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Raman scattering near a d-wave Pomeranchuk instability
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Motivated by recent transport and neutron-scattering experiments suggesting an orientational symmetry
breaking in underdoped cuprates we present a theoretical study of Raman scattering near a d-wave Pomeranchuk
instability (PI). The d-wave component of Raman scattering from electrons and phonons allows one to study
directly order parameter fluctuations associated with the PI. Approaching the PI from the normal state by
lowering the temperature, a central peak emerges both in electronic and, as an additional low-frequency feature,
in phononic scattering. Approaching the PI in the superconducting state at low temperature by decreasing the
doping concentration the central peak is replaced by a soft mode with strongly decreasing width and energy and
increasing spectral weight. These predicted low-energy features in Raman scattering could confirm in a rather
direct way the presence of a PI in high-temperature cuprate superconductors and in Sr3Ru2O7.
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I. INTRODUCTION

In condensed matter, electrons move through a crystal
lattice whose symmetry is characterized by a point group.
The electronic band structure usually has the same symmetry
as the lattice and so does the Fermi surface. However, it
was shown that the symmetry of the Fermi surface can
be broken spontaneously by electron-electron correlations
in the two-dimensional t-J (Refs. 1–3) and Hubbard4,5

models leading to spontaneous Fermi-surface deformations
characterized by a d-wave symmetry [d-wave Fermi-surface
deformations (dFSD)]. This instability is frequently referred to
as a d-wave Pomeranchuk instability, which is characterized
by the violation of the stability criteria for isotropic Fermi
liquids derived by Pomeranchuk.6 However, it should be noted
that the dFSD state can also be realized not only in strongly
correlated electron systems such as those described by the
t-J model1–3 but also without a breaking of Pomeranchuk’s
stability criterion in systems where the transition can become
of first order at low temperatures.7,8 The dFSD state breaks
only the orientational symmetry, that is, its instability is driven
by zero momentum charge-density fluctuations with internal
d-wave symmetry and leads to an electronic nematic state.
As originally introduced in Ref. 9, an electronic nematic
state can also be realized by invoking charge stripes. In a
first step both orientational and translational symmetry are
broken by condensing the electrons into a charge stripe state
characterized by a set of large wave vectors which break
the orientational symmetry. In a second step the stripes melt
restoring the translational but not the orientational symmetry.
In the following we restrict ourselves to the case where the
dFSD leads directly to an electronic nematic state without first
showing an instability toward stripes.

The double-layer strontium ruthenate Sr3Ru2O7 (Sr327)
has attracted much attention as a compound likely exhibiting
a dFSD instability.10–12 Compelling, but indirect, evidence for
this comes from the observation of a strong xy anisotropy of
the resistivity which is present only in the ordered phase.11

Angle-resolved photoemission spectroscopy13 (ARPES) and
de Hass-van Alphen14–16 measurements could detect Fermi-
surface deformations directly, but convincing experimental

evidence for their existence has not been obtained yet. Theoret-
ically, many properties have been successfully interpreted in
terms of a dFSD instability, for instance, the metamagnetic
transition,17 the enhancement of the residual resistivity,18

the phase diagram and various thermodynamic quantities,19

universal numbers,20 the bilayer effect,21,22 suppression of a
critical temperature due to impurities,23 the spin-orbit effect,24

and orbital degree of freedom.25 Theoretical predictions based
on the dFSD instability were also made for the pattern of
Friedel oscillation around an impurity,26 the attenuation of
ultrasound waves,27 and the singular behavior of the uniform
magnetic susceptibility at the dFSD instability.28 A somewhat
different scenario invoking orbital order has recently been
proposed29,30 to account for the anomalies in Sr327.

In the case of the high-temperature superconductors
YBa2Cu3Oy (YBCOy), the dynamical in-plane magnetic sus-
ceptibility is strongly anisotropic, both for slightly underdoped
[YBCO6.6 (Refs. 31 and 32)] and optimally doped [YBCO6.85

(Ref. 31)] compounds. The anisotropy increases with de-
creasing doping and is most pronounced around the onset
temperature of superconductivity or of the pseudogap, whereas
it is suppressed in the superconducting state. It was shown
theoretically that these features can be well understood in terms
of the competition of the singlet pairing formation and dFSD
correlations.33 In the strongly underdoped region (YBCO6.45)
neutron-scattering experiments revealed a qualitatively differ-
ent feature of the anisotropy.34 The in-plane anisotropy of the
magnetic excitation spectrum increases monotonically below
150 K, saturates below 50 K, but is not suppressed below
Tc = 35 K. Moreover, the low-energy spectral weight does
not decrease below Tc but is rather enhanced. These peculiar
phenomena can be interpreted as (i) a quantum phase transition
to the dFSD state deep inside the superconducting state35,36

or (ii) a substantial suppression of singlet pairing due to the
competition with increasing dFSD correlations in the strongly
underdoped region.37

Quite recently the measurement of the Nernst coefficient
in the doping region from 11–18% in YBCO (Ref. 38)
showed a strong xy anisotropy. It sets in near the temperature
where the pseudogap appears so that the pseudogap region is
interpreted as the region with a finite dFSD in agreement with
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a theoretical study.39 However, one should note that the regions
where the in-plane anisotropy has been observed by neutron
scattering31,32,34 and by transport38 differ from each other so
that it is difficult at present to reach clear-cut conclusions.
The experimental evidence for nematic order in cuprates has
recently been critically reviewed in Ref. 40.

Usually an emergent instability can be studied by measuring
the enhancement of the corresponding susceptibility. The
susceptibility describing the dFSD is the d-wave charge
compressibility,1,4,8 which can be measured directly by Raman
scattering. Hence Raman scattering can provide decisive
evidence for a dFSD instability and its correlations in actual
systems. However, despite various experimental studies in
Sr327 and YBCO, Raman-scattering experiments have not
been reported to confirm a dFSD in those materials.

