the Fermi
surface [see Fig. 1(a)]. The two lines merge at a pressure
of about 2 GPa. The second transition, measured in the skin
depth with a tunnel diode oscillator technique (TDO), displays
hysteresis and becomes better defined at lower temperatures.
Extrapolated to T → 0, the transition represents a jump in the
conductivity to a less resistive state at higher fields.

This discontinuous behavior is not compatible with a
traditional Lifshitz transition, which leads to a gradual

disappearance of a section of the Fermi surface and hence to
a continuous change in the conductivity. Yamaji et al.11 have
shown that in two dimensions, the presence of interactions
can turn the Lifshitz transitions discontinuous in contrast to
the continuous transition for noninteracting systems. CeIn3

is a three-dimensional system with strong correlations and
the transition takes place in high magnetic field, so that the
Landau quantization of the electron states plays an important
role. We study the effects of the correlations on the density-
density response function in the extreme quantum limit where
only one Landau level is occupied. It is concluded that the
system is strongly correlated and that the density correlation
function diverges when the van Hove singularity of the empty
band is approached. Consequently, the Lifshitz transition is
transformed into a discontinuous transition, in agreement with
the experimental observations. The discontinuity is gradually
smeared by temperature.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the Lifshitz transition for a noninteracting
system in a strong magnetic field, which leads to one-
dimensional van Hove singularities. In Sec. III, we discuss
the three-dimensional interacting gas of electrons with Lan-
dau quantization. In the leading logarithmic approximation,
the parquet equations can be reduced to integro-differential
equations.12 The length scale in the screened Coulomb inter-
action prevents an exact analytic solution of these equations.
However, by choosing an infinite-ranged potential in the plane
perpendicular to the magnetic field,13 the equations reduce to
differential ones and the model can be solved via bosonization
of fermions or the multiplicative renormalization group.14

The system is strongly coupled and the strong-coupling fixed
point has dramatic consequences for the Lifshitz transition.
In Sec. IV, we calculate the density-density correlation
function and conclude that the transition to the empty pocket
has to be discontinuous. A brief summary is presented
in Sec. V.

II. LIFSHITZ TRANSITION IN A STRONG
MAGNETIC FIELD

We consider a small pocket of electrons in contact with
an electron reservoir pinning the chemical potential. At this
point, we neglect the interactions among the particles. For a
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FIG. 1. Low-temperature magnetic field vs pressure phase dia-
gram for CeIn3 from Ref. 10. The dashed curve represents the Néel
field destroying the antiferromagnetic long-range order. The solid
line corresponds to the second transition line along which the Fermi
surface reconstructs.

magnetic field pointing in the z direction, the energy levels of
the states in the pocket are given by

εσ (kz,n) = h̄2k2
z

2m
+ 2μBB

(
n + 1

2

)
− σgμBB/2, (1)

where σ = ±1 and the g factor is assumed to be 10/7 since
the heavy electrons arise mostly from the �7 states of the
Ce 4f shell. Here μB = eh̄/(2mc) and the degeneracy of the
Landau level is d = LxLyeB/(2πh̄c), where LxLy is the cross
section of the sample perpendicular to the field. This dispersion
leads to the following density of states (DOS) for up- and
down-spins:

ρ↑(ω) = eB
√

2m

c(2πh̄)2

∞∑
n=0

[ω − (2n + 1 − g/2)μBB]−1/2,

(2)

ρ↓(ω) = eB
√

2m

c(2πh̄)2

∞∑
n=0

[ω − (2n + 1 + g/2)μBB]−1/2.

