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Density functional theory for a model quantum dot: Beyond the local-density approximation
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We study both static and transport properties of model quantum dots, employing density functional theory
as well as (numerically) exact methods. For the lattice model under consideration the accuracy of the local-
density approximation generally is poor. For weak interaction, however, accurate results are achieved within
the optimized effective potential method, while for intermediate interaction strengths a method combining the
exact diagonalization of small clusters with density functional theory is very successful. Results obtained from
the latter approach yield very good agreement with density matrix renormalization group studies, where the full
Hamiltonian consisting of the dot and the attached leads has to be diagonalized. Furthermore we address the
question of whether static density functional theory is able to predict the exact linear conductance through the

dot correctly—with, in general, a negative answer.
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I. INTRODUCTION

Density functional theory (DFT) is an efficient tool for
determining the electronic structure of solids. While originally
developed for continuum systems with Coulomb interaction, >
DFT has also been applied to lattice models, such as the Hub-
bard model or models of spinless fermions.*® These lattice
models often allow for exact solutions—either analytically or
based on numerics—which hence can serve as benchmarks for
assessing the quality of approximations.

Very popular in solid-state applications is the local-density
approximation (LDA) where the exchange-correlation energy
of the inhomogeneous system under consideration is con-
structed via a local approximation from the homogeneous
electron system.” Recently a lattice version of the LDA
has been suggested for one-dimensional systems, where the
underlying homogeneous system can be solved using the
Bethe ansatz. For example, it has been demonstrated that
the Bethe ansatz LDA describes well the low-frequency, long-
wavelength excitations of the interacting one-dimensional
system, i.e., of a Luttinger liquid.®’

On the other hand the LDA often fails in correlated systems
and systematic improvements beyond the LDA are difficult.
In this article we focus on a model of spinless fermions
describing interacting electrons on a quantum dot. In the first
step we compare the equilibrium properties of the system,
i.e., the number of particles on the dot as a function of
the gate voltage obtained within different approximations for
the exchange-correlation energy: the LDA and the optimized
effective potential (OEP) approach. Furthermore we suggest
a novel method where the exchange-correlation energy is
obtained via the exact diagonalization of a small cluster that
is composed of the strongly interacting region and a few
additional sites. The accuracy of this novel approach turns
out to be by far better than that of the LDA and the OEP.

In the second step we compute the linear conductance
through the dot. A general motivation for this study is recent
progress in the field of molecular electronics, where DFT-
based calculations are a standard tool to calculate electrical
conductances.'®"'?> However the conceptional limitations of
the approach are not very well understood yet. More specif-
ically we were motivated by the model studies in Refs. 13
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and 14. Mera et al.'* stressed that static DFT reproduces
the conductance of an interacting system correctly if there
exists a Friedel sum rule that relates the conductance with
the equilibrium density. Schmitteckert and Evers'? compared
conductances obtained from a density matrix renormalization
group calculation with those obtained within static DFT. Close
to resonances both conductances were in very good agreement,
while off-resonance there was a considerable discrepancy.
This discrepancy is due to a difference between the voltage
in the Kohn-Sham system and in the physical system,!>!
Uks — U = U*°. One of the questions we address is whether
U*¢ depends on the distance between the interacting region
and the reservoirs.

In the following section we introduce the model under
investigation. In Sec. III, devoted to static DFT, we discuss
the approximations used to obtain the exchange-correlation
energy. Section IV is devoted to transport: We rederive the
Meir-Wingreen formula for the conductance starting from the
dynamical density-density response function, and we apply
the formula to calculate the conductance for our model. The
final section contains a summary as well as our conclusions.

II. THE MODEL

We study a model where a chain of N lattice sites is coupled
to two reservoirs

H=H, +H,c+ He + Heg + Hp. (D

The Hamiltonian of the chain reads

N—1 N
He = =) t00@ e +&8 80+ ui
c = 1LI+1\Cp Cl+1 1+1€1 inj
I=1 =1

N—1 1 1
+ ; Vi (ﬁ] - 5) (ﬁ1+1 - 5>, 2)

where 614' and ¢, are fermion creation and annihilation
operators, ; = éfré, counts the fermions on lattice site /. The
hopping matrix elements #; ;1| are chosen such that the system
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FIG. 1. Schematic view of the model under consideration: A
quantum dot (solid circles) attached to left and right leads, each
of them consisting of m noninteracting sites (open circles) and a
reservoir described by a continuum of states (shaded regions). The
electrons on the dot (sites m + 1 to m + 5) interact and their potential
energy can be tuned by a gate voltage.

resembles a quantum dot that is weakly coupled to left and
right leads, cf. Fig. 1, and are explicitly given by

t I=1,...m—1m+6,...,.N—1,
i = t’ l=m and [ =m+35, 3)
tior l=m+1,....m+4.

