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We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic
and tetragonal phases using the k · p method. The Hamiltonian depends on the spin-orbit interaction strength,
on the temperature-dependent tetragonal distortion, and on a set of effective-mass parameters whose number
is determined by the symmetry of the crystal. We explain how these parameters can be extracted from angle
resolved photoemission, Raman spectroscopy, and magnetotransport measurements and estimate their values in
SrTiO3.

DOI: 10.1103/PhysRevB.83.115114 PACS number(s): 71.20.−b

I. INTRODUCTION

Transition metal oxides with perovskite structures exhibit
a wide variety of interesting and often useful effects includ-
ing colossal magnetoresistance,1 high-Tc superconductivity,2

and ferroelectricity.3 Correspondingly, these materials have
received intense experimental and theoretical attention for
over half a century.4 Within the perovskite family, the d0

materials have received particular attention, often because of
their large band gaps. SrTiO3, for example, is perhaps the
most common substrate for the epitaxial growth of oxide
materials. Recently there has been growing interest in the
transport properties of lightly electron doped d0 perovskites.5

In KTaO3, for example, strong spin-orbit (SO) coupling
facilitates electrical manipulation of spin in a field effect
transistor geometry.6 The two-dimensional electron systems
which form at interfaces between d0 materials7 show intriguing
magnetic phases8 and peculiar magnetotransport features.9,10

Advanced epitaxial growth techniques enable δ-doping of
oxides11 and the fabrication of oxide heterostructures.12 These
relatively recent rapid advances could, it is hoped, eventually
lead to useful oxide based nanoelectronic devices.13

The low-energy band structure of an oxide provides a
starting point for understanding not only its bulk transport
characteristics but also its electronic properties near δ-doped
layers and near interfaces. First principles electronic structure
theory methods14–17 are usually efficient for determining
the gross structure of a band. However these methods are
not sufficiently accurate to nail down the fine features that
determine the electronic properties of the states at the bottom
of the conduction band that are important in weakly doped bulk
materials, and in low-carrier-density two-dimensional electron
systems. In particular, it appears that at present bulk band
structures in d0 perovskites are not known accurately enough
to predict the two-dimensional bands produced by δ-doping11

or localization at heterojunctions. This paper is primarily
motivated by the goal of assisting progress in this direction.

The k · p method18,19 offers an alternative and a potentially
more accurate route for characterizing band structure near the
conduction band minimum. The method provides an effective
Hamiltonian that depends on a set of phenomenological
parameters which can be small in number when band extrema
occur at high-symmetry points in momentum space. The
utility of this method hinges on the ability to extract accurate
parameter values from experiments. In the case of perovskites

the most valuable experimental probes appear at present to be
angle resolved photoemission (ARPES), Raman spectroscopy,
and magnetotransport measurements.

Many of the most studied oxides have conduction-band
minima located at the center of the Brillioun zone. We therefore
apply the k · p method to obtain an effective low-energy
Hamiltonian near the � point. At high temperatures,
perovskites typically have cubic symmetry. As the temperature
is decreased the symmetry is usually lowered, most commonly
to either orthorhombic or tetragonal. The distortion can be
driven by the motion of atoms along one of the cubic axes
(e.g., in BaTiO3) or by a rotation of the oxygen octahedras
(e.g., in SrTiO3). Structural phase transitions can also be
induced by applied stress.20

In this work we focus on the cubic and tetragonal phases. In
Sec. II we briefly describe the k · p method and then use it to
derive the low-energy effective theory of a d0 perovskite in the
vicinity of the � point. In Sec. III we elaborate on experimental
methods for obtaining the parameters of the k · p Hamiltonian.
Using the experimental data accumulated over the past few
decades we then study the effective Hamiltonian of the con-
duction bands of SrTiO3 in Sec. IV. We summarize in Sec. V.

II. LOW-ENERGY THEORY

For many perovskites of current interest such as SrTiO3

the conduction band minima is at the Brillouin-zone center �

point. For momenta near the � point the crystal field splits
the ten d bands into four high-energy eg bands, and six lower-
energy t2g bands. Because the crystal field induced gap is
typically a few eV, it is sufficient to consider the t2g bands
when constructing a low energy theory of weakly doped d0

materials. In the cubic phase the t2g bands are degenerate at the
� point if spin-orbit interactions are neglected, but are weakly
split by typical tetragonal or orthorhombic distortions and by
weak spin-orbit interactions. Unless the Fermi energy is large
compared to these splittings, spin-orbit- and distortion-related
band parameters must be accurately known in order to achieve
a reasonable description of electronic properties.

