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Analysis of the thermoelectric properties of n-type ZnO
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We report an investigation of the temperature- and doping-dependent thermoelectric behavior of n-type ZnO.
The results are based on a combination of experimental data from the literature and calculated transport functions
obtained from Boltzmann transport theory applied to the first-principles electronic structure. From this we obtain
the dependence of the figure of merit ZT on doping and temperature. We find that improvement of the lattice
thermal conductivity is essential for obtaining high ZT in n-type ZnO.
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I. INTRODUCTION

There is current interest in high-temperature thermoelectric
materials both for space applications such as radioisotope
thermoelectric generators and more recently for solar-thermal
electrical-energy production. In both applications the effi-
ciency depends on the operating temperature, with higher
temperature yielding higher efficiency, and also on the thermo-
electric performance of the materials, which is characterized
by a dimensionless figure of merit ZT = σS2T/κ , where
σ is the electrical conductivity, S is the thermopower, T is
temperature, and κ is the thermal conductivity, normally the
sum of electronic and lattice contributions, κ = κe + κl . The
transport functions determining ZT , and therefore ZT itself,
are temperature dependent. Actual device performances are
determined by averages over the operating temperature range.
In any case, because of the very high temperatures that can be
achieved with concentrated sunlight, the development of low-
cost environmentally friendly thermoelectric materials that can
operate at very high temperatures may be of considerable value
in solar-thermal applications.

ZnO is of particular interest in this regard. This compound
is a potentially low-cost, nontoxic n-type semiconductor that
is stable in air up to very high temperatures in excess of
1300 ◦C, especially when alloyed with electropositive trivalent
elements such as Al.1 The decomposition temperature of ZnO
is above 2200 K. There is a large body of experimental
data available especially on ambient-temperature properties of
semiconducting ZnO.2,3 Also, there has been substantial recent
interest in doped ZnO as an oxide thermoelectric.1,4–16 Here we
use a combination of first-principles calculations and analysis
of existing experimental data to investigate the potential of
n-type ZnO as a very high temperature thermoelectric.

II. APPROACH

Our approach is along the lines that were used previously
for PbSe.17 Specifically, we use Boltzmann transport theory
based on the first-principles electronic structure to obtain
the temperature and doping-level (n) dependencies of the
thermopower, S(T ,n), and the ratio σ/τ , where τ−1 is
the electronic-scattering rate. We then combine this with
models fixed by existing experimental data for the T and n

dependencies of τ and the T dependence of the lattice part of

the thermal conductivity, κl . We use this combination to obtain
the T and n dependencies of the transport quantities, including
ZT .

We used the electronic structure as obtained with the general
potential linearized augmented plane wave (LAPW) method
including local orbitals,18,19 as implemented in the WIEN2k
code.20 We used LAPW sphere radii of 2.05 bohrs for Zn
and 1.60 bohrs for O. Core states were treated relativistically,
while we used the scalar relativistic treatment for the valence
states. We used well-converged basis sets and Brillouin-zone
samplings, and particularly tested the convergence of the
transport properties at different dopings and temperatures with
respect to zone sampling. We used the experimental wurtzite
crystal structure (a = 3.2489 Å, c = 5.2049 Å, zO = 0.381),
with the recently developed exchange-correlation functional
of Tran and Blaha, which we denote here as TB-mBJ.21 This
functional substantially improves the band gaps of simple
semiconductors and insulators with respect to standard local-
density and generalized-gradient approximation methods, and
in particular improves the band structure of ZnO.21–23

The calculated band structure is shown in Fig. 1. While our
band gap of 2.65 eV remains smaller than the experimental gap
of 3.4 eV, it is large enough to prevent bipolar transport for the
doping levels and temperatures that we consider here; i.e., it is
enough to avoid artifacts that arise from exaggerated minority
carrier contributions to transport that would result from a too
small gap. For comparison, the gap obtained in the same way
but with the standard generalized-gradient approximation of
Perdew, Burke, and Ernzerhof24 is 0.8 eV, while the local-
density approximation gap is 0.7 eV. The calculated gap with
the Engel-Vosko GGA,25 which is sometimes used to improve
semiconductor band gaps, is 1.3 eV.