In this paper we provide theoretical predictions of the
Raman-scattering intensity from electrons and phonons near
the dFSD instability in both normal and superconducting states
by employing parameters appropriate to cuprate supercon-
ductors. In the superconducting state the Raman-scattering
intensity can be computed in terms of the noninteracting
electron propagator, i.e., without considering the damping of
electrons. In the normal state, however, it is crucially important
to include the electronic self-energy. We therefore include
the Fock diagram for the self-energy, express it in terms of
the bosonic spectral function α2F (ω), and fit the latter to the
self-energy measured in ARPES.41,42

The paper is structured as follows. In Sec. II we present
formulas for electronic and phononic Raman scattering near
a dFSD instability. Since the order parameter for dFSD
fluctuations has B1g symmetry for a square lattice only the
B1g component of the Raman tensor and B1g phonons will be
directly affected by order-parameter fluctuations. In Sec. III
we study Raman scattering for two different ways to approach
the dFSD instability. In the first case the system is always in the
normal state and the temperature is lowered for a fixed doping
in the underdoped region. In the second case we assume that
at low temperature the dFSD instability lies in the supercon-
ducting state and is reached by decreasing the doping. Results
for both cases are given in this section. Section IV contains a
detailed discussion of these results and our conclusions.

II. FORMALISM

In the following we will consider fermions on a square
lattice which has the tetragonal point-group symmetry D4h.
Since the order parameter of the dFSD is the charge density
with internal d-wave symmetry and zero total momentum,
dFSD fluctuations will be most easily detected in the B1g

component of Raman scattering and for a zone-center phonon
with B1g symmetry. We therefore will focus on these two
quantities in the following. Throughout the paper we will also
use the lattice constant of the square lattice as the length unit.

A. Electronic Raman scattering

The electronic contribution to the B1g Raman vertex is
given in the effective mass approximation43
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FIG. 1. (a) Graphical representation of χB1g . The vertex with
a circle (square) indicates the form factor γ

B1g

k (dk). (b) Effective
electron-electron interaction driving the dFSD instability. (c) Full
electronic Green’s function. The single solid line denotes the free-
electron propagator with the dispersion εk. (d) Electronic self-
energy originating from the coupling to some bosonic fluctuations
represented by the sawlike line.

where εk is the electronic dispersion,

εk = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky), (2)

with t , t ′, and t ′′ being the nearest-, second-nearest-, and third-
nearest-neighbor hopping integrals, respectively. Inserting
Eq. (2) into Eq. (1) yields

γ
B1g

k = t(cos kx − cos ky)[1 + 8t ′′(cos kx + cos ky)/t]. (3)

The Raman-scattering intensity S(ω) is given by

S(ω) = − 1

π
[1 + b(ω)]Im χB1g (ω), (4)

where b(ω) is the Bose function given by (eβω − 1)−1 and
β−1 = T is the temperature. The quantity χB1g (ω) is the
retarded Green’s function with two Raman vertices as end
points and is given by

χB1g (ω) = − i

N

∫ ∞

0
dt ei(ω+i0+)t 〈[ρd (t),ρd (0)]〉, (5)

where N is the total number of lattice sites, 0+ is an infinitesi-
mally small quantity, 〈· · ·〉 denotes the equilibrium expectation
value, [·,·] is the commutator, and ρd (t) is the Heisenberg
representation of the d-wave charge-density operator

ρd =
∑
k,σ

γ
B1g

k c
†
kσ ckσ (6)

with c
†
kσ (ckσ ) being the creation (annihilation) operator of

electrons with spin σ and momentum k. Within the random-
phase approximation (RPA) χB1g (ω) is given by the bubble dia-
grams shown in Figs. 1(a) and 1(b). The double line represents
the electronic Green’s function. In the normal state, which we
discuss first, self-energy corrections in the electronic Green’s
functions must be taken into account, as shown diagrammati-
cally in Fig. 1(c). Otherwise each bubble would become zero
in the zero-momentum limit at every finite frequency. This
means that mainly the incoherent part of the Green’s function
contributes to Raman scattering in the normal state.

In order to get a finite self-energy we consider the coupling
of electrons to some bosonic fluctuations, described by
the Fock diagram shown in Fig. 1(d). Analytically one
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obtains, adopting the usual approximations in evaluating the
Eliashberg equations,44

Im �(ω)

= −π

∫ ∞

0
dν α2F (ν)[2b(ν) + f (ν − ω)+f (ν + ω)], (7)

where f (ν) = (eβν + 1)−1 is the Fermi function, and α2F (ν)
specifies the bosonic spectral function. We have neglected
the momentum dependence of α2F for simplicity. Note that
although the notation of α2F (ν) is often used in the context of a
phonon spectrum, the bosonic modes in Fig. 1(d) are arbitrary
in our model. We model the function α2F (ν) with three param-
eters, a0, ν0, and νc, as illustrated in Fig. 2(a). Comparing with
ARPES measurements in the normal state in cuprates41,42 we
choose ν0 = νc/4, νc = 2t/3, and a0 = 1/4 with t ≈ 150 meV.
In Fig. 2(b) we show Im �(ω) for several choices of T . The
magnitude of Im �(ω) becomes larger with increasing T , indi-
cating reductions of the lifetime of quasiparticles at higher T .
As a function of energy, on the other hand, the longest lifetime
of quasiparticle is realized on the Fermi surface, namely, at ω =
0; the magnitude of Im �(ω) is enhanced with increasing ω and
saturates to the value, −π

∫ ∞
0 dν α2F (ν)[2b(ν) + 1] for ω →

∞. The real part of �(ω) is computed numerically from the
Kramers-Kronig relation, Re �(ω) = 1

π
p.v.

∫ ∞
−∞ dν Im �(ν)

ν−ω
,

where the integral is defined as the principal value denoted by
“p.v.” The obtained Re �(ω) is shown in Fig. 2(c). The real part
of �(ω) vanishes at ω = 0. Its magnitude forms a peak around
ω ≈ 0.5t and is suppressed at high ω with a tail characterized
by ω−1. Our self-energy reproduces well the data41,42 extracted
from ARPES measurements in cuprate superconductors.

The spectral function of the full Green’s function [Fig. 1(c)]
is given by

A(k,ω) = − 1

π
Im G(k,ω) (8)

= − 1

π

Im �(ω)

[ω − (εk − μ) − Re �(ω)]2 + [Im �(ω)]2
.

(9)
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FIG. 3. (a) A(k,ω) as a function of ω at the momentum k − kF =
2πkr (1,1) with kr ranging from zero to −0.10 with an interval of 0.01;
kF is the Fermi momentum along the (0,0) − (π,π ) direction. (b) The
renormalized electronic dispersion.