A. Effective Hamiltonian

The unperturbed Hamiltonian in the k · p perturbation
theory18,19 is

H0 = p2

2m
+ V (r) + h̄

4m2c2
(∇V × p) · σ. (1)
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H0 consists of three terms: the kinetic energy term, the lattice
potential term V (r), and the spin-orbit term (σ is the Pauli
matrix vector). The k · p Hamiltonian, which acts on the
periodic part of the Bloch state, includes a second term which
accounts for the dependence of band wave functions on Bloch
wave vector k:

Hk·p = k
m

·
(

p + 1

4m2c2
σ × ∇V

)
≡ k

m
· P. (2)

The k · p method exploits the high symmetry at the � point to
classify the k = 0 wave functions by irreducible representa-
tions (irreps) of the appropriate point group symmetry. It then
uses perturbation theory

hij = δij k
2 +

∑
α

〈ψi |Hk·p|φα〉〈φα|Hk·p|ψj 〉
Ei(0) − Eα(0)

(3)

to evaluate t2g projected Hamiltonian corrections to second
order in the Bloch wave vector k. Hereafter we use units in
which h̄ = 2m = 1 where m is the bare mass of the electron.
The six t2g band energies ε(k) then follow from the secular
equation

det[hSO + hL + h(k) − ε(k)I ] = 0. (4)

In Eq. (3) {|ψj 〉} label a basis set for the t2g bands and φα is
summed over bands outside the t2g manifold. The first order
term was omitted in Eq. (3) since it vanishes for the perovskite
structure by inversion symmetry. The matrices hL and hSO

account phenomenologically for tetragonal distortion and SO
interactions at the � point and are discussed more explicitly
below.

The wave functions at the zone center have no covalent
character and can be spanned by the t2g basis

{X↑,Y↑,Z↑,X↓,Y↓,Z↓}. (5)

Here X, Y , and Z correspond respectively to the |yz〉, |xz〉,
and |xy〉 t2g orbitals. Below we obtain the Hamiltonian matrix
in this basis.

The lattice term hL is non zero in the tetragonal phase.
If we choose a convenient zero of energy and set the ẑ axis
along the tetragonal axis then hL has a single nonzero matrix
element:

〈Zα|V |Zα〉 = 	T, (6)

where α accounts for the spin. The SO term in the Hamiltonian
is

(hSO)iα,kβ = 〈ξiα|� · σ |ξkβ〉 = 〈ξi |�j |ξk〉 · 〈α|σj |β〉, (7)

where � ∝ ∇V × p and ξi is one of the orbital basis func-
tions. Because � transforms as a pseudovector, 〈ξi |�j |ξk〉 ∝
εijk where εijk is the third-rank antisymmetric tensor. For
example, 〈X|�z|X〉 and 〈X|�z|Z〉 vanish under reflection off
the x-z plane. Furthermore, since the matrix elements (7) must
be imaginary

〈ξi |�j |ξk〉 = −i
	SO

3
εijk. (8)

Strictly speaking, SO coupling is described by two pa-
rameters in the tetragonal phase. However we neglect this
small correction since it is of order of 	T over the
band gap compared to the spin-orbit coupling term we
retain.

The k-dependent part of the Hamiltonian h is obtained
using Eq. (3). We show in the Appendix that

h =
(

h↑ 0

0 h↓

)
(9)

with

hα =

⎛
⎜⎝
L5k

2
x + M‖

5k
2
y + M⊥

5 k2
z N5kxky N 

45kxkz

N5kxky L5k
2
y + M‖

5k
2
x + M⊥

5 k2
z N 

45kykz

N45kxkz N45kykz M4
(
k2
x + k2

y

) + L4k
2
z

⎞
⎟⎠ |α〉. (10)

In the tetragonal phase the h matrix depends on eight real
parameters (only N45 may be complex). In the cubic phase
parameter values become independent of their subscript labels
(e.g., L4 = L5 → L) and h then depends on only three
parameters. The energy dispersion relations follow from
Eqs. (4),(6)–(10). Because the Hamiltonian is time-reversal
invariant and has inversion symmetry it gives rise to three
doubly degenerate bands.