Note that the DOS for up-spins starts at ω = (1 −
g/2)μBB, while the one for down-spins begins at (1 +
g/2)μBB. Each of the Landau levels contributes with a
one-dimensional (energy minimum) van Hove singularity,
which are displayed in Fig. 2(a) as a function of frequency.
Due to the Zeeman splitting, the square-root singularities
appear at different energies for up- and down-spin carriers.
The physics of Lifshitz transitions in a strong magnetic field
has been discussed by Blanter et al.15

At T = 0, the DOS is filled up to the chemical potential μ,
which is pinned by the electron reservoir. The occupation for
up-spin and down-spin electrons is given by

n↑(B) = 2
eB

√
2m

c(2πh̄)2

∞∑
n=0

[μ − (2n + 1 − g/2)μBB]1/2,

(3)

n↓(B) = 2
eB

√
2m

c(2πh̄)2

∞∑
n=0

[μ − (2n + 1 + g/2)μBB]1/2.
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FIG. 2. (a) Density of states as a function of frequency over μBB

for up-spin (solid curve) and down-spin (dashed curve) electrons
displaying the one-dimensional van Hove singularities due to the
Landau quantization. The DOS is given in units of eB

√
2m/c(2πh̄)2.

(b) Occupation of the up-spin (solid curve) and down-spin (dashed
curve) subband [in units of 2e

√
2m/μBc(2πh̄)2] as a function of μBB

for chemical potential μ = 2. As a consequence of the g factor, the
lowest Landau level for the up-spins is the only occupied band for a
large range of B.

In Eqs. (2) and (3), the contribution is zero if the argument
of the square root is negative. Hence, the electron pocket is
gradually emptied as a function of magnetic field with the
down-spin subband being unoccupied first. As a consequence
of the g factor being close to 2, there is a large field regime
in which only the lowest Landau level in the up-spin subband
is relevant [see Fig. 2(b)]. Hence, the Lifshitz transition as a
function of field from partially filled to empty band takes place
under complete spin polarization. Note that if we consider
a hole band instead of an electron band, the band is filled
rather than emptied with increasing field. Hence, the Lifshitz
transition that is claimed to be a consequence of an emptying
hole band in Refs. 6 and 8 should actually be an electron band.
There is insufficient experimental evidence to distinguish the
two cases.

One-dimensional van Hove singularities due a Lifshitz
transition9 have played a role in the statistical mechanics
of numerous two-dimensional models.16,17 For instance, an
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array of flexible self-avoiding domain walls extending across a
two-dimensional medium can be reduced to a one-dimensional
fermion problem using transfer-matrix methods. With short-
range interactions, the model can then be mapped onto a
Heisenberg chain and has Luttinger liquid properties. For
constant chemical potential, the equilibrium number of domain
walls is a function of temperature and vanishes at Tc(μ)
proportional to [T − Tc(μ)]1/2. The specific heat (proportional
to the DOS) diverges with a square-root singularity at that
point. Systems similar to this are of interest in connection with
the wetting transition,18 the commensurate-incommensurate
transition,19 the unbinding transition in membranes,20 the
statistics of “drunken walkers,”21 etc.

III. INTERACTING ELECTRONS WITH LANDAU
QUANTIZATION

The static density response function of the noninteracting
electron gas D0(q,ω = 0) in high fields at zero temperature
exhibits logarithmic singularities for qz = qn,σ + qn′,σ , where
qz is the component of q parallel to the magnetic field and
qn,σ is the Fermi momentum of the subband n,σ . These
singularities indicate the tendency of the ground state to be
unstable against the formation of charge-density waves with
a wave vector parallel to the magnetic field. The perturbation
expansion of the density response function D(q,ω = 0) in
terms of a screened repulsive interaction potential yields
logarithmic singularities of increasing order to all orders
of perturbation. These logarithmic divergences have to be
summed consistently to all orders of perturbation, which is
best formulated in terms of parquet equations for the vertex
function.

A. Parquet equations

The exact parquet equations for the electron gas in a high
magnetic field have been considered in Refs. 12 and 13. The
full vertex function �(1,2,3,4) with the short-hand notation
1 = (σ1,n1,k

y

1 ,kz
1,ω1), etc. (where σ is the spin component; n,

ky , and kz are the usual quantum numbers in the Landau gauge;
and ω is a fermion Matsubara frequency) can be decomposed
into the sum of a totally irreducible part and three reducible
blocks. Two of the reducible blocks are of the “zero-sound”
type (reducible by cutting two antiparallel propagator lines)
and the third one is the Cooper channel (reducible by cutting
two parallel propagator lines). The parquet equations are
integral equations for the reducible blocks with the irreducible
diagrams as input. To leading logarithmic order it is sufficient
to consider the bare vertex as the only irreducible input
diagram, as long as the bare interaction is a screened Coulomb
potential.