Here μ is the chemical potential which is approximately
determined by the relation δ = 1 − 2

N

∑
k f (εk − μ) for a

given doping concentration δ and T . Figure 3(a) shows
A(k,ω) as a function of ω for several momenta along the
(0,0) − (π,π ) direction. A relatively sharp peak is seen only
close to the Fermi energy (ω = 0); away from the Fermi
surface it is substantially broadened because of the presence
of the sizable Im �(ω). The peak position of A(k,ω) is plotted
in Fig. 3(b). The renormalized electronic band dispersion
displays a kink, as indicated by an arrow, due to the coupling
to the bosonic fluctuations [Fig. 1(d)]. These features in Fig. 3
are qualitatively consistent with ARPES data.41,42

A single bubble diagram in Fig. 1(a) corresponds to the
analytical expression,

�αβ(ω) = 2

N

∑
k

αkβk

∫ ∞

−∞
dε1 dε2 A(k,ε1)A(k,ε2)

× f (ε1) − f (ε2)

ε1 + ω − ε2 + i0+ , (10)

where the form factors of the vertices are denoted by αk and βk,
which stand either for γ

B1g

k [Eq. (3)] or dk = cos kx − cos ky .
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FIG. 2. (a) Model of α2F (ν). (b) Imaginary part
and (c) real part of the electronic self-energy for
several choices of T in the normal state for ν0 =
νc/4, νc = 2/3, and a0 = 1/4. The energy unit is
taken as t .
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For the imaginary part Im �αβ(ω) we obtain

Im �αβ(ω) = 2π

N

∑
k

αkβk

∫ ∞

−∞
dε A(k,ε)A(k,ε + ω)

× [f (ε + ω) − f (ε)]. (11)

The real part Re �αβ (ω) is determined from the Kramers-
Kronig relation

Re �αβ(ω) = 1

π
p.v.

∫ ∞

−∞
dν

Im �αβ(ν)

ν − ω
. (12)

Finally, the Raman response function χB1g (ω), described in
Fig. 1(a), is given by

χB1g (ω) = �γγ (ω) + �γd (ω)
g

1 − g�dd (ω)
�dγ (ω). (13)

The superscripts of �(ω) “γ ” and “d” indicate the form factors
of the vertices of the bubble diagram, which are taken as γ

B1g

k
and dk, respectively. The d-wave form factor comes from the
electron-electron interaction which we write as

1

2

∑
kk′σσ ′

gdkdk′c
†
kσ ckσ c

†
k′σ ′ck′σ ′ , (14)

where g(<0) is the coupling strength. This interaction
generates the effective interaction shown in Fig. 1(b) and
drives the dFSD instability, as was extensively studied
theoretically.1,4,7,8,45 The condition for the instability is given
by

1 − g�dd (0) = 0. (15)

From Eqs. (9) and (11)–(13) we computed the
Raman-scattering intensity numerically employing the
self-energy shown in Fig. 2.

The selection of diagrams in Fig. 1 corresponds to the
lowest-order conserving approximation in the sense of Baym
and Kadanoff.46 The diagrams shown in Fig. 3 in this reference
also apply in our case if we consider the dashed line as a sum
of the interaction of our Eq. (14) and our boson-mediated,
retarded interaction which we have assumed to be independent
of momentum. The Hartree terms to the self-energy can
be omitted because they are either zero or represent just a
renormalization of the chemical potential. The interaction,
Eq. (14), does not contribute in the thermodynamic limit to the
Fock term of the self-energy in contrast to the boson-mediated
interaction which yielded the contribution given in Eq. (7). The
vertex is given as the functional derivative of the self-energy
with respect to the Green’s function. Limiting ourselves to the
d-wave vertex we see that it is only the functional derivative of
the Hartree term of the interaction, Eq. (14), which contributes
to the vertex and produces the chain of bubbles in the d-wave
susceptibility. This means that our approximation scheme
respects all conservation laws and should be free of artifacts
due to an inconsistent approximation.

In the superconducting state the quasiparticle contribution
to the Raman-scattering intensity is finite at finite frequencies.
Since the self-energies are also much smaller in the supercon-
ducting state compared to those in the normal state it seems
to be reasonable to neglect self-energy effects in this case.43

Assuming the following form for the d-wave superconducting
gap

�k = 1
2�0(cos kx − cos ky) (16)

and the band dispersion, Eq. (2), we obtain for the single
bubble diagram [Fig. 1(a) with � = 0],

�αβ(ω) = 1

N

∑
k

αkβk
�2

k

E2
k

tanh
βEk

2

×
(

1

ω − 2Ek + i�
− 1

ω + 2Ek + i�

)
, (17)

where Ek = √
(εk − μ)2 + �2

k. � is an infinitesimally small
positive quantity which we approximate in our numerical
calculations by � = 0.001t . The chemical potential is approxi-
mately determined from the relation δ = 1

N

∑
k

εk−μ

Ek
tanh βEk

2 .
The Raman-scattering intensity and response function are
given again by the formulas (4) and (13), respectively.

B. Raman scattering from phonons

Raman scattering can also determine the spectral function
of phonons. Since the interaction driving the dFSD instability
couples to phonons with B1g symmetry, we focus on phonons
with this symmetry. The corresponding electron-phonon cou-
pling contains the d-wave form factor dk and is given by

gkk = gphdk, (18)

where gkk is the electron-phonon matrix element for the
electronic momentum k and vanishing momentum for the
phonon; gph is the coupling constant. The noninteracting
retarded phonon propagator is given by

D0(ω) = 1

ω − ω0 + i0+ − 1

ω + ω0 + i0+ , (19)

where ω0 is the energy of the zero-momentum B1g

phonon, which corresponds to ω0 = 4t/15 (≈40 meV for t ≈
150 meV) in YBCO.47 The full phonon propagator is given
graphically in Fig. 4(a), namely,

D−1(ω) = D−1
0 (ω) − �ph(ω). (20)

The free phonon propagator is renormalized by the electron-
phonon interaction, which picks up the correlation function
of the dFSD instability as shown in Fig. 4(b). The phonon
self-energy �ph(ω) [Fig. 4(b)] has exactly the same structure as
Fig. 1(a) except for the difference of vertices. The computation
of �ph(ω) is straightforward, yielding

�ph(ω) = g2
ph

�dd (ω)

1 − g�dd (ω)
(21)

= g2
ph�̃

dd (ω), (22)

+

+= Σph

Σph =

(a)

(b)

FIG. 4. Graphical representation of the phonon propagator (dou-
ble dashed line); the single dashed line denotes the noninteracting
phonon propagator and the solid square denotes the form factor gphdk.
The rest of the notation is the same as Fig. 1.
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where we have introduced
1

�̃dd (ω)
= 1

�dd (ω)
− g. (23)

The quantity �̃dd (ω) would become identical to χB1g (ω) if “γ ”
were replaced by “d” in Eq. (13). The Raman intensity Sph for

phonon scattering becomes

Sph(ω) = − 1

π
[1 + b(ω)]Im D(ω), (24)

where from Eqs. (20) and (22),

1

π
Im D(ω) = 4ω2

0g
2
ph

π

Im �̃dd (ω)[
ω2 − ω2

0 − 2ω0g
2
ph Re �̃dd (ω)

]2 + [
2ω0g

2
ph Im �̃dd (ω)

]2 . (25)

Since �dd (ω) has already been computed both in the normal
and superconducting states in Eqs. (11), (12), and (17), the
Raman intensity Sph(ω) is easily obtained from Eqs. (23)–(25).