In the next section we discuss zone-center wave functions
and energies. The wave functions play a crucial role in
matrix-element considerations which powerfully expand the
ability of ARPES experiments to determine the parameters
of the k · p Hamiltonian. The zone-center energies can be
compared with t2g band-splitting values obtained by Raman
spectroscopy.

B. Zone center energies and wave functions

The Hamiltonian at the zone center is hL + hSO. The
energies are therefore

ε6 = 0, ε
(a)
7 = 	SO

2
+ 	T

2
− Q

3
,

(11)

ε
(b)
7 = 	SO

2
+ 	T

2
+ Q

3
,

where

Q = 3

2

√
	2

SO − 2

3
	SO	T + 	2

T. (12)

(Energy has been shifted so that ε6 will vanish.) In the cubic
phase the t2g bands transform as �+

25 in the absence of spin-orbit
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TABLE I. Zone center wave functions in the cubic phase with SO
interactions (left column) and in the tetragonal phase in the absence
of SO interactions (right column).

	T = 0 	SO = 0

(X↓ − iY↓),�6(�8) (X↓ − iY↓),�6(�5)
(X↑ + iY↑),�6(�8) (X↑ + iY↑),�6(�5)

[X↑ − iY↑ + 2Z↓],�7(�8) Z↓,�7(�4)
[X↓ + iY↓ − 2Z↑],�7(�8) −Z↑,�7(�4)
[−X↑ + iY↑ + Z↓],�7 −(X↑ − iY↑),�7(�5)
[X↓ + iY↓ + Z↑],�7 (X↓ + iY↓),�7(�5)

coupling. SO interactions split the bands to �+
7 + �+

8 . When
there is a tetragonal transition, the fourfold degenerate �8 states
further split to �7 + �6. The notation in Eqs. (11) correspond
to these latter irreps.

The (unnormalized) wave functions corresponding to the
energies (11) are

ψ6
1 = X↓ − iY↓, ψ6

2 = X↑ + iY↑,

ψ7a
1 = (Q + D)X↑ − i(Q + D)Y↑ + 2	SOZ↓,

ψ7a
2 = 	SOX↓ + i	SOY↓ − (Q − D)Z↑, (13)

ψ7b
1 = (Q − D)X↑ − i(Q − D)Y↑ − 2	SOZ↓,

ψ7b
2 = 	SOX↓ + i	SOY↓ + (Q + D)Z↑,

where

D = 3	T/2 − 	SO/2. (14)

It is interesting to follow the evolution of the bands as the
ratio between 	T and 	SO is varied from zero to infinity.
The two limits are given in Table I. In the cubic phase the
states {ψ6,ψ7a} are degenerate and are spilt off from the {ψ7b}
states by an energy of 	SO. In the tetragonal phase when
|	SO| > |	T| the states group to the three doubly degenerate
pairs ψ6, ψ7a , and ψ7b. As the temperature is lowered the
four ψ7 states mix. If eventually |	SO| � |	T| then the ψ7a

1
and ψ7b

1 states combine to give the Z↓ state which is purely
tetragonal in character.

In the following section we discuss energy dispersion
relations along symmetry lines and planes, which can be
directly related to ARPES measurements and enable some
qualitative insights into the relationships between Hamil-
tonian parameters and the field-orientation dependence of
magnetoresistance-oscillation frequencies.

C. Energy dispersion relations for high-symmetry
lines and planes

In general, Eq. (4) must be diagonalized numerically.
However, simple energy dispersion relations exist along high-
symmetry directions and in high-symmetry planes.