Within the leading logarithmic approximation, the kz

momenta and the frequency ω play the same role, namely,
they become the logarithmic variable, η. This way the
problem greatly simplifies and it can be reduced to one
integro-differential equation for the vertex function, which still
depends on two variables.12 One variable is the logarithmic
variable η with respect to which the equation is a differential
one, and the other is q⊥, the momentum in the plane
perpendicular to the field, with respect to which it remains

an integral equation. With respect to the logarithmic variable,
this equation represents the renormalization-group equation,
which arises when the electronic cutoff for the energy along
the z direction is reduced. This equation could also be
derived within Shankar’s renormalization-group scheme22 or
the multiplicative renormalization.23,24

For an arbitrary bare repulsive interaction potential
V (qz,q⊥), the q⊥ dependence introduces an additional length
scale. With respect to qz, we only need to consider two
amplitudes, namely, the forward- and the backward-scattering
amplitudes, corresponding to small momentum transfer and
scattering across the Fermi surface. However, due to the q⊥
dependence of the potential, the interaction depends on the
component of the particle distance in the plane perpendicular to
the field. This is the physical reason for the integro-differential
equation, which can only be reduced to a pure differential
one if the interaction is independent of the distance in
the plane.12

B. Schulz-Keiter potential

Schulz and Keiter13 proposed a potential that is independent
of the particle distance in the plane perpendicular to the
field, and hence the parquet equation would reduce to a
differential equation.12,14 The long-range interaction is then of
the form

V (qz,q⊥) = w(qz)L
2δq⊥,0, (4)

where δq⊥,0 is a Kronecker delta. There are two relevant scat-
tering processes, namely, small momentum transfer (forward
scattering along the z direction) and scattering across the Fermi
surface (backward scattering with 2qn,σ ). Note that within the
leading logarithmic approximation, only states with the same
quantum numbers n and σ are relevant, so that we can suppress
the indices of the Fermi momentum along the z direction. In
particular, in the extreme quantum limit n = 0 and σ =↑, and
we denote the Fermi momentum with q0. This condition is
satisfied over a large range of fields [see Fig. 2(b)].

We denote w(2q0) by w1 and w(0) by w2 and assume
that only one energy or momentum variable, p, plays a
relevant role in the vertex function (as is the case within
the leading logarithmic approximation, see Ref. 12). This
model can now be solved within the long-time approximation
using bosonization techniques.14 The vertex function has the
structure

�kz
1k

z
2k

z
3k

z
4
(p) = w1δkz

1k
z
3
δkz

2k
z
4
γ1(p) − w2δkz

1k
z
4
δkz

2k
z
3
γ2(p), (5)

where γ1 and γ2 are vertex amplitudes that are independent of
the kz indices. The electron self-energy does not contribute
to the leading logarithmic order, so that only perturbative
corrections to the vertex need to be taken into account. To
second order in the coupling they consist of the eight diagrams
shown in Fig. 3, which are the same ones as for the 1D electron
gas23 and are straightforwardly evaluated.14 Note that no spin
index needs to be considered (the system is spin-polarized),
but the Landau level degeneracy d has to be included. This
degeneracy plays the same role as the spin index in the 1D
gas. The resulting renormalization-group equations for the
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FIG. 3. Second-order vertex diagrams: (a) Cooper channel and (b) zero-sound channel. The full lines represent forward-moving particles,
while the dashed lines correspond to backward movers.14,23

vertex amplitudes are now (obtained either via multiplicative
renormalization14 or by Shankar’s method22)

dγ1

dη
= −κdw1γ

2
1 ,

(6)
dγ2

dη
= −κ

(
w2

1/w2
)
γ 2

1 ,

where κ = 1/(2πvF ) = m/(2πq0). It is straightforward to see
that one combination of invariant couplings is not renormal-
ized, namely,

w1γ1 − dw2γ2 = w1 − dw2, (7)

while the integration of the first of Eqs. (6) with the initial
condition γ1(0) = 1 yields

γ1 = 1/[1 + κdw1η]. (8)

Hence, with increasing logarithmic variable η the vertex
amplitude γ1 renormalizes to zero. Although γ1 renormalizes
to zero, the system has the potential of being strongly coupled
because the combination w1γ1 − dw2γ2 remains constant.