1. Renormalization of the dFSD by the electron-phonon coupling

It is instructive to provide an expression of the static d-wave
charge compressibility,1,4,8 the susceptibility associated with
the dFSD instability. This quantity is obtained by summing
up the bubble diagrams connected by electron-electron and
electron-phonon interactions as shown graphically in Fig. 5,
that is,

κd = − �dd (0)

1 − [
g + g2

phD0(0)
]
�dd (0)

(26)

= − �dd (0)

1 − g̃�dd (0)
, (27)

where

g̃ = g − 2g2
ph

ω0
(28)

is a renormalized coupling constant. Since both g2
ph and ω0 are

positive the original interaction g(<0) is enhanced to become
|g̃| > |g|. The coupling to the B1g phonon mode therefore
increases the attractive interaction causing the dFSD instability

by the amount
2g2

ph

ω0
. Therefore the dFSD instability can occur

κ =d

+=

= +

FIG. 5. Graphical representation of the d-wave charge com-
pressibility. A spring denotes two interactions, the electron-electron
interaction (wavy line) and the electron-phonon interaction (dashed
line), and the corresponding form factors at the vertex (open circle)
are dk and gphdk, respectively. The shaded vertex is defined by the
equality of the first and second line; the rest of the notation is the
same as in Fig. 1.

more easily and the instability condition, Eq. (15), is replaced
by

1 − g̃�dd (0) = 0. (29)

2. Strength of the electron-phonon coupling

An estimate for the coupling constant gph is obtained both
from first-principle calculations based on the local-density
approximation (LDA) and from experiment. In general, the
dimensionless coupling constant λ for a phonon with energy
ω0 and zero momentum is defined by

λ = 2N (0)〈|gkk|2〉FS/ω0, (30)

where N (0) is the density of states at the Fermi energy
for one spin direction, 〈· · ·〉FS denotes an average over the
Fermi surface, and gkk is defined by Eq. (18). First-principle
LDA calculations yielded for the B1g phonon mode with
40 meV the values λ = 0.02 (Ref. 48) and 0.06.49 On the
other hand, λ is related to superconductivity-induced self-
energy effects of the phonon. It has been argued that the
observed self-energy effects are compatible with these values
for λ, especially, with the first value.48 A simple connection
between theory and experiment can also be obtained by
noting that a phonon well below the superconducting gap at
T = 0 should show a relative frequency softening of about
δω0/ω0 = λ.48 The above 40 meV phonon softens by ∼1 meV
due to superconductivity50,51 yielding λ ≈ 0.02 − 0.03 in
rough agreement with the theoretical prediction.

For a B1g phonon one has gkk = gphdk and 〈d2
k〉FS =

Nd (0)/N (0), where Nd (0) is the d-wave projected density at
the Fermi energy, namely, Nd (0) = ∫

d2k δ(εk − μ)d2
k/(2π )2.

We thus obtain

g2
ph = λω0

2Nd (0)
. (31)

Since 2Nd (0) is equal to the low-energy limit of a single bubble
at T = 0, namely, −�dd (0), we find 2Nd (0) ∼ 1/|g|, so that
g2

ph ∼ 0.4λt2 for ω0 = 4t/15 and g = −1.5t , yielding values
between 0.008 and 0.024 for g2

ph. In our numerical calculations
we use the representative value 0.02.

III. RESULTS

Guided by experiments in YBCO (Refs. 34 and 38) we
would like to choose one parameter set in our simple model
such that the dFSD instability is reached (a) with decreasing

115116-5



HIROYUKI YAMASE AND ROLAND ZEYHER PHYSICAL REVIEW B 83, 115116 (2011)

temperature at around T ∼ t/10 in the normal state with
a doping concentration δ = 0.10 and (b) with decreasing
doping at around δ ∼ 0.20 for T ≈ 0. These conditions are
approximately fulfilled for t ′ = t ′′ = 0 and g = −1.5t in our
model.52 For convenience, we use t as the energy unit in
presenting our results. Experimentally, the effective t has a
value of about 150 meV.

A. Electronic Raman scattering

In the normal state we fix the doping to δ = 0.10 and
consider the temperature as a tuning parameter to approach the
dFSD instability from high temperatures. For our parameters
the dFSD instability occurs at T = 0.098. In Fig. 6(a) we
show the ω dependence of Im χB1g (ω) for a sequence of
temperatures T ranging from 0.10 to 0.20. At high T the weight
of Im χB1g(ω) extends very broadly over the whole energy
region shown in Fig. 6(a). With decreasing T the low-energy
weight (ω < 0.2) gradually increases and sharpens up to form
a very steep peak near zero frequency. In Fig. 6(b) we plot
the function S(ω), defined in Eq. (4), which is measured in a
Raman-scattering experiment. Although the peak position is
not exactly at ω = 0, S(ω) displays essentially a central peak
already well away from the critical temperature. Its spectral
weight increases strongly when the critical temperature is
approached from above. The energy dependence of Im �dd (ω)
is shown in Fig. 6(c) for several values of T . While Im �dd (ω)
exhibits also a pronounced peak its energy is much larger
than that of Im χB1g (ω). Moreover, the effect of temperature
is much weaker in Im �dd (ω) than in Im χB1g (ω). The real
part of �dd (ω) is shown in Fig. 6(d). Its magnitude forms
a broad peak at ω = 0 at high temperatures which sharpens
up with decreasing temperature. Since the dFSD instability
occurs when Eq. (15) is fulfilled, collective fluctuations of the

dFSD develop when the magnitude of Re �dd (0) approaches
1/|g| = 2/3 with decreasing T . Hence the very pronounced
peak of Im χB1g (ω) at low energy, seen in Fig. 6(a), is a direct
consequence of the development of dFSD correlations.