As has been emphasized in the past,3 the electronic structure
shows a very strong asymmetry between electrons and holes.
Here we focus on n-type materials, but we note that the
thermoelectric properties of p-type would be very different,
and in fact the multiple heavy bands near the valence-band
maximum suggest that the p-type would perhaps be a better
thermoelectric material if it were possible to make it.

The temperature and doping level dependent thermopower
and other transport functions were obtained from the electronic
structure using the standard Boltzmann transport theory26

within the constant scattering time approximation (CSTA).
This approach has been shown to provide a good description
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FIG. 1. Calculated band structure of ZnO using the TB-mBJ
functional. The energy zero is at the valence-band maximum. Note
the light, isotropic conduction band and the much heavier, anisotropic
valence bands.

of S(T ) in a variety of thermoelectric materials, including
conventional thermoelectrics and oxides.27–33 The main ap-
proximation is the assumption that the energy dependence of
the scattering rate is weak compared to the energy dependence
of the electronic structure, i.e., the CSTA. No assumption is
made about the temperature or doping-level dependence of
the scattering. The detailed formulas used are given in Ref. 34.
These were evaluated using the BoltzTraP code.35

III. THERMOPOWER

The thermopower plays a central role in thermoelectric
performance. With use of the Wiedemann-Franz relation for
the electronic part of the thermal conductivity, κe = LσT ,
the figure of merit can be expressed as ZT = rS2/L, where
r = κe/κ � 1, emphasizing the fact that high ZT cannot be
obtained without high S. This expression also makes clear that
low lattice thermal conductivity is important since r will be
low if κl is large compared to κe.

The thermopower is directly fixed by the electronic struc-
ture with no adjustable parameters within the CSTA. This is
because the scattering rate cancels in the formula for S(T ,n).
The calculated result is shown in Fig. 2 for the a-axis and
c-axis directions. There is very little anisotropy, which is
also the case for the other n-type transport functions. This
is not the case for p-type (not shown). In the following, we

 10

 100

 1000

 10 18  1019  1020

-S
(T

,n
)

μV
/K

n (cm-3)

a-axis

400K
600K
800K

1000K
1200K
1400K
1600K
1800K

 10

 100

 1000

 1018  1019  1020

-S
(T

,n
)

μV
/K

n (cm-3)

c-axis

400K
600K
800K

1000K
1200K
1400K
1600K
1800K

FIG. 2. (Color online) Calculated S(T ,n) for ZnO in the a-axis
(top) and c-axis (bottom) directions.

only show the a-axis direction transport quantities. According
to our calculations the c-axis transport is slightly more
favorable.

Importantly, because of the substantial band gap, there is
no bipolar conduction, and so the thermopower continues
increasing with T to the highest temperatures, even at low
doping. Furthermore, high thermopowers are obtained at
reasonable doping levels when one goes to high temperature.
This result is in accord with existing experimental data, which
do show high thermopowers at high T in heavily doped
samples,1,9,16 although we cannot compare directly because
the precise carrier concentrations in the experimental samples
are not known. For example, according to our calculations, at
1000 ◦C thermopowers in excess of 160 μV/K are obtained
up to n = 1020 cm−3. If the lattice thermal conductivity were
negligible at this temperature (r = 1), this value of S would
correspond to ZT = 1.

IV. ELECTRICAL CONDUCTIVITY

Using the electronic structure it is possible to calculate
σ/τ as a function of n and T , but it is not possible to
calculate σ itself without knowledge of the scattering rate
τ−1. In order to proceed, we use experimental data, which
ideally should come from thermoelectric samples, since in that
case the extrapolation will be over a smaller range. For this
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FIG. 3. (Color online) Calculated conductivity of ZnO as a
function of T and n (see text).

purpose, we used 900 ◦C data from Ohtaki and coworkers,1

who made measurements on ceramic material. They report
a thermopower S = −200 μV/K at this temperature. By
comparing with the calculated S(T ,n) (Fig. 2), we obtain
a value n = 5.4 × 1019 cm−3 for this sample. The reported
experimental resistivity is 4.5 × 10−5 �m, which combined
with the calculated σ/τ yields τ = 5.7 × 10−15 s for this
particular sample at 900 ◦C. In this regime, the experimental
data from this sample and others follow an approximate
electron-phonon T dependence σ ∝ T −1. For the doping
dependence, we therefore take a standard electron-phonon
form, τ ∝ n−1/3. This yields τ = 2.53 × 10−5T −1n−1/3 with
τ in s, T in K, and n in cm−3. As mentioned, we then calculate
σ as σ/τ × τ . The resulting a-axis conductivity is shown in
Fig. 3. The high-T c-axis conductivity is somewhat higher (by
2%–3% depending on T and n), but not significantly so.

