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Self-consistent GW calculations of electronic transport in thiol- and amine-linked
molecular junctions
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The electronic conductance of a benzene molecule connected to gold electrodes via thiol, thiolate, or
amino anchoring groups is calculated using nonequilibrium Green functions in combination with the fully
self-consistent GW approximation for exchange and correlation. The calculated conductance of benzenedithiol
and benzenediamine is one-fifth that predicted by standard density functional theory (DFT), in very good
agreement with experiments. In contrast, the widely studied benzenedithiolate structure is found to have a
significantly higher conductance due to the unsaturated sulfur bonds. These findings suggest that more complex
gold-thiolate structures where the thiolate anchors are chemically passivated by Au adatoms are responsible
for the measured conductance. Analysis of the energy level alignment obtained with DFT, Hartree-Fock, and
GW reveals the importance of self-interaction corrections (exchange) on the molecule and dynamical screening
at the metal-molecule interface. The main effect of the GW self-energy is to renormalize the level positions;
however, its influence on the shape of molecular resonances also affects the conductance. Non-self-consistent
G0W0 calculations, starting from either DFT or Hartree-Fock, yield conductance values within 50% of the
self-consistent GW results.
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I. INTRODUCTION

The problem of first-principles calculation of electronic
conduction in molecular systems is of longstanding interest.
Over the past decade, advances in experimental techniques
have allowed for fundamental studies of electron trans-
port through few or even individually contacted molecules.
The transport mechanisms observed in molecular junctions
range from ballistic1 over off-resonant tunneling2–6 to the
strong correlation Kondo and Coulomb blockade regime7,8

to vibration-assisted hopping.9 The former two belong to the
phase-coherent transport regime characteristic of relatively
short molecules (as opposed to molecular wires9) with good
“chemical” contact to the electrodes and is the main focus of
the present work.

The lack of control over the atomistic details of the
metal-molecule interface introduces a strong statistical ele-
ment in measurements on single-molecule junctions which
masks the relation between atomic structure and measured
conductance. For example, published conductance values for
the gold-benzenedithiol model system vary by several orders of
magnitude, although recent independent studies of this system
seem agree on a value around 0.01G0 (G0 = 2e2/h).3–6 It
is, however, not clear which structure is responsible for this
“typical” conductance and recent experimental and theoretical
work point to complex gold-thiolate structures involving
two molecules bonding the same Au adatom.10–15 Scanning
tunneling microscope experiments in solution have shown that
the use of amino rather than thiol anchoring groups leads
to more well defined junction properties2 and a conductance
around (or just below) 0.01G0 has also been reported for
the gold-benzenediamine junction.2,6 This was, however, not
confirmed by independent break junction experiments in
vacuum.16

The uncertainties related to the junction atomic structure
renders theoretical benchmark calculations more important
and more challenging at the same time. Here progress has
been hampered by the inability of conventional density
functional theory (DFT) methods, which for long have been
the workhorse and the state of the art for quantum transport
calculations,17,18 to reproduce the conductance measured
for even the simplest molecular tunnel junctions.19,20 As
a consequence, the most successful studies have focused
on qualitative trends in the dependence of conductance on,
e.g., molecular conformation,21 molecular length,22 or side
group functionalizations,23 or have focused on properties
independent of the numerical value of the conductance like
molecular vibrations.24,25 The main shortcoming of the DFT
approach has been attributed to its band-gap problem, i.e.,
the fact that DFT tends to underestimate energy gaps,26

and therefore it overestimates the conductance. Attempts
to overcome this problem within a single-particle frame-
work have mainly focused on self-interaction correction
schemes.27–29

The well-known success of the many-body GW method30

for quasiparticle (QP) band structure calculations has recently
inspired its application to (simplified) transport problems.31–38

The fact that the GW approximation successfully describes
systems with highly diverse screening properties ranging
from metals39 over semiconductors40–46 to molecules47,48 is
essential for a correct description of metal-molecule interfaces
where the electronic character changes from metallic to
insulating over a few angstroms. In particular, screening by the
metal electrons can have a large influence on the QP energies of
the adsorbed molecule49–52—an effect completely missed by
both local and hybrid density functionals.50 This has recently
motivated the use of semiempirical schemes for correcting
the DFT eigenvalues by a scissors operator prior to transport
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calculations.23,53,54 While such schemes can be justified for
weakly coupled molecules, they become uncontrolled in the
relevant regime of covalently bonded molecules where the
screening effects mix with charge transfer and hybridization.51