Next we investigate the evolution of dFSD fluctuations in
the superconducting state at T = 0.001. Here we take the
doping concentration δ as a tuning parameter and approach
the dFSD instability by decreasing δ. We choose the su-
perconducting gap amplitude to be �0 = t/5 which seems
to be reasonable for cuprate superconductors; the doping
dependence of �0 is not important for our conclusions and
will not be considered. We obtain δc = 0.207 for the critical
doping rate where the dFSD instability occurs and consider the
region δ > δc. Since there is no qualitative difference between
S(ω) and Im χB1g (ω) we present results only for S(ω). In
Fig. 7(a) we show S(ω) as a function of ω for several choices of
doping; similarly, Im �dd (ω) and Re �dd (ω) are presented in
Fig. 7(b) at δ = 0.25 and 0.50. At δ = 0.50 the peak position
of S(ω) is nearly the same as that of Im �dd (ω) because
the peak originates from individual excitations. Its position is
determined approximately by ω = 2|�k| at k = kF = (kF ,0)
or (0,kF ), where kF is the Fermi momentum along the kx or ky

direction. With decreasing δ the peak of S(ω) shifts to lower
energies, its half-width decreases, and its height increases
strongly. The peak position substantially deviates from that of
Im �dd (ω) [see the results at δ = 0.25 in Figs. 7(a) and 7(b)],
indicating the development of collective fluctuations of the
dFSD. In fact, the peak position of S(ω) is near the instability
determined by the resonance condition,

1 − g Re �dd (ωres) = 0. (32)

The resonance energy ωres is plotted in Fig. 7(c) together with
the peak energy of S(ω) and its peak height. At high δ, Eq. (32)
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FIG. 6. (Color online) (a) ω dependence of
Im χB1g (ω) for a sequence of temperatures T

close to the dFSD instability at Tc = 0.098 in
the normal state at δ = 0.10. (b) Low-energy
region of S(ω) near the dFSD instability. (c)
Im �dd (ω) and (d) Re �dd (ω) as a function of
ω for several values of T .
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FIG. 7. (Color online) (a) ω dependence of S(ω) for a sequence
of doping concentrations in the superconducting state at T = 0.001;
the actual value of S(ω) is obtained by multiplication with the factor
indicated near each peak except for δ = 0.50. (b) ω dependence of
Re �dd (ω) (solid line) and Im �dd (ω) (dashed line) at δ = 0.25 and
0.50. (c) The peak position of S(ω) (solid circles) and its peak height
(solid line) as a function of doping; also shown are the energies ωres

(open circles); the dFSD instability occurs at δc = 0.207.

does not have a solution and the peak of S(ω) must be attributed
mainly to individual excitations. For δ � 0.40, Eq. (32) has a
solution. It is seen that upon approaching δc, ωpeak becomes
almost identical with ωres. Since Im �dd (ω) ≈ 0 at ω ≈ ωres

the evolution of S(ω) in Fig. 7(a) indicates the development
of a well-defined collective mode associated with the dFSD.
Because of the collective fluctuations the peak intensity of
S(ω) is strongly enhanced upon approaching δc and diverges
at δ = δc. The peak energy vanishes as ωpeak ∼ (δ − δc)1/2,
which can be read off from Fig. 7(c).

It is interesting to note the different evolution of S(ω) in
the normal and the superconducting state. In the normal state

the magnitude of Re �dd (ω) has a maximum at ω = 0 and
decreases with ω [Fig. 6(d)], whereas in the superconducting
state the magnitude of Re �dd (0) corresponds to a local
minimum and increases with ω [Fig. 7(b)]. In contrast to the
superconducting case the resonance condition, Eq. (32), is
not fulfilled in the normal state except at T = Tc and ω = 0.
This explains why S(ω) develops a central peak in the normal
state [Fig. 6(a)] and a soft mode in the superconducting state
[Fig. 7(a)] and why the width of the peaks is much larger in
the normal state than in the superconducting state.

B. Raman scattering from phonons

Raman scattering from B1g phonons exhibits characteristic
features near the dFSD instability. As a prominent example we
consider the 40 meV phonon in YBCO (Ref. 47) which has
in an approximate tetragonal classification, where the chains
are neglected, B1g symmetry. Our parameter values become
ω0 = 4/15 and g2

ph = 0.02, as discussed in Sec. II B.
Figure 8(a) shows Sph(ω) in the normal state for δ = 0.10

and several values for T . In the presence of the electron-phonon
interaction the critical temperature occurs at Tc = 0.126 which
is higher than in the case without electron-phonon interaction.
Well above this temperature, for instance, at T = 0.20 Sph(ω)
consists of one single peak at ω ≈ ω0 representing a usual
quasiharmonic phonon. The peak position moves only slightly
upward and its spectral weight decreases somewhat with
decreasing temperature. However, at low frequencies dramatic
changes occur: approaching Tc from high temperatures a
central peak develops. It extends over a rather broad energy
region ω � 0.1, but nearer to the instability its half-width
decreases and its spectral weight increases strongly. It is caused
by the coupling of the phonon to dFSD fluctuations. The
occurrence of a double peak in the phonon spectral function
can be understood by studying the denominator of the phonon
spectral function, Eq. (25), omitting Im �̃dd (ω),

Res(ω) = ω2 − ω2
0 − 2ω0g

2
ph Re �̃dd (ω). (33)