In the following we choose ' = 0.2¢ and #4, = 0.5¢. The
interaction strength and the potentials are constant within the
quantum dot, V;;11 =V and v; = vgye, and zero outside.
The reservoirs, chosen to be noninteracting fermions, are
described by

I:IL/R = Zeké;L/RékL/R’ “
k

and finally the coupling between the chain and the left reservoir
reads

Ape == 0@l e, +¢7¢,) ()
k

and analogously for Hcg. The hopping parameters 1, are
fine-tuned such that an electron at the Fermi energy is not
backscattered at the interface between the chain and the
reservoirs,'? t, = /1 /T N(€;), where N(e;) is the density of
states in the reservoirs. Up to this point our model is the
same as the model studied by Schmitteckert and Evers.'? In
contrast to Ref. 13, however, we replace the discrete levels in
the reservoirs by a continuum of a wide and flat band. The
tunneling rate from the chain to the left or right reservoir is
then given by

Trp =27 ) |ul8(er — ) 6)
k
= 27 |t |* N () |k, = 21. @)

Note that in the continuum limit the density of states in the
reservoirs goes to infinity, and thus—in order to keep I';
constant—the coupling strength between the states in the
reservoirs and the chain has to go to zero.

III. STATIC DENSITY FUNCTIONAL THEORY

Strictly speaking lattice DFT as presented here is a site
occupation function theory; compare Refs. 5 and 16. The
theory relies on the fact that there is a one-to-one corre-
spondence between local potentials {v;} and the ground-state
expectation values of the site occupations {n;}. Therefore it
is—in principle—possible to express all quantities that can be
obtained from the ground-state wave function as a function
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of the densities. The site occupations as a function of the
potentials can be found as derivatives of the ground-state
energy with respect to the local potential

__0Ey
B Bvi ’
In order to determine the potentials from the densities it is
convenient to define the function

F({n;}) = ming_, (, ) (W|T + V| W), ©)

where W — {n;} indicates that the minimization is constrained
to such wave functions W that yield the given site occupations
{n;}. Here T and V are the kinetic and the interaction parts
of the Hamiltonian, respectively. The ground-state energy is
obtained by minimizing the function

E(ini})) = F(ni) + ) vin; (10)

®)

n;

with respect to n;. When we minimize E under the constraint
of a constant particle number we obtain the potential up to an
additive constant (the Lagrange multiplier):

vi=——+AX. an
on i
A major step toward the practical implementation of DFT is
to employ a noninteracting auxiliary Hamiltonian H* (Kohn-
Sham Hamiltonian) in order to calculate the density profile,

H =T+ v, (12)

where the potentials v} have to be chosen such that in the
ground-state of H* the site occupations n; are the same as in
the interacting model. In analogy to the interacting system,
the ground-state energy of the Kohn-Sham system is found by
minimizing

E*({ni)) = F*(nh)+ Y _vin,. (13)

Combining Egs. (10) and (13) yields
E({n}) = E*(n) + E™C(nh) + Y (vi = v))ni,  (14)

with the Hartree-exchange-correlation energy defined by
E™C({n;}) = F({mi}) — F*({mi}). s5)

The condition that both E and E* are minimal for the same set
of site occupations n; requires that

aEHXC
ai’l,‘

Up to this point no approximations have been employed.
However, to determine EFXC at a given density exactly is
as demanding as finding the ground-state energy for a given
potential. The hope is that there exist good approximations
for EFXC that are accessible with low numerical cost but
still allow good estimates for the ground-state energy and
density. Here and in the following we compare three different
approximations: the LDA, the OEP (so-called exact exchange)
approximation, and finally a method based on the exact
diagonalization of small clusters. Only the last method—which

v =v; + (16)
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is computationally the most expensive one—yields reliable
results even in the strong interaction regime and can (in
principle) be made as accurate as needed by increasing the
cluster size.