When the tetragonal distortion is large and SO interactions
can be neglected, the t2g bands split into �4 + �5 bands. In

this limit (to order k4/	T)

ε4(k) = 	T + M4k
2
‖ + L4k

2
z ,

(15)

ε5±(k) = B+k2
‖ + M⊥

5 k2
z ±

√
B−k4

‖ − 4
[
B2− − N 2

5

]
k2
xk

2
y,

where k2
‖ = k2

x + k2
y andB± = (L5 ± M‖

5)/2. To leading order
in 	SO, the �4 energies remain unchanged whereas the �5±
energies vary linearly in opposite directions. The energies (15)
are valid for any value of 	T (but still neglecting 	SO) in the
kz = 0 plane. Similarly for the ky = 0 plane

ε5−(k) = M‖
5k

2
x + M⊥

5 k2
z ,

ε4,5+(k) = 	T

2
+ M4 + L5

2
k2
x + L4 + M⊥

5

2
k2
z

± 1

2

([
	T + (M4 − L5)k2

x + (L4 − M⊥
5 )k2

z

]2

+ 4|N45|2k2
xk

2
z

)1/2
. (16)

The k · p Hamiltonian for the t2g bands in the cubic phase
is identical to that of the valence band p states of zinc-blende
type semiconductors.18,19 In the presence of moderate SO
interactions the dispersion relations along the three equivalent
principle axes are

ε7(k) = Mk2,

ε8±(k) = B+k2 + 	SO

2
(17)

±
√
B2−k4 +

(
	SO

2

)2

− 	SO

3
B−k2.

For strong SO interactions the ψ7 and ψ8 states can be approxi-
mately decoupled to order k4/	SO. The energy dispersions are
then

ε7(k) = 	SO + Ak2,

(18)

ε8(k) = Ak2 ±
√

B2k4 + C2
(
k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

)
,

where A = 1 + (L + 2M)/3, B = (L − M)/3, and C2 =
[N2 − (L − M)2]/3. Expressions (18) were obtained by Dres-
selhaus et al.18

ARPES measurements are frequently set to measure the
energy dispersion in the kx-ky plane. For kz = 0 the depen-
dence of band energies on momenta is similar in the dominant
tetragonal-splitting and dominant spin-orbit coupling limits
[compare Eqs. (15) and (18)]. One way to determine which
of the two interactions is dominant is to probe the dispersion
relation along ẑ. A second way is to monitor the evolution of
the bands as a function of temperature. Additional methods
are explained in Sec. III below.

The parameters of the effective Hamiltonian in the tetrag-
onal phase are temperature dependent. As T is lowered
the tetragonal distortion increases and the energy bands
change accordingly. For some crystals, such as SrTiO3, the
deformation is well described by a simple order parameter.20

It is then possible to express the temperature dependence of
the different Hamiltonian parameters via a single temperature
dependent order parameter.

115114-3



R. BISTRITZER, G. KHALSA, AND A. H. MACDONALD PHYSICAL REVIEW B 83, 115114 (2011)

III. EXPERIMENTAL METHODS FOR DETERMINING
HAMILTONIAN PARAMETERS

The utility of the k · p method depends on the ability
to extract accurate values for the Hamiltonian parameters
from experiments. ARPES, magnetotransport, and Raman
spectroscopy measurements are three of the most useful
experimental probes for band parameters. In this section we
focus on the ways in which these techniques can be exploited
for d0 perovskites with an emphasis on experimental signatures
of the tetragonal distortion.

A. Raman spectroscopy

Raman spectroscopy is routinely used to measure the
spectra of solids.19 For a low-doped d0 perovskite Raman
spectra can determine the band gaps at the zone center. As
explained in Sec. II C distinguishing between 	T and 	SO

using ARPES measurements may prove difficult. The band
gaps depend both on SO interactions and on the tetragonal
distortion. Spectroscopically monitoring the energy gaps as a
function of temperature and comparing with Eqs. (11) provides
in principle sufficient information to determine 	SO and 	T.

B. ARPES

Angle resolved photoemission spectroscopy (ARPES) has
now been developed into a widely applicable experimental tool
for the measurement of bulk and surface electronic states.21,22

In a typical measurement incident monochromatic radiation
excites electrons in occupied crystal states and unbinds them
from the crystal. In the sudden approximation electrons are
promoted directly from a crystal state to a vacuum plane wave
state. In this approximation the intensity of the ARPES signal
associated with in-plane electron momentum k‖ and energy
ω is

I (k‖,ω) ∝
∑

n

|Mp,nk‖ |2An(k‖,ω)f (ω). (19)

Here the z axis is set perpendicular to the sample’s surface and
we assume that the photon energy is calibrated to probe the
kz = 0 plane.23 An is the electron spectral function of band n,
f is the Fermi distribution function, and

Mp,nk‖  〈p|A · p|�nk‖ 〉 = A · p〈p|�nk‖ 〉 (20)

gives the probability amplitude for an electron in an initial
state �nk‖ to transition to a plane-wave state p via a photon
field A. The photoemitted electrons are selectively collected
according to their emission angle and energy. Therefore in a
given measurement the outgoing momentum p in Eq. (19) is
fixed by the position of the detector and by the energy of the
incoming photon. The component of the momentum parallel
to the surface must equal the momentum of the initial state to
within a surface reciprocal lattice vector.