As shown in Fig. 8(b), Re �̃dd (ω) decreases monotonically
with frequency and becomes small around ω ≈ ω0. Because
g2

ph = 0.02 is also small Res(ω) becomes zero at ω ≈ ω0

giving rise to the quasiharmonic phonon mode. Since the
magnitude of Re �̃dd (ω) assumes its maximum at ω = 0
and increases there with decreasing T , it eventually reaches
the value ω0/(2g2

ph) so that Res(ω) becomes zero also at
ω = 0. This situation occurs just at Tc, because the expression
Re �̃dd (0) = −ω0/(2g2

ph) reduces to Re �dd (0) = 1/g̃ via
Eq. (23) which corresponds to the onset of the dFSD instability
[Eq. (29)]. Hence both Res(ω) and Im �̃dd (ω) for ω ≈ 0
are very small near Tc which causes a central peak close
to the dFSD instability. The long tail in frequency of the
central peak reflects the fact that the magnitudes of Res(ω)
and Im �̃dd (ω) only slowly increase with increasing ω. In
Fig. 8(c) we plotted the peak positions and peak heights of
the phonon spectral function as a function of T . The lower
peak position is denoted by ω

ph
s . We see that the central

peak emerges well above Tc = 0.126 and rapidly acquires
a large spectral weight with decreasing T which diverges
at T = Tc. The high-frequency part of the phonon spectral
function does not show a pronounced temperature dependence
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FIG. 8. (Color online) ω dependence of Sph (a) and Re �̃dd (ω)
(b) for several choices of temperatures in the normal state at δ =
0.10; the renormalized critical temperature of the dFSD instability is
Tc = 0.126. (c) Peak positions ωph and ωph

s (<ωph) of Sph(ω) and their
peak heights as a function of T .

despite the proximity to the dFSD instability. The peak
intensity near ω = ω0 is suppressed at lower T because of the
increase of the magnitude of Im �̃dd (ω) around ω ≈ ω0 upon
approaching Tc.

The phonon spectral function in the superconducting state
is shown in Fig. 9(a) for several doping concentrations. At
δ = 0.50 the spectral function shows a quasiharmonic phonon
with one sharp peak at ω =̇. ω1 ≈ ω0, where Res(ω1) = 0
[Eq. (33) and Fig. 9(b)]. With decreasing δ the position
of this peak shifts only slightly to higher energies but is
essentially unchanged. At δ = 0.30 an additional broad peak
emerges at the low energy ω ≈ 0.14 in Fig. 9(a). Its position
is approximately given by the energy at which Res(ω) forms
a local maximum [see Fig. 9(b)]. Decreasing δ further to 0.25
the lower peak becomes sharper, moves to lower energies,

ω
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FIG. 9. (Color online) (a) ω dependence of Sph(ω) for several
choices of δ in the superconducting state at T = 0.001; the actual
value at δ = 0.50 is obtained by multiplying with a factor of 2.
(b) ω dependence of Res(ω) for different δ. (c) Peak positions ωph

and ωph
s (<ωph) of Sph(ω) as a function of δ together with their peak

heights. The dFSD instability occurs at δc = 0.233.

and its spectral weight increases. The equation Res(ω) = 0
now has three solutions, ω1, ω2, and ω3 [see Fig. 9(b)],
with ω1 > ω2 > ω3 � 0. The solution ω1 ≈ ω0 yields the
sharp high-frequency peak in Sph(ω), while the solution ω3

is responsible for the low-frequency peak. The solution of ω2

cannot produce a peak in Sph(ω) because Im �̃dd (ω) has a
peak near the energy ω2 and thus broadens out any structure
in this frequency region. These three solutions exist until ω3

becomes zero. At this point the dFSD instability occurs which
follows from a similar argument as given below Eq. (33). In
Fig. 9(c) we present the peak positions of Sph(ω) and their
heights as a function of δ. The high-frequency peak in the
phonon spectral function, appearing around ω ≈ ω0 = 4/15,
displays only a very weak doping dependence in spite of the
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proximity to the dFSD instability. Its height also depends
only weakly on δ on a logarithmic scale. The coupling of
the phonon to collective fluctuations of the dFSD leads to the
appearance of a second peak at low energy which softens
in frequency and increases in intensity upon approaching
the dFSD instability. The lower peak energy vanishes as
∼ (δ − δc)1/2 and its intensity diverges when approaching the
critical doping δc = 0.233. The emergent low-energy peak is
a well-defined collective mode driven by fluctuations of the
dFSD in the sense that the resonance condition Res(ω) ≈ 0 as
well as Im �̃dd (ω) ≈ 0 is fulfilled at the peak energy.

It is intriguing to realize that the original quasiharmonic
B1g phonon mode does not behave like a soft phonon when
the dFSD instability is approached. Instead the phonon spectral
function splits into a high-frequency part which is practically
unaffected by the instability and an emergent low-frequency
part which behaves like a soft and a central mode in the
superconducting and normal state, respectively. This double-
peak structure in the spectral function is robust if the original
phonon energy ω0 is sufficiently large. Otherwise, the phonon
peak in the normal state may overlap with the emergent
low-energy structure broadening the double-peak structure
into a seemingly single peak. In the superconducting state
ω0 should be chosen to be larger than the peak energy in
Im �̃dd (ω), which is approximately given by the peak position
of S(ω) shown in Fig. 7(a). Otherwise, the original phonon
mode softens down to zero energy upon approaching the
dFSD instability and no additional low-energy peak emerges,
in contrast to Fig. 9(a).

IV. DISCUSSION AND CONCLUSION

We have studied Raman scattering in a system where the
interaction between electrons drives the system toward a dFSD
instability, both in the normal and superconducting states.
The electrons are assumed to live on a square lattice with
hopping amplitudes t , t ′, and t ′′ between first, second, and
third nearest neighbors. The interaction is a charge-density
interaction with internal d-wave symmetry and interaction
strength g. The parameters t ′, t ′′, and g are set up to mimic
the strong tendency toward the dFSD instability in YBCO.
One could wonder whether our choice of t ′ = t ′′ = 0 and
g = −1.5t is unrealistic because the presence of substantial
second- and third-nearest-neighbor hoppings is well known
in cuprates53 and the value of g simply seems too big. We
would like to stress that the above parameter values should be
interpreted as effective parameters within a phenomenological
approach.52 It is worth mentioning that a mean-field dFSD
instability occurs in the t-J model with realistic parameters
t ′, t ′′, and g(=−3J/8) for cuprates at lower carrier densities
at temperatures as high as 0.2J .1 However, it is not easy to
perform the above calculations directly for the t-J model.
Nevertheless, we believe that the essential features of such a
more microscopic approach are retained at least qualitatively
in our simple phenomenological treatment.