A. Local-density approximation

In the LDA one writes EFXC as the sum of the Hartree
energy plus an exchange-correlation energy which depends
only on the local density,

ERSUn) =V Y mnia+ Y excn). (17

The local exchange-correlation energy exc(n) is determined
from the ground-state energy density of ahomogeneous system
at the same density. For the one-dimensional lattice models
this quantity can be calculated using the Bethe ansatz (see
Refs. 6 and 8). Note that in the Hamiltonian the interaction
strength depends on position, and an ambiguity arises in how
to determine the exchange-correlation potential for those sites
which interact only with one neighbor. For simplicity we used
in our numerical implementation of the LDA the same function
€*(n) for all interacting lattice sites, i.e., numbers m + 1 to
m+5.

B. Optimized effective potential

In the OEP approach!” the Hartree-exchange-correlation
energy is

Egs(ni}) =V Y miniy + EX({ni}), (18)

with the Fock-like exchange energy

EX=—-V Z@@;H)(@LM (19)

We calculate the ground-state expectation values (¢, ),
etc., self-consistently using the Green’s function technique
(see Sec. IV). The Kohn-Sham equations (16) are most conve-
niently solved by iteration. Starting with an initial guess for the
potentials v; we calculate the corresponding site occupations
n; and the Hartree-exchange-correlation energy EMXC. Since
in the OEP approach EFXC depends only implicitly on n; we

rewrite Eq. (16) using
aEHXC 81);

aEHXC
- i, 20
8]’!,‘ Zj: 81); 8]1,' ( )

where the derivatives of E"XC with respect to the v} are
calculated numerically and 9v}/dn; is obtained by matrix
inversion from 9n;/0v;. Finally we obtain a new set of
Kohn-Sham potentials v;. The whole procedure is repeated
until convergence, i.e., until the difference between old and
new potentials is smaller than some given cutoff.

The fact that we use a continuum of states to describe the
reservoirs simplifies the task of solving Eq. (16) considerably.
Since the states in the reservoirs are only infinitesimally
weakly coupled to the dot, the Hartree-exchange-correlation
potential in the reservoirs disappears, such that the number
of potentials v} to be determined self-consistently equals the
chain length N.
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C. Exact diagonalization

In our model Hamiltonian electrons interact only in a
spatially confined region. In the noninteracting regions we find
numerically [e.g., within the OEP approach, see Fig. 6 below;
compare also Ref. 13 for density matrix renormalization group
(DMRG) results] only small exchange-correlation potentials.
This finding motivated us to use the exchange-correlation en-
ergy of a small cluster consisting of the interacting region plus
a small number of noninteracting sites as an approximation
for the exchange-correlation energy of the system attached to
reservoirs:

EfXCni}) = Fep(inih) — Fip(n)), @21

where Fp({n;}) and Fi({n;}) are exact on the small cluster
and can be obtained by numerical diagonalization.

In this approach we have to fine-tune the local potentials
of three different Hamiltonians such that all three yield the
same local densities: (i) a cluster of interacting electrons
with potentials u;, (ii) a cluster of noninteracting electrons
with potentials u], and (iii) the Kohn-Sham Hamiltonian
of the extended quantum dot attached to reservoirs with
v) = v; + vXC where vPXC = u; — uf on the cluster sites
and zero outside. Again, in a practical scheme the fine-tuning
procedure is performed by iteration. The task of determining
the potentials u; that correspond to a given set of site
occupations #n; is nontrivial for an interacting system and limits
the cluster size in our approach to approximately 12 to 14
sites.

D. Results

In the following we focus on the particle number in the
interacting region, Ngq, as a function of the gate voltage, vgae,
comparing results for the three aforementioned approaches,
LDA, OEP, and ED. The data are obtained for a chain of nine
sites, i.e., the five-site quantum dot plus two noninteracting

1 LDA ——
" OEP ——
ED ——

-1.5 -1 -0.5 0 0.5 1 1.5
vgate/t

FIG. 2. (Color online) Particle number on the dot, Nyy, as a
function of the gate voltage, vgye, for V/t = 0.25 obtained within
DFT with three different approximations for the exchange-correlation
energy: the local-density approximation (LDA), the optimized effec-
tive potential (OEP) approach, and a method based on the exact
diagonalization of short chains (ED). Here the chains are nine sites
long.
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FIG. 3. (Color online) Ny, as a function of vg,. around to the
central step for V/t = 0.25; for this interaction strength the OEP
density is still close to the exact result.

sites on each side of it. Figure 2 shows Ny for weak interaction
strength, V /¢t = 0.25. The three curves nearly coincide with
the exception of the regions close to the steps, in particular,
around vgye = 0. Here, as pointed outin Fig. 3, the step appears
steeper in the OEP approach and flatter in the LDA compared
to the ED method.