In this work we combine nonequilibrium Green function
methods for electron transport with the fully self-consistent
GW approximation for exchange and correlation to estab-
lish a theoretical benchmark for the electronic structure
and conductance of gold-1,4-benzenedithiolate (BDT), gold-
benzenedithiol (BDT + H), and gold-benzenediamine (BDA)
molecular junctions. We find a conductance of 0.0042G0 for
BDA and 0.010G0 for BDT + H, in very good agreement with
experimental data. In comparison, the conductance obtained
from DFT is about five times higher while non-self-consistent
G0W0 calculations produce conductances within 50% of
the self-consistent GW result. We argue that the BDT + H
structure can be viewed as a simple model of recently proposed
RS-Au(I)-SR gold-thiolate structures involving two organic
molecules (R) attached via sulfur atoms (S) to the same Au
adatom. The conductance of a simple BDT molecule between
Au(111) surfaces is predicted to be on the order of 1G0 by
both DFT, Hartree-Fock, and GW. The origin of the high
conductance is due to an unsaturated sulfur p orbital with
energy just below the Fermi energy. In the BDT + H and
RS-Au(I)-SR structures, the sulfurs are fully saturated and
the p orbital moves away from EF , leading to an effective
decoupling of the C6H4 moiety from the gold electrodes. We
find that the main effect of the GW self-energy is to shift
the molecular levels and this can be modeled by a simple
scissors operator. However, the energy dependence of the
GW self-energy may also affect the shape of the transmission
resonances and this can change the conductance by almost a
factor of 2.

Most implementations of the GW method invoke one or
several technical approximations, such as the plasmon pole
approximation, the neglect of off-diagonal matrix elements in
the GW self-energy, analytic continuations from the imaginary
to the real frequency axis, the neglect of core state contributions
to the self-energy, or the neglect of self-consistency. The range
of validity of these approximations has been explored for solid
state systems by a number of authors39–44; however, much less
is known about their applicability to molecular and metal-
molecule systems. For this reason our implementation of the
GW method avoids all of these approximations and as such
represents an exact treatment of the GW self-energy within the
space of the employed atomic orbital basis set.

Although we compare our results to experimental data and
discuss them in relation to the possible atomic structure of
the junctions, we stress that the main purpose of this study
is the benchmarking of quantum transport calculations for a
specific, idealized junction with particular focus on the role of
electronic correlation effects.

II. METHOD

We consider a quantum conductor consisting of a molecule
connected to left (L) and right (R) electrodes. We shall assume
that outside a certain region containing the molecule and part of
the electrodes (the “extended molecule”), the electron-electron
interactions can be described by a mean-field potential. The

current through the molecule is then given by55,56

I = i

4π

∫
Tr[(�L − �R)G< + (fL�L − fR�R)(Gr − Ga)]dE,

(1)
where the energy dependence of all quantities has been
suppressed for simplicity. In this equation G is the Green
function matrix of the extended molecule evaluated in a local-
ized basis, �L/R = i[�r

L/R − �a
L/R] is the coupling strength

between the extended molecule and the left/right electrode,
and fL/R are the Fermi Dirac distribution functions of the
two leads. Our implementation applies to the general case of
a finite bias voltage, but in this work we focus on the zero-
bias conductance, which can be expressed in terms of the
transmission function55,56

T (E) = Tr[Gr (E)�L(E)Ga(E)�R(E)] (2)

as G = G0T (EF ). This formula was originally derived for
noninteracting electrons, but it is in fact valid for interacting
electrons in the low-bias limit.57 We have verified that this
is indeed fulfilled to high numerical accuracy in our GW
calculations by comparing the conductance obtained from
Eq. (1) for small finite voltages with T (EF ) evaluated in
equilibrium.

The retarded Green function of the extended molecule is
calculated from

Gr (E) = {(E + iη)S − H0 + Vxc − �VH[G]

−�L(E) − �R(E) − �xc[G](E)}−1, (3)

where η is a positive infinitesimal and

Sij = 〈φi |φj 〉, (4)

H0,ij = 〈φi | − 1
2∇2 + vion(r) + vH(r) + vxc(r)|φj 〉, (5)

Vxc,ij = 〈φi |vxc(r)|φj 〉 (6)

denote the overlap matrix, the Kohn-Sham Hamiltonian, and
the exchange-correlation potential, respectively. The matrices
are evaluated in terms of a basis consisting of numerical
atomic orbitals58 and are obtained from a DFT supercell
calculation performed with the real-space projector augmented
wave method GPAW.59 The electrode self-energies �L/R are
obtained from the Kohn-Sham Hamiltonian of a bulk DFT
calculation using standard techniques.60

The boundary conditions in the plane normal to the trans-
port direction enter only via the electrode self-energies, which
are constructed from the electrode surface Green function.60

The latter should represent an infinite surface but is here
approximated by that of a periodic supercell with 4 × 4 Au
atoms in the surface plane. We have found that this is a very
good approximation when the surface Green function of the
4 × 4 cell is evaluated at a general k⊥ point [where we use k⊥ =
(0.125,0.375) in coordinates of the surface Brillouin zone basis
vectors]. Using one high symmetry wave vector, in particular
the Gamma point, can lead to artificial features in T (E).61

The term �VH is the deviation of the Hartree potential from
the ground-state DFT Hartree potential contained in H0,

�VH,ij = 2
∑
kl

vij,kl

(
�kl − �0

kl

)
. (7)
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In this expression � = −i
∫