The corresponding power factor σS2, obtained from the
calculated S(T ,n) and σ as above, is given in Fig. 4.
The peak power factor is only very weakly T depen-
dent with a value (σS2)max ∼ 0.001 W/mK2. However, the
peak shifts to higher doping levels with T , e.g., from
n = 6 × 1018 cm−3 at 400 K to n = 4 × 1019 cm−3 at
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FIG. 4. (Color online) Calculated power factor σS2 based on the
data in Figs. 2 and 3.

1200 K. As has been emphasized previously,1,4,13,16 power
factors in this range make ZnO comparable to other known
good thermoelectric materials. Importantly, for the doping
level corresponding to the peak power factor, the thermopower
is also high. At 1200 K and n = 4 × 1019 cm−3 the calculated
thermopower is 225 μV/K.

V. THERMAL CONDUCTIVITY

The thermal conductivity consists of a sum of electronic
and lattice contributions. For the electronic part we use
the Wiedemann-Franz relation, κe = LσT , with the standard
value, L = 2.45 × 10−8 W�/K2. As mentioned, the electronic
thermal conductivity sets the scale for the requirement of low
lattice thermal conductivity for high ZT through the factor
r = κe/(κe + κl).

The thermal conductivity of single-crystal ZnO was inves-
tigated from 4.2 K to 300 K by Slack.36 κ is weakly anisotropic
and has a maximum at ∼30 K, approaching the expected
Umklapp phonon scattering 1/T behavior between 150 and
300 K. The single-crystal value at 300 K of κ = 54 W m−1 K−1

is very high for a thermoelectric material. However, it should be
emphasized that ZnO is clearly not a good thermoelectric ma-
terial at ambient T , but rather is investigated for possible high
ZT at high T . Therefore we consider the high-temperature
properties of ceramic thermoelectric samples.

There have been a number of studies of the thermal conduc-
tivity of dense ceramic ZnO at elevated T .1,3–5,9,10,16,37,38 As a
starting point, we may take the ambient-temperature value of
37.5 W m−1 K−1 from Ref. 37, which is also consistent with
the data reported by Ohtaki and coworkers,1 for the sample
that we used to fix the scattering rate. At this temperature
the electronic contribution to the thermal conductivity is
negligible, and so we have κl(300 K) = 37.5 W m−1 K−1. One
might then assume a 1/T temperature dependence of κl and
proceed to estimate ZT using this and the electrical properties
discussed above. However, these data, which were obtained
from dense ceramic based on sintered nanosize powder,
shows large deviations from 1/T . In particular, the thermal
conductivity at high T is much lower than would be obtained
from this extrapolation. Furthermore, all the ceramic ZnO
data mentioned above show the same feature,1,4,5,9,10,16,37,38

including old dense-ceramic data from the 1950s.38 That is,
all the reported high-T thermal-conductivity data fall below
the 1/T extrapolation from ambient temperature, although the
details vary, perhaps because of sample dependence.

Such a decrease in thermal conductivity can be due to a
softening of the lattice at high temperatures, i.e., a reduction
in lattice stiffness leading to reduced sound velocities, or since
all the samples are very fine ceramics, it could be an effect of
nanostructuring. One interesting possibility is that anisotropic
thermal expansion could lead to increased phonon scattering
in fine-grained ceramics due to inhomogeneous stress fields.
In fact, the thermal expansion of ZnO at high T is large
and substantially anisotropic, with a- and c-axis values of
αa = 8 × 10−6 and αc = 5 × 10−6, respectively.39 It will be of
interest to measure the high-temperature thermal conductivity
of single-crystal ZnO to sort out the actual mechanism by
which κl decreases faster than 1/T .
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FIG. 5. (Color online) Thermal conductivity of ZnO from
Ref. 37 compared with an Umklapp 1/T form matched to the
ambient-temperature value and the fit to experimental data used on
our model as discussed in the text.