This trend continues at stronger interaction, V /¢ = 0.5,
where in the OEP approach the particle number even jumps
close t0 vgye = 0 with a small hysteresis region of two stable
solutions, while the LDA step flattens out even more, as
displayed in Fig. 4. The hysteresis here, as well as in Fig. 5, is
an artifact of the method.

In the strong coupling regime (Fig. 5) where V/t = 2,
comparison with the exact densities obtained from DMRG
calculations'? shows that the LDA and the OEP approach
fail completely. On the other hand, the ED densities agree
reasonably well with the exact data. Note, however, that
the DMRG data are for a five-site quantum dot with two
noninteracting sites attached on the right and three on the
left and that the reservoirs are described by a finite set of

3
2.9
2.8
2.7
2.6
2.5
2.4

2.3+ DA
221 OEP —
21F ED —

2 1 1
-0.3 -0.2 -0.1

N, dot

Ugate/t

FIG. 4. (Color online) Ny, as a function of vge for V/t = 0.5.
Solving the OEP equations iteratively as a function of gate voltage,
two solutions are found close to vgye = 0.
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FIG. 5. (Color online) Ny as a function of v, for V/t = 2. For
comparison we also include the DMRG results of Ref. 13.

the order of 100 discrete levels instead of a continuum. From
the above observations we conclude that in DFT calculations
for lattice models LDA and OEP results are reliable in the
weak interaction regime. In particular, it can be shown that the
OEP density profile is exact to linear order in the interaction
strength V. On the other hand, for strongly correlated systems
more sophisticated methods like the ED cluster approach are
required, even for static properties.

As already mentioned in Sec. III C, far from the interacting
region the potential UZHXC becomes very small. This is explicitly
demonstrated in Fig. 6: In the leads the Hartree-exchange-
correlation potential, v/'™*C, within the OEP approach, is found
to be about 3 orders of magnitude smaller than that in the
interacting region (see inset).

IV. TRANSPORT

DFT as presented in the previous sections is a ground-state
theory. However, generalizations are available which allow

0.001 — T T T T T T T T

0
-0.001
Q
%
Sy
-0.002
-0.003
_04 1 1 1 1
0 10 20 30 40
_0004 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
l
FIG. 6. (Color online) Hartree-exchange-correlation potential

viXC in OEP for a long chain with m = 20 noninteracting sites

attached on each side of the five-site quantum dot with parameters
Vgate/t = 0.5 and V/t = 0.5. In the figure, v/ is shown for the
noninteracting sites/ = 1, ...,m and for the whole chain in the inset.
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one to calculate densities at finite temperature and under
nonequilibrium conditions'® and thus—via the continuity
equation—the current through the quantum dot. The goal
of this section is to calculate the dc conductance of the
quantum dot when a small voltage difference is applied. We
extract the dc conductance from a calculation of the dynamic
density response function, and the connection to the standard
Meir-Wingreen formula'® is made.

A. Conductance from density response

We start with the current flowing from the left reservoir into
the dot, which is given by the time derivative of the particle
number in the reservoir,

[ =eN,=e Zm, (22)
k

i.e., I(w) = —iewN|(w), where —e is the electron charge. The
frequency-dependent variation in the particle number N (w)
appears as a response to a perturbation in the Kohn-Sham
Hamiltonian of the form

SH® = Zﬁasv;, (23)

where §v5, = §ve* 4 §v!XC is the sum of an external potential
and the induced Hartree-exchange-correlation potential. The
summation « includes both reservoirs, « = kL ,kR, and chain
degrees of freedom, o = /. The variation of the density at site
B is then

d '
Sng@) =iy / T GesalBa)bvy(@e@.p).  (24)

where G.(«, ) is the (zero temperature) Green’s function of
the single-particle Hamiltonian. It is useful to distinguish the
Green’s function of the reservoirs from the Green’s function
of the chain, and in the following we use the symbols g (kL)
and g.(k R) for the reservoir Green’s functions and G (I,1") for
a chain Green’s function. The latter is given by

Ge(l.l)=GULI)+ Y GALm)E(m)Ge(m.l'),  (25)

where Gg(l ,I") is the bare Green’s function, i.e., the one for
t, = 0, and the self-energy X.(m) appears due to the coupling
to the reservoirs. For our model Hamiltonian X, (m) is nonzero
only on the first and last site of the chain, m = 1,N. The
explicit expression for the first site is

() =) InlglkL), (26)
k
where
1

0
kL) = ,
8 (kL) € — e, +idsgn(e — )

§=0T, (27

is the bare Green’s function of state k in the left lead. For
energies close to the chemical potential and for our special
choice of the couplings #; the self-energy then assumes the
value X.(1) = —it sgn(e — w). The Green’s function for the
states in the left reservoir finally is

ge(kL) = g2(kL) + (kL) t, G.(1,1) 1, g2(kL).  (28)
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A similar equation holds for the Green’s function in the right
IeServoir.