In principle, with sufficient ARPES data, the occupied
energy bands can be accurately mapped. The k · p Hamiltonian
parameters can then be determined using the dispersion
relations in Sec. II C. In practice, however, experimental
limits on energy and momentum resolution combined with
the relatively large number of Hamiltonian parameters and

the possibility of surface states that obscure bulk bands, often
complicate comparisons between theory and experiment.

As we now explain, additional band structure information
can sometimes be drawn from systematics in the dependence of
the ARPES matrix elements on the surface reciprocal lattice
vector added to the transverse momentum. Matrix elements
contributions from particular t2g orbitals frequently vanish at
particular reciprocal lattice vectors either because of symmetry
considerations or because of photon polarizations. By noticing
the reciprocal lattice vectors at which the signal from a
particular band is absent or very weak, it may be possible
to identify the t2g components which contribute dominantly
to that band. This orbital information strongly constrains the
band model.

Using the sudden approximation

〈p|�nk‖ 〉 =
∑
G‖

δk‖+G‖,p‖

∑
j

a
(n)
j (k‖)

×
∫

drdze−i[(G‖r+pzz)ξj (r,z). (21)

Here G‖ is the surface-plane projection of a reciprocal
lattice vector, and ξj are the t2g basis functions given by
Eq. (5) for the conduction band initial wave function: �nk‖ =
exp(ik‖r)

∑
j a

(n)
j ξj . The δ function in Eq. (21) reflects the

conservation of the in-plane crystal momentum in the photon-
assisted scattering process of the electron.

We illustrate the usefulness of the matrix element effect by
considering M for G = 0 ([00] BZ) and for G along the x axis
([10] BZ). In the first case M always vanishes since all ξj ’s
are odd with respect to reflection by either the z-x or the z-y
plane. There is therefore no ARPES signal in the [00] BZ for
t2g conduction band states. For the [10] BZ

M [01] ∝
∫

drdze−i(Gxx+pzz)Y (r,z). (22)

Contributions from other t2g components of �i vanish because
of their reflection symmetry in the x-z mirror plane (see Fig. 1).
Therefore only wave functions containing a Y orbital will be
detected in this case. Recent experiments24,25 on bulk SrTiO3

find a single (doubly degenerate) band for kz = 0 in the [01] BZ
in the cubic as well as in the tetragonal phase (see Sec. IV).

FIG. 1. (Color online) Left: High symmetry points and lines in
the Brillouin zone (BZ) of a simple cubic lattice. Right: Experimental
geometry used in simulations of ARPES data in the [10] BZ. The
photon source (solid green), with polarization in the xz plane, excites
an electron to a high-energy state that is emitted toward the detector
(dashed red). Although the experimental geometry is unchanged by a
reflection through the xz plane, the yz and xy orbitals are odd under
this operation. This leads to measurement of only the zx band in this
measurement.
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FIG. 2. (Color online) Simulated ARPES signal in the [10] BZ
across the kz = 0 plane for a temperature of 120K , L/M = 1/8,
	SO = 0, and N = 0. Only a single elliptical FS cross section is seen
(bottom left). Energy distribution curves (EDCs) have been included
along several high-symmetry directions—in this case showing only
a single band associated with the xz basis state.

The Hamiltonian described by Eqs. (6)–(10) then indicates
that the N ’s and 	SO must be sufficiently small so that any
hybridization between the t2g orbitals is negligible.

To illustrate the influence of the Hamiltonian parameters
on the ARPES signal we numerically generate such a signal
using Eq. (19). The resolution of a signal is determined by
the width of the spectral function in Eq. (19). In accord
with experiments24 we set the energy resolution to 10 meV
throughout this work. The result for the [10] BZ is depicted in
Fig. 2 for the case of 	SO = 0 and N = 0. Only the xz band
is observed demonstrating the lack of hybridization between
different t2g bands.