One result of our calculation is that the spectral function
of a B1g phonon exhibits a double-peak structure when the
dFSD instability is approached as shown in Figs. 8 and 9. The
double-peak structure might seem similar to the emergence
of a central peak near structural phase transitions for several

perovskites such as SrTiO3,54,55 LaAlO3,56 and KMnF3.57

However, the quasiharmonic phonon also exhibits softening
for these materials, in contrast to our results. Moreover, the
central mode in the experiments has been explained in terms
of impurity scattering,58 a different mechanism from ours. The
double-peak structure we have obtained in Figs. 8 and 9 can be
interpreted as a general aspect in a coupled system of phonons
and order-parameter fluctuations. In fact, similar results to
ours were obtained in a different context, for example, in
pseudospin-phonon systems59 and in superconductors with
a strong electron-phonon coupling60,61 explaining the double
peaks of Raman spectrum with E2g symmetry observed in
MgB2.62

For YBCO a strong tendency toward xy symmetry breaking
was observed.31,32,34,38 Its order parameter may be defined by

φ = 1

2

∑
σ

〈c†i+xσ ciσ + c
†
iσ ci+xσ 〉 − 〈c†i+yσ ciσ + c

†
iσ ci+yσ 〉

(34)

= 1

N

∑
kσ

dk〈c†kσ ckσ 〉, (35)

where i denotes the site on a square lattice and we have
assumed that φ is constant. Equations (34) or (35) is nothing
but the order parameter of a dFSD instability.1,4,8 It is
characterized by Ising symmetry and thus two solutions, φ =
φ0 and −φ0, are degenerate. In order to favor either solution,
it may be natural to apply a small external perturbation which
breaks xy symmetry in the CuO2 plane. In fact, the compound
YBCO contains the CuO chains, which serves as a uniaxial
strain. In this case, the dFSD instability becomes a crossover
phenomenon, but the crossover is still sharp as far as the
external anisotropy is weak, which seems to hold in YBCO.

From the very strong anisotropy of the magnetic excitation
spectrum in YBCO6.45,34 the presence of an underlying quan-
tum critical point (QCP) has been conjectured in the doping
range δ ≈ 8–10 %.35,36 This conjecture could be tested in a
rather direct way using Raman scattering in the superconduct-
ing state (see Figs. 7 and 9). The measurement of the Nernst
coefficient by Daou et al.38 determined the doping dependence
of the dFSD instability in the region of 11–18% doping and
suggested that the pseudogap temperature T ∗ corresponds
to the onset of the dFSD instability. Raman scattering can
directly measure dFSD fluctuations and instabilities generated
by them (see Figs. 6 and 8), and thus prove the consistency
of transport and light-scattering data. Moreover, the resistivity
measurement by Daou et al.63 suggested that T ∗ goes down
to zero in the overdoped region, implying the presence of
a QCP associated with the dFSD instability inside the super-
conducting state. Theory35,36 and transport measurements,38,63

however, conjecture quite different values for the position
of the QCP as a function of doping which also could be
clarified by Raman scattering in the superconducting state
(see Figs. 7 and 9). The neutron-scattering experiments for
YBCO6,45,34 YBCO6.6,31,32 and YBCO6.85 (Ref. 31) suggested
a delicate interplay between the tendency toward a dFSD and
the singlet pairing formation in agreement with theory.33,37

Raman scattering around Tc or the pseudogap temperature T ∗
can directly reveal how the dFSD competes with the singlet
pairing at different doping levels. Available Raman-scattering
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data64 for YBCO with 10% carrier doping do not suggest
the strong enhancement of the low-energy spectral weight,
seen in Fig. 6, but the data were obtained only at a few
temperatures. More detailed experimental studies including
doping dependence are worth performing.

The La-based cuprate superconductors were extensively
discussed in terms of the charge-stripe order.65 However,
the scenario based on the dFSD instability was also
proposed.1,66,67 Although the authors of Refs. 64 and 68
interpreted the B1g Raman-scattering spectra for La-based
cuprates with 10% in terms of charge stripes, their data exhibit
a spectrum very similar to Fig. 6(a), indicating direct evidence
of the development of dFSD correlations. The data in Refs. 64
and 68 are worth reconsidering.

The dFSD is a generic feature in correlated electron systems
and occurs in the t-J (Refs. 1–3) and Hubbard4,5,69,70 models,
in systems where electrons interact via a central force,71,72

and quite generally in Fermi liquids with a van Hove saddle
point.73 Therefore the dFSD instability can be expected to
occur in a variety of materials. In order to apply the present
theory in the normal state we had to include self-energy effects.
While quantitative features of the Raman spectrum certainly
depend on details of the self-energy, it is not unreasonable
to assume that its qualitative features associated with the
proximity of the dFSD instability are rather robust. In this
sense we hope that our results will serve to analyze Raman-
scattering data for various materials, which possibly lie close
to a dFSD instability. In particular, compelling but indirect
evidence for a dFSD instability has accumulated in Sr327
both experimentally10–12 and theoretically.17–25 It would be
desirable to also perform Raman-scattering measurements in

this system to confirm the dFSD instability in a more direct
and decisive way.

In summary, we have studied Raman scattering from
electrons and phonons in the normal and superconducting state
near a dFSD instability. In the normal state the inclusion of
the electronic self-energy is vital for which we have used
experimental input from ARPES data in high-Tc cuprates.41,42

Approaching the dFSD instability from the normal state a
central peak emerges both in electronic scattering and in the
spectral function of a phonon with B1g symmetry. Approaching
the dFSD instability in the superconducting state by decreasing
doping concentrations a sharp soft mode appears in electronic
Raman scattering. This soft mode also appears in the spectral
function of the phonon as an additional low-energy feature,
whereas the usual phonon peak is nearly unaffected by
the proximity of the instability. Our study was motivated
by recent transport measurements38 which suggest a dFSD
instability in a wide doping region in YBCO. Since Raman
scattering measures directly the correlation function of order-
parameter fluctuations associated with the dFSD instability,
such measurements, together with our theoretical curves, could
confirm in a rather direct way the dFSD in real systems.

ACKNOWLEDGMENTS

We would like to thank M. Bakr and B. Keimer for
valuable discussions and W. Metzner for a critical reading
of the manuscript. H.Y. appreciates the warm hospitality of
Max-Planck-Institute for Solid State Research and acknowl-
edges support by a Grant-in-Aid for Scientific Research from
Monkasho.

1H. Yamase and H. Kohno, J. Phys. Soc. Jpn. 69, 332 (2000); 69,
2151 (2000).

2A. Miyanaga and H. Yamase, Phys. Rev. B 73, 174513 (2006).
3B. Edegger, V. N. Muthukumar, and C. Gros, Phys. Rev. B 74,
165109 (2006).

4C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).
5B. Valenzuela and M. A. H. Vozmediano, Phys. Rev. B 63, 153103
(2001).