The variation of the particle number in the reservoirs can
be represented graphically as

OO C oD
(a) (b) (© (d) (e)
(29)

ONp =

where the full line denotes a reservoir Green’s function, gg(kL)
or gg(kR), the broken line is the chain Green’s function
G(1,0"), the cross corresponds to a hopping process between
reservoir and chain, and the two dots in each diagram are
density vertices. In order to calculate the dc conductance of
the system we have to evaluate these diagrams for small but
finite frequency, and we have to identify contributions that
diverge as 1/w as w goes to zero. Such divergences are found
in diagrams (c), (d), and (e). In all three cases the diverging
contribution arises from the region in the € integration where
€ < U < € + w. For diagram (c), for instance, the relevant
contribution is

(©) . H dE 2 1 2
N =i | 5G| e
n—w &

] s

X e—ek—ié(svk” (30)
In the next step the k summation in the second line is replaced
by an integral. Clearly the dominant contribution to the k
integration comes from a small region around the Fermi energy.
Assuming that neither the potential §vi;, nor the coupling #
are singular around the Fermi momentum, we find ), (---) =
irpévi, /w?, where the potential has to be evaluated at the
Fermi energy. The variation of the particle number in the left
reservoir hence is

o v}
SN = ﬁncﬁ(l,l). (31)

The retarded chain Green’s function at the chemical potential,
Gﬁ(l, 1), appears since € + w > w inEq. (30), and we consider
the limit w — 0.

Using similar arguments for the diagrams (d) and (e), we
find

Sv}
SN@ = %L gAY, 32
L 2rew ¢ whD .
sN© = ULTE R, 641 D)
L 2w . g
iSviR R A
r.GRa,mrrcA4wv,n]. 33
+2na)[L w(LNTRG( )] G9)

Using finally the relation
R A
GR(1,1) - G, (1,1)
= —iGR(1,DILGA(1,D) —iGR(1,N)TRG,(N,1), (34

the complete singular contribution to the density in the
reservoir reads
K s i R A
SN = ((Ska - 5vkL)%FLGM(1,N)FRGH(N,1). 35
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This enables us to write the current as the product of a
conductance Ggs and a voltage Uks,

I = —iewSN = GgsUks, (36)

where the expression for the conductance agrees with the
standard Meir-Wingreen formula for noninteracting electrons,
&2

G =
K= onn

TLGR(1L,LTRG (L, 1), (37

and the voltage in the Kohn-Sham system is the sum of
the applied voltage and an exchange-correlation contribution,
Uks = U + U*, with

eU = vl — SvY,  eU™ = supa© — supXC. (38)
Here, as well as in Eqgs. (31)—-(35) k has to be replaced by its
value at the Fermi energy.

Notice that only the exchange-correlation potentials in the
reservoirs but not in the chain contribute to the total voltage.
Our result is thus consistent with that of Ref. 15, where it has
been shown that the exact current can be expressed in terms
of a Landauer-type formula® in which the electrochemical
potential of the leads is shifted by the voltage-induced variation
of the exchange-correlation potential, and with the statements
of Refs. 14 and 21 that static DFT gives the exact linear-
response conductance provided that the dynamic exchange-
correlation potential vanishes deep inside the leads.

We remark that U*¢ is a purely dynamic effect that cannot
be captured by any adiabatic approximation. However, U*¢
can be assessed via reverse engineering: If we know the exact
static densities and the exact conductance, then the ratio of the
exact conductance and the Kohn-Sham conductance, Eq. (37),
is equal to the ratio of the total and the external voltage,
G/Ggs = Uks/U.