As evident from the Hamiltonian (3) and illustrated in Fig. 3
the t2g d-orbitals are hybridized by N . The influence of N is
most pronounced along the main diagonals. For example in
the [110] direction N induces a momentum dependent gap
of 2Nk2.

Spin-orbit interactions will also mix the t2g d-orbitals.
However, in contrast to the N �= 0 scenario they have no

FIG. 3. (Color online) Comparison of d-orbital mixing. Simu-
lated ARPES signal for a temperature of 120K , L/M = 1/8, and
	T = 0. (a) For N/M = 3 and 	SO = 0 the hybridization is most
pronounced along � but unseen in the EDCs along 	(X) and 	(Y ).
(b) For N/M = 0 and 	SO = 3εF one band has moved above the
Fermi energy. The hybridization between the basis states is seen
in the EDCs along all directions. This experimental feature can be
attributed to the lack of a preferential direction of the SO interaction.

preferential direction. In 5d systems for which the SO splitting
may be larger than the Fermi energy, the ARPES spectrum
along the � direction is similar to the spectrum in the
N �= 0, 	SO = 0 case. However, unlike the N �= 0 case the
photoemission spectrum is also altered along the x̂ and ŷ
directions. This is evident along kx in the simulated ARPES
data of Fig. 3, where the induced hybridization of the basis
functions cause the previously dark band to become visible.

In 3d and 4d systems, where the Fermi energy and SO
energy may be comparable, a detailed analysis of the EDCs
may be necessary. For the sake of illustration, we consider
several cases that elucidate some of the possible complications.
The SO and tetragonal energies 	SO and 	T determine the
band splitting at the � point [see Eq. (11)]. In the cubic phase
the value of 	SO can be extracted directly from an ARPES
measurement in the [10] surface BZ (see Fig. 4(a)). This
simple picture is complicated in the tetragonal phase. The
case where 	SO > εF and 	T < εF is readily distinguished
from the opposite limit by analysis of the dispersion along kx .
As evident from Figs. 4(b) and 4(c) only in the case where
	SO > εF, is the dark weakly dispersive band visible away
from the � point. When both 	SO and 	T are less than the
Fermi energy, the energy distribution curves (EDCs) at the �

point can be used to distinguish between the two cases. This
can be seen in Fig. 5.

FIG. 4. (Color online) Simulated ARPES measurement for the
[10] BZ for different values of 	SO and 	T. L/M = 1/8 and N =
0 in all figures. (a) T = 120K , 	SO = 0.5εF, 	T = 0. As evident
from all EDCs the SO splitting hybridizes the basis states. If the
temperature is lowered, inducing a structural phase transition that is
large, one band moves above the Fermi energy. This relatively weak
hybridization is seen in the Fermi surface (FS) of (b) where T =
20K , 	SO = 0.5εF, 	T = 3εF. In contrast, for T = 20K , 	SO = 3εF,
	T = 0.5εF the strong hybridization of the basis states leads to a more
symmetric FS (c). This feature is also seen by comparing the EDCs of
(b) and (c).
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FIG. 5. (Color online) It may be difficult to extract the precise
values of 	SO and 	T if both are small; as exemplified by comparing
(a) where 	SO = 0.5εF, 	T = 0.3εF with (b) where 	SO = 0.3εF,
	T = 0.5εF. In such a scenario inspection of the three bands is
insufficient and a careful analysis of the EDC at the � point is needed.
The � point EDC is depicted in (c) for (a) in dashed-red and for
(b) in solid-blue.

C. Magnetic oscillations

Magnetic oscillations in various physical properties such as
the conductivity (Shubnikov–de Haas effect) and the magnetic
susceptibility (de Haas–van Alfen effect) provide invaluable
information on the band structure of solids.27–30 The frequency
of the oscillations F is related to the extremal cross-sectional
area Ak of the Fermi surface in a plane perpendicular to the
magnetic field through the Onsager relation F = φ0Ak/4π2.
Here φ0 = hc/e is the magnetic flux quantum. Measuring F

as a function of charge density, magnetic field orientation, and
temperature also makes it possible in principle to determine
all the phenomenological Hamiltonian parameters.