IV. DENSITY RESPONSE FUNCTION

The static uniform density response function is a measure of
the change in the electron density as a response to an external
charge perturbation, e.g., a change in the chemical potential. It
is the quantity that determines how the lowest Landau level is
populated when the chemical potential for the level is changed,
for instance, by increasing the magnetic field.

To first order in perturbation with the Schulz-Keiter
potential, the density response function is

D(η,q⊥) = κ

2πl2
exp

[
− 1

2
l2q2

⊥

]
η[1 − κη(dw1δq⊥,0 − w2)],

(9)

where l = (L2/2πd)1/2 is the magnetic length. Note that the
density response function is discontinuous for q⊥ = 0, i.e., the
value at q⊥ = 0 is different from the value at q⊥ → 0. This
discontinuity is a consequence of the long-ranged nature of
the Schulz-Keiter interaction in the plane perpendicular to the
magnetic field.

The function D(η,q⊥) does not satisfy the conditions for
multiplicative renormalization.23,24 We define the quantity

D(η,q⊥) = 2πl2

κ
exp

[
1

2
l2q2

⊥

]
∂

∂η
D(η,q⊥)

= 1 − 2κη(dw1δq⊥,0 − w2), (10)

which has appropriate scaling behavior and satisfies the
differential equation

∂

∂η
D(η,q⊥) = 2κ[dw1δq⊥,0γ1(η) − w2γ2(η)], (11)

with the initial condition D(η = 0,q⊥) = 1. The solution is

D(η,q⊥) = exp[2κ(w2 − w1/d)η]/[1+dκw1η]2(δq⊥,0 −1/d2).

(12)

For d = 2 and q⊥ = 0, we recover Sólyom’s result24 for the
1D electron gas.

We need the homogeneous density response function, i.e.,
the q⊥ = 0 limit; the physically correct limit is q⊥ → 0.
Hence, the last factor in Eq. (12) is [1 + dκw1η]2/d2

, which is
only a very small correction to the exponential (note that the
degeneracy d is very large) and can be neglected. Integrating
D with respect to η, we obtain the density response function

D(η,q⊥ → 0) ∼ exp[2κ(w2 − w1/d)η] − 1

4πl2(w2 − w1/d)
, (13)

which has the exponential as the dominating feature. Hence,
the system is strongly correlated as a consequence of the
forward-scattering amplitude w2. In Ref. 12, this divergence
of D(η,q⊥) was interpreted as a possible instability to a
charge-density wave or to a Wigner crystal phase. The new
phase would have a characteristic length scale given by the
inverse of the 1D Fermi momentum q0.

We now return to the problem of the Lifshitz transition in the
interacting system in a high magnetic field. The logarithmic
variable η now has the form ln[(2q0 + qz)/(2q0 − qz)] and
we must consider the limit qz → 0. Here qz is the external
momentum variable in the density correlation function and we
need to consider the static and uniform limit of D, i.e., q = 0
and ω = 0. The logarithmic approximation is a consistent
way of summing a specific class of diagrams, defined in
Fig. 3. Without changing this resummation of diagrams, we can
transform the argument of the logarithm without consequence
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to the validity of the approximation. In other words, although
as qz → 0 the logarithm no longer diverges, it still provides
the same consistent diagram resummation.

Expression (13) now has the form

D(qz → 0,q⊥ → 0) ∼ exp[(m/πq0)(w2 − w1/d)] − 1

4πl2(w2 − w1/d)
.