6I. J. Pomeranchuk, Sov. Phys. JETP 8, 361 (1959).
7H.-Y. Kee, E. H. Kim, and C.-H. Chung, Phys. Rev. B 68, 245109
(2003); I. Khavkine, C.-H. Chung, V. Oganesyan, and H.-Y. Kee,
ibid. 70, 155110 (2004).

8H. Yamase, V. Oganesyan, and W. Metzner, Phys. Rev. B 72, 035114
(2005).

9S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London) 393,
550 (1998).

10S. A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. J.
Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno,
A. G. Green, and A. P. Mackenzie, Science 306, 1154 (2004).

11R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister,
S. L. Lee, D. A. Tennant, Y. Maeno, and A. P. Mackenzie, Science
315, 214 (2007).

12A. W. Rost, R. S. Perry, J.-F. Mercure, A. P. Mackenzie, and S. A.
Grigera, Science 325, 1360 (2009).

13A. Tamai, M. P. Allan, J. F. Mercure, W. Meevasana, R. Dunkel,
D. H. Lu, R. S. Perry, A. P. Mackenzie, D. J. Singh, Z.-X. Shen,
and F. Baumberger, Phys. Rev. Lett. 101, 026407 (2008).

14R. S. Perry, K. Kitagawa, S. A. Grigera, R. A. Borzi, A. P.
Mackenzie, K. Ishida, and Y. Maeno, Phys. Rev. Lett. 92, 166602
(2004).

15R. A. Borzi, S. A. Grigera, R. S. Perry, N. Kikugawa, K. Kitagawa,
Y. Maeno, and A. P. Mackenzie, Phys. Rev. Lett. 92, 216403 (2004).

16J.-F. Mercure, S. K. Goh, E. C. T. O’Farrell, R. S. Perry, M. L.
Sutherland, A. Rost, S. A. Grigera, R. A. Borzi, P. Gegenwart, and
A. P. Mackenzie, Phys. Rev. Lett. 203, 176401 (2009).

17H.-Y. Kee and Y. B. Kim, Phys. Rev. B 71, 184402 (2005).
18H. Doh, Y. B. Kim, and K. H. Ahn, Phys. Rev. Lett. 98, 126407

(2007).
19H. Yamase and A. A. Katanin, J. Phys. Soc. Jpn. 76, 073706 (2007).
20H. Yamase, Phys. Rev. B 76, 155117 (2007).
21C. Puetter, H. Doh, and H.-Y. Kee, Phys. Rev. B 76, 235112 (2007).
22H. Yamase, Phys. Rev. B 80, 115102 (2009).
23A. F. Ho and A. J. Schofield, Europhys. Lett. 84, 27007 (2008).
24M. H. Fischer and M. Sigrist, Phys. Rev. B 81, 064435 (2010).
25C. Puetter, J. G. Rau, and H.-Y. Kee, Phys. Rev. B 81, 081105(R)

(2010).
26H. Doh and H.-Y. Kee, Phys. Rev. B 75, 233102 (2007).
27H. Adachi and M. Sigrist, Phys. Rev. B 80, 155123 (2009).

115116-10

http://dx.doi.org/10.1143/JPSJ.69.332
http://dx.doi.org/10.1143/JPSJ.69.2151
http://dx.doi.org/10.1143/JPSJ.69.2151
http://dx.doi.org/10.1103/PhysRevB.73.174513
http://dx.doi.org/10.1103/PhysRevB.74.165109
http://dx.doi.org/10.1103/PhysRevB.74.165109
http://dx.doi.org/10.1103/PhysRevLett.85.5162
http://dx.doi.org/10.1103/PhysRevB.63.153103
http://dx.doi.org/10.1103/PhysRevB.63.153103
http://dx.doi.org/10.1103/PhysRevB.68.245109
http://dx.doi.org/10.1103/PhysRevB.68.245109
http://dx.doi.org/10.1103/PhysRevB.70.155110
http://dx.doi.org/10.1103/PhysRevB.72.035114
http://dx.doi.org/10.1103/PhysRevB.72.035114
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1126/science.1104306
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1176627
http://dx.doi.org/10.1103/PhysRevLett.101.026407
http://dx.doi.org/10.1103/PhysRevLett.92.166602
http://dx.doi.org/10.1103/PhysRevLett.92.166602
http://dx.doi.org/10.1103/PhysRevLett.92.216403
http://dx.doi.org/10.1103/PhysRevLett.103.176401
http://dx.doi.org/10.1103/PhysRevB.71.184402
http://dx.doi.org/10.1103/PhysRevLett.98.126407
http://dx.doi.org/10.1103/PhysRevLett.98.126407
http://dx.doi.org/10.1143/JPSJ.76.073706
http://dx.doi.org/10.1103/PhysRevB.76.155117
http://dx.doi.org/10.1103/PhysRevB.76.235112
http://dx.doi.org/10.1103/PhysRevB.80.115102
http://dx.doi.org/10.1209/0295-5075/84/27007
http://dx.doi.org/10.1103/PhysRevB.81.064435
http://dx.doi.org/10.1103/PhysRevB.81.081105
http://dx.doi.org/10.1103/PhysRevB.81.081105
http://dx.doi.org/10.1103/PhysRevB.75.233102
http://dx.doi.org/10.1103/PhysRevB.80.155123


RAMAN SCATTERING NEAR A d-WAVE POMERANCHUK . . . PHYSICAL REVIEW B 83, 115116 (2011)

28H. Yamase and P. Jakubczyk, Phys. Rev. B 82, 155119 (2010).
29S. Raghu, A. Paramekanti, E-.A. Kim, R. A. Borzi, S. A. Grigera,

A. P. Mackenzie, and S. A. Kivelson, Phys. Rev. B 79, 214402
(2009).

30W.-C. Lee and C. Wu, Phys. Rev. B 80, 104438 (2009).
31V. Hinkov, S. Pailhès, P. Bourges, Y. Sidis, A. Ivanov, A. Kulakov,

C. T. Lin, D. Chen, C. Bernhard, and B. Keimer, Nature (London)
430, 650 (2004).

32V. Hinkov, P. Bourges, S. Pailhès, Y. Sidis, A. Ivanov, C. D. Frost,
T. G. Perring, C. T. Lin, D. P. Chen, and B. Keimer, Nat. Phys. 3,
780 (2007).

33H. Yamase and W. Metzner, Phys. Rev. B 73, 214517 (2006).
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