In the naive picture of three ellipsoidal decoupled d bands
the cross sectional areas are simply given by ellipses. However
this oversimplified scenario breaks down for any realistic
system due to the hybridization of the d orbitals by N and
by the SO interactions. Avoided crossings of the overlapping
energy bands then result in more complicated energy surfaces.

To illustrate the variety of possible shapes of electron
pockets we consider a simple case with a small but finite band
mixing (e.g., N � 0).

The cross sectional areas for three high symmetry directions
of the magnetic field are depicted in the top row of Fig. 6 for
the tetragonal phase. As 	T increases the most energetic band
is gradually depleted and the electronic charge is redistributed
amongst the other two Fermi pockets. Eventually for 	T/εF >

1 − min(L/M,M/L) there is no band crossing between the xy

band and the other two bands.
Avoided crossings in the cubic phase result in nonelliptical

cross sections as well. The extremal cross-sectional areas along

(a) (b)

(d) (e)

(f) (g)

(c)

[001] [010] [100]

FIG. 6. (Color online) Extremal cross sectional areas for mag-
netic field oriented along [001] (left) [010] (center), and [100] (right).
The extremal orbits have been organized by size from largest to
smallest and shown as dashed-blue, dot-dashed-red, and dotted-green,
respectively. Top row (a–c) corresponds to 	T = 0.5εF, middle row
(d,e) corresponds to 	SO = 0.5εF, and bottom row corresponds to
N = 0.5M .

high-symmetry directions are depicted in Fig. 6 for 	SO/εF =
0.5 (center row) and for N/M = 0.5 (bottom row).

Our discussion ignores the possibility of multiple domains
in the distorted state, and neglects magnetic breakdown. The
latter is likely present in magnetic oscillation measurements
on these materials because of the close approaches between
extremal cross sections31 belonging to different bands.

IV. SrTiO3

Bulk STO is a band insulator with an energy gap of
3.2 eV. By chemical substitution of the Ti or the Sr atoms
or by introducing oxygen vacancies it is possible to electron
dope the system with a high level of precision. STO has cubic
symmetry at room temperature, however at 105 K it undergoes
a antiferrodistortive structural transition to a tetragonal phase.
Below the critical temperature neighboring TiO6 octahedras
continuously rotate in opposite directions by an angle of up to
a few degrees.

Although STO has been studied for many years, there are
only a few experimental results that can shed light on the
structure of its conduction bands. We therefore resort to a five-
parameter model in which the Hamiltonian is parametrized by
	SO,	T,M,N , and L, i.e., h is approximated by its cubic
phase form.

The experiments that do exist appear to partially contradict
one another. Based on Raman spectroscopy and Shubnikov–
de Hass measurements Uwe et al.26,32 concluded that
	SO ≈ 18 meV and 	T ≈ 1.5 meV. On the contrary, Chang
et al.25 using ARPES do not observe a SO induced gap at the
zone center and conclude that 	T ≈ −25 meV.

Supporting evidence for the smallness of 	SO is provided by
the matrix element effect. Experiments25 observe only, what
should be according to our matrix element analysis, the X

orbital in the [10] BZ and the Y orbital in the [01] BZ. As
explained in Sec. III B, the lack of hybridization between t2g
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FIG. 7. (Color online) Dependence of magnetic oscillation fre-
quency and cyclotron mass on 	T. Here we set L/M = 1/8, N = 0,
and 	SO = 0. (a,b,c) Scaled SdH frequency for magnetic fields along
[001], [110], and [100] as a function of 	t . (d,e,f) Cyclotron mass as
a function of 	T.

orbitals implies that both 	SO and N are very small. Additional
proof that N � M,L is provided by the ARPES EDCs which
reveal no special features of the energy along �. In addition,
these curves yield values for the effective masses from which
it follows that

M ≈ 0.84, L ≈ 0.14. (23)

Raman spectroscopy measurements32 find energy gaps of
approximately 2 meV and 18 meV between conduction bands
at the � point suggesting that 	T and 	SO have very different
magnitudes. The larger of the two scales can be identified
as tetragonal or spin-orbit from the dependence of magnetic
oscillation frequency F and cyclotron mass m on density
and field orientation. Figure 7 depicts the dependence of
F and m on density and on 	T. The dependence can be
expressed through a single parameter 	T/εF if F is scaled

FIG. 8. (Color online) Dependence of magnetic oscillation fre-
quency and cyclotron mass on 	SO. Here L/M = 1/8, N = 0, and
	T = 0. (a,b) Scaled SdH frequency for magnetic fields along [001],
[110], and [100] as a function of 	SO. (c,d) Cyclotron mass as a
function of 	SO.

with n2/3 where n is the electronic density. Similar graphs
are given in Fig. 8 for a scenario in which 	T � 	SO. The
different trends of F and m as a function of density clearly
distinguishes between the 	T � 	SO scenario and its opposite
counterpart.