1
10"t -
< 107t -
~
RS
U 10—3 | i
1074} OEP — |
HF ——
. LDA ——
10* 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5

FIG. 7. (Color online) Conductance G as a function of vy
for V/t =0.25. The OEP and LDA curves refer to Kohn-Sham
conductances that are obtained within static density functional theory
as explained in the text. HF corresponds to a self-consistent Hartree-
Fock calculation.
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001 1 1 1 1 1
-0.3  -02 -0.1 0 0.1 0.2 0.3
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FIG. 8. (Color online) Conductance G as a function of vy, close
to the central peak for V /¢ = 0.25.

B. Results

Figure 7 shows the conductance as a function of the
gate voltage in the case of a weak interaction, V = 0.25¢.
One observes five resonances at the gate voltages where the
particle number on the dot changes (compare with Fig. 2).
The LDA overestimates the width of the resonances just as it
overestimates the width of the steps in the particle number. We
also include OEP and Hartree-Fock (HF) results in the figure.
For weak interaction both methods predict identical charge
densities; for the present interaction strength the difference
in particle number on the dot is less than 7 x 1073, The
conductances are also close to each other.

In Fig. 8 we show the region close to zero gate voltage in
more detail. Near the resonance the HF and OEP results are
almost indistinguishable; however, far from the resonance a
significantly different conductance is found. This difference
is due to the exchange-correlation contribution to the voltage,
U*°. To substantiate this point we analyze the correction to the

0.07 . . . . .
0.06 | .
0.05 .
0.04 + .
0.03
0.02
0.01
0
-0.01

-0.02 L .
-1.5 -1 -0.5 0 0.5 1 1.5

Ugate / t

AGW [e2/h]

FIG. 9. (Color online) Linear contribution G of the expan-
sion of the conductance G = GO + GVPV/t + GP(V/t)> +--- in
powers of the interaction strength. The difference between the OEP
result and the HF conductance, AG" = G}, — Gl is plotted as a
function of vgye.
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DMRG

-3 -2 -1 0 1 2 3
VUgate/ It

FIG. 10. (Color online) Conductance G as a function of vgy. for
V/t = 2; ED corresponds to the Kohn-Sham conductance obtained
from the diagonalization of small clusters, the DMRG data are taken
from Ref. 13.

conductance to first order in the interaction strength V; in this
case HF yields correct results.

As demonstrated in Fig. 9 the conductances obtained by
the OEP and HF approaches differ considerably—although
the densities are identical. Figure 9 has been obtained for a
chain length N = 9, but we have checked that even for much
longer chains (up to N = 25) there is no visible change in the
results. This means that U*° remains nonzero even far from
the interacting region.

Figure 10 shows the conductance for the relatively strong
interaction strength V = 2¢, comparing the LDA, the ED
method, and the numerically exact conductance obtained with
the DMRG in Ref. 13. Although the positions of the resonances
are reasonable, the LDA predicts conductances that differ
by several orders of magnitude from the exact ones. The
ED results are considerably better. In particular, near the
resonances the ED method predicts conductances that are close
to the DMRG values.
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V. SUMMARY AND CONCLUSIONS

We studied the ground-state density profile and the con-
ductance of a model quantum dot comparing DFT and exact
results. The electron density in the ground state can be obtained
reliably using nonlocal exchange-correlation potentials. While
for weak interaction the OEP approach gives good results,
in the case of intermediate or strong interaction strengths
a nonlocal potential extracted from the exact diagonaliza-
tion of small clusters (DFT 4+ ED) works well. Although
we have so far applied the DFT 4+ ED method only to a
system with a small interacting region we speculate that a
generalization to models with interaction on all lattice sites is
possible.

For the conductance our results are not so clear-cut. In our
simple model there exist five well-separated resonances in the
conductance, G, as a function of the gate voltage. The Kohn-
Sham conductance, Ggs, reproduces very well the position and
the width of these resonances, whereas in the valleys between
the conductance peaks we find pronounced deviations. This
behavior has been discussed qualitatively in Refs. 14 and 22
involving the Friedel sum rule.

As the origin of the discrepancies between G and Ggs
we have identified an exchange-correlation correction to the
voltage in the Kohn-Sham system, U*® = Uxs — U, and
G/Gxgs = Uks/U, compare the discussion in relation with
Eq. (38). The correction U*® is a dynamical exchange-
correlation potential in the reservoirs that cannot be obtained
within a static calculation. We found no significant difference
between U*° for small chains with N =9 sites and long
chains up to N = 25 sites suggesting that U*® remains finite
for chains of infinite length. We believe that this finding is
related to “ultra-nonlocality,” which is an inherent problem in
time-dependent density functional theory.?*?*
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