We used the data of Olorunyolemi and coworkers37 to
model κl . This choice was made because the data are for
nominally undoped material and so we do not need to correct
for an electronic contribution, which in turn would depend on
knowledge of the conductivity, and also because, as mentioned,
the thermal conductivity is consistent with the data reported
by Ohtaki and coworkers for the sample that we used to fix
the scattering rate for the electrical properties. A very good
description of the experimental data can be obtained using the
functional form κ = (A − BT )/T , with A = 12800 W m−1

and B = 5.2 W m−1 K−1. This is shown in Fig. 5.
In any case, this fit completes the model for transport, so

that we can calculate ZT as a function of T and n. This
is shown in Fig. 6. We note that the model has a number
of assumptions, particularly regarding the experimental data
that are taken as representing the intrinsic behavior of ZnO.
However, we can use it to obtain semiquantitative information
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FIG. 6. (Color online) Calculated ZT (T ,n) of n-type ZnO using
the model discussed in the text. The data shown are for the a-axis
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about the behavior of ZT with doping and temperature. As
may be seen, ZT is a strongly increasing function of T up
to the highest T . This is because of two effects. First of all,
the thermopower increases with T due to the large band gap.
Second, because the electronic thermal conductivity has only
weak T dependence while the lattice thermal conductivity
strongly decreases, there is a strong increase in the factor r with
T . The optimum doping level at high T is in the range from
2 × 1019 cm−3 to 6 × 1019 cm−3. The calculated peak values of
ZT are comparable to the best experimental samples reported
at a given T . Thus the calculations suggest that reported high-
ZT samples in the literature are essentially fully optimized
with respect to doping so that large further increases in ZT

from tuning the carrier concentration are unlikely.

VI. DISCUSSION AND CONCLUSIONS

The key question is then whether it is possible to obtain high
ZT of unity or above in n-type ZnO at practical temperatures.
Based on the results above, the best experimental samples
are well optimized and therefore it would seem that this is
unlikely through fine tuning of the carrier concentration in
standard ZnO. Since the mobility at high T is fixed by electron-
phonon scattering, it seems likely that improvements in the
electrical conductivity will be limited. However, the ratio r =
κe/κ mentioned above provides some insight into the reason
why ZT is not higher.

We plot the calculated r from our model in Fig. 7. As may
be seen, r is substantially lower than unity for the doping
levels where the peak ZT is found. This means that although
the power factor and thermopower are both quite reasonable,
the lattice thermal conductivity is strongly constraining ZT ,
and therefore that much better values of ZT would result
if κl could be reduced. In fact, according to our model, if
the lattice thermal conductivity is arbitrarily reduced to 1/3
of its value, keeping the other parameters fixed, we obtain
ZT = 1 at 1600 K, with a doping level of ∼2 × 1019 cm−3.
While at first sight this may seem unrealistic, we note that
the thermal conductivity in fine-grained dense ceramic does
fall faster than 1/T . If this is in fact a result of nanoscale
stress inhomogeneities, it may well be that further reductions
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FIG. 7. (Color online) Calculated r = κe/κ for the model dis-
cussed in the text. The data shown are for the a-axis direction.
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are possible through control of the grain size and ceramic
texture. Also, it may be possible to introduce nanostructure
into thermoelectric ZnO by other means than sintering of
nanosize powders. In particular, it may be possible to use
nanoprecipitates or spinodal decomposition, as for example in
ZnO with Co and Ni40,41 and possibly in ZnO co-doped with
Mn and Al.42 In fact, it has been reported that co-addition
of Al2O3 and NiO improves the thermoelectric properties of
n-type ZnO.9

In any case, it will be of considerable interest to study the
high-temperature thermal conductivity of ZnO single crystals
and ceramics produced with different grain sizes and textures
to better understand the origin of the reduced high-T lattice
thermal conductivity and whether it is possible to obtain

further reductions. Similarly, it will be desirable to investigate
in more detail the use of nanostructuring to modify thermal
conductivity in ZnO.
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