V. SUMMARY

d0 perovskites have played a central role in various areas
of solid state physics and are now emerging as important
building blocks for oxide-based heterostructures. In this work
we used the k · p theory to construct the general low-
energy theory for the conduction bands of these materials
both in the cubic and in the tetragonal phases. We then
employed the theory to estimate the Hamiltonian parameters
for STO.

Our work emphasizes the need for additional experimental
data on the electronic band structure of perovskites. Even
for STO, by far the most studied d0 perovskite, existing
experimental data are insufficient to uniquely determine the
values of band parameters that will, for example, control the
character of the two-dimensional electron systems formed by
δ-doping.

In the past few years much effort has been devoted to
fabricating oxide-based heterostructures. Our model for the
electronic structure of the bulk is a first step toward modeling
these complex systems.
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APPENDIX: k · p HAMILTONIAN FOR THE
TETRAGONAL PHASE

The momentum dependent part of the effective Hamiltonian
h for a d0 perovskite is given by Eq. (3). In this appendix we
use group theory methods to express h in terms of a small
number of phenomenological parameters.18

The calculation of h involves the evaluation of matrix
elements of the form 〈φ|k · p|ψj 〉. Here ψj is a basis function
of the t2g manifold, p is the momentum operator, and φ is a state
outside of the t2g manifold. At the cubic to tetragonal phase
transition the symmetry at the zone center reduces from Oh

to D4h. Correspondingly, at the phase transition the three ψj ’s
change their transformation properties �+

25 → �+
4 + �+

5 . The
three components of the momentum operator p, that transform
as a single irrep (�−

15) in the cubic phase split: px,py ∈ �−
5

whereas pz ∈ �−
2 .

The values of the matrix elements vary smoothly across the
structural transition. To emphasize the relation between the
two symmetries we label the matrix elements in the tetragonal
phase with a subscript that corresponds to the irrep of φ in
the cubic phase and a superscript that corresponds to its irrep
in the tetragonal phase. For example, B5

15 is associated with a
basis function that evolved from �15 in the cubic phase to �5

in the tetragonal one.
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We first consider the �+
4 band. The intermediate states

are

�−
5 ⊗ �+

4 = �−
5 ,

(A1)
�−

2 ⊗ �+
4 = �−

3 .

Denoting

〈�−
5x |(px,py)|�+

4 〉 =
{

B5
15(0,1)

B5
25(0,1)

,

〈�−
5y |(px,py)|�+

4 〉 =
{

B5
15(1,0)

−B5
25(1,0)

, (A2)

〈�−
3 |pz|�+

4 〉 =
{
B3

2
B3

12
,

we find that

hzz = MB

(
k2
x + k2

y

) + LBk2
z , (A3)

where the two real phenomenological parameters are given by

MB = 1

2m
+ 1

m2

∑
n′∈�−

5

∣∣B5
n′
∣∣2

E�+
4 (0) − E

�−
5

n′ (0)
, (A4)

and

LB = 1

2m
+ 1

m2

∑
n′∈�−

3

∣∣B3
n′
∣∣2

E�+
4 (0) − E

�−
3

n′ (0)
. (A5)

We now turn to the �+
5 band. The intermediate states are

�−
5 ⊗ �+

5 = �−
1 + �−

2 + �−
3 + �−

4 ,
(A6)

�−
2 ⊗ �+

5 = �−
5 .

Following similar steps to those taken above we obtain
expression (10). The k-dependent Hamiltonian h depends on
six real parameters and a single complex parameter NBC .
The k · p Hamiltonian in the cubic phase can easily be
obtained from its tetragonal counterpart by disregarding the
subscripts of the phenomenological parameters; for example
by associating with LB and LC a single parameter L.
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