(14)

Close to the van Hove singularity, q0 tends to zero so that
the density correlation function diverges faster than a power
law. As stated above, D(q = 0,z = 0) is the response of the
number of carriers in the first Landau level to a change in the
chemical potential or equivalently to a change in the magnetic
field. The integral of the correlation function with respect to
q0 yields the change in the number of particles in the band.
However, the singularity we obtained is not integrable, so that
the change in the number of particles when the band starts to
get filled is discontinuous. The system is strongly interacting
and the continuous filling of the noninteracting van Hove
singularity [n ∼ (ω − μ)1/2] is changed to a discontinuous one
by the Coulomb interaction at T = 0. With the carrier density
calculated in linear response, it is not possible to determine
the magnitude of the jump. Although the Schulz-Keiter
interaction is long-ranged in the plane perpendicular to
the field (so that the integro-differential parquet equations
can be reduced to pure differential ones) and hence
somewhat peculiar, we do not expect the general property
of strong coupling to change for a more realistic interaction
potential.

At finite temperature, the smearing of the Fermi surface
prevents the density correlation function from diverging. In the
vertex amplitudes, the logarithmic variable η is to be replaced
by

η = ln

(
4q0

|p|
)

→ ln

(
4q0

4πT

)
− Reψ

(
1

2
+ i

p

4πT

)
, (15)

where Re denotes the real part and ψ is the digamma function.
A similar replacement is in order in the density function,
namely,

η = ln

(
2q0 + qz

2q0 − qz

)
→ Reψ

(
1

2
+ i

2q0 + qz

4πT

)

− Reψ

(
1

2
+ i

2q0 − qz

4πT

)
, (16)

which expanded for small qz yields

− 2qz

4πT
Imψ ′

(
1

2
+ i

2q0

4πT

)
, (17)

where Im denotes the imaginary part and ψ ′ is the trigamma
function. In the limit T → 0, Eq. (17) reduces to qz/q0.
Hence, expression (17) divided by qz replaces 1/q0 in Eq.
(14). This way at low but finite T the correlation function
no longer diverges as q0 → 0. Two regimes have to be
distinguished: (i) T > q0, where Eq. (17) is proportional
to q0qz/(2πT )2, and (ii) T < q0, where Eq. (17) reduces

to qz/q0. The two regimes are separated by a crossover
region.

Due to the absence of divergence of the density correlation
function at finite T , the filling of the first Landau level
is continuous as a function of field. Instead of a square
root dependence of the occupation as a function of B,
there is a strong increase at low T when q0 is passing
the crossover region and a sharp peak when regime (ii)
is reached. The height of the peak increases as T → 0
until the transition is discontinuous at T = 0. This behavior
is consistent with the experimental findings for CeIn3,10

where a continuous transition has been found in a TDO
probe measurement that becomes a jump when extrapolated
to T → 0. Hence, the combination of Landau quantization
and Coulomb interaction gives rise to a strong-coupling
situation that leads to the modification of the standard Lifshitz
transition.

V. CONCLUSIONS

Using the leading logarithmic solution of the Schulz-Keiter
model in the presence of strong Landau quantization, we have
studied the Lifshitz transition for a heavy electron band as
a function of magnetic field at constant chemical potential
(coupling to an electron reservoir). For the free-electron
gas in a strong magnetic field, the Landau quantization
modifies the dimensionality of the 3D Lifshitz transition
to one with 1D characteristics. Repulsive electron-electron
interactions further change the nature of the transition to
one that is discontinuous at T = 0. This discontinuity is
gradually smeared at finite T , in agreement with experimental
observations. Although the Schulz-Keiter interaction has
a peculiar long-range potential form within the plane
perpendicular to the magnetic field, we do not expect
this result to be affected qualitatively. The magnetic-field
dependence of the Lifshitz transition also suggests that the
transition of CeIn3 corresponds to an electron rather than a hole
pocket.

Note that disorder can also affect the states close to a
van Hove singularity, which could become localized at the
band edge. A mobility edge separates the localized from the
extended states, and only if the chemical potential lies above
the mobility edge can the states contribute to conduction.
There are four arguments discarding disorder as the possible
cause for the effect discussed here. (i) The samples are of
very high purity, so that a mobility edge should not arise.
(ii) There are other conductive states (represented by the
reservoir pinning the chemical potential), which would screen
the effects of disorder. (iii) Disorder would not give rise to a
discontinuity of the skin depth in the ground state as a function
of field. (iv) The temperature dependence of the skin depth
would be less remarkable close to the disorder insulator-metal
transition.
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