G<(E)dE and �0 =
−i

∫
G<

0 (E)dE are the interacting and Kohn-Sham density
matrices, respectively, and

vij,kl =
∫ ∫

φ∗
i (r)φj (r)φk(r′)φ∗

l (r′)
|r − r′| drdr′ (8)

is the bare Coulomb interaction in the atomic orbital basis.
The factor 2 is due to spin. Reference 62 describes how the
all-electron Coulomb elements are obtained within the PAW
formalism. The last term in Eq. (3) is the many-body exchange-
correlation self-energy, which in this work can be either the
bare exchange potential or the GW self-energy. We note that
setting �VH = 0 and �xc = Vxc in Eq. (3) we obtain the Kohn-
Sham Green function, G0.

A. GW self-energy

The (time-ordered) GW self-energy is given by

�GW,ij (τ ) = i
∑
kl

Gkl(τ
+)Wki,lj (τ ), (9)

where W is the screened interaction and the indices i,j,k,l run
over the atomic basis functions of the extended molecule. The
screened interaction is calculated in the frequency domain
as the matrix product W (ω) = ε−1(ω)v with the dielectric
function, ε(ω) = 1 − vP (ω), evaluated in the random-phase
approximation. The irreducible density response function is
computed in the time domain as

Pij,kl(τ ) = −2iGik(τ )Glj (−τ ), (10)

where the factor 2 accounts for spin. Setting P = 0 yields
the Hartree-Fock approximation, which thus corresponds to
complete neglect of screening or equivalently complete neglect
of correlations. Note that Eqs. (9) and (10) involve time-
ordered quantities defined on the Keldysh time contour. For
completeness we provide the expressions for the real-time
components in Appendix A and refer the reader to Ref. 32 for
more details.

As explained above, the matrices P , W , and �GW are
calculated for the extended molecule. On the other hand, it
is clear that W , and thus �GW, should have contributions

Σ
P,W

FIG. 1. (Color online) Schematic of a molecular junction with
the “molecule” and “extended molecule” regions indicated (small
and large boxes, respectively). The GW self-energy (�) is calculated
on the molecule while the polarization (P ) and screened interaction
(W ) are evaluated for the extended region to ensure proper treatment
of nonlocal screening effects. The electrodes and electrode-molecule
coupling is described at the DFT level. A second-order Feynman
diagram is shown.

from polarization diagrams outside this region. Physically
these diagrams describe the potential acting on an electron
propagating on the extended molecule due to the polarization
that it induces outside this region. For this reason the self-
energy will not be fully converged at the ends of the extended
molecule region. To overcome this problem we only use the
part of �GW corresponding to the molecule and replace the
remaining parts of the xc self-energy of the extended molecule
by the DFT xc potential,

�xc(E) =
⎛
⎝

vxc vxc vxc

vxc �GW(E) vxc

vxc vxc vxc

⎞
⎠ . (11)

We stress that, although we only include �GW on the molecule,
the interactions between electrons on the molecule and
electrons in the electrodes (leading, e.g., to image charge
renormalization of the molecular levels) are included via
diagrams of the form shown in Fig. 1. We also note that the
form (11) implies that all metal atoms, those both inside and
outside the extended molecule, are consistently described at
the same (DFT) level. For the size of the extended molecule
we have found it sufficient to include the gold atoms which
are nearest neighbors to the sulfur or nitrogen atoms, i.e., two
gold atoms for the tip structures and six for the flat structure
depicted in Fig. 2 (see Appendix B). We expect that this rather
local screening response is special for covalent metal-molecule
bonds.

B. Time and frequency dependence

The time-frequency dependence of G, P , W , and �GW is
represented on a uniform grid ranging from −200 to 200 eV
with a grid spacing of �ω = 0.01 eV. We have verified that
the results are converged with respect to both the size and
spacing of this grid. A fast Fourier transform is used to switch
between energy and time domains to avoid convolutions. The
calculations are parallelized both over basis functions and
over the time-frequency grid points. One should always have
η � �ω to ensure proper representation of possible bound
states. However, we have found that the conductance, and more
generally the transmission function at any given energy, can
be linearly extrapolated to the η = 0+ limit. This extrapolation
has been performed for all the results presented in this work.

The memory requirements for the GW calculations (defined
mainly by the size of the P and W matrices) are approximately
a factor 50 larger than for a corresponding DFT calculation.
The GW calculations for the benzene junctions considered in
the present work were performed in parallel on 100–400 cores
and took about 2 h per self-consistency iteration. In comparison
a DFT calculation for the same system took around 5 h on
8 cores.

C. Product basis

The calculation of all of the Coulomb matrix elements,
vij,kl , is prohibitively costly for larger basis sets. Fortunately,
the matrix is to a large degree dominated by negligible ele-
ments. To systematically define the most significant Coulomb
elements, we use the product basis technique of Aryasetiawan
and Gunnarsson.63 In this approach, the pair orbital overlap
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matrix

Sij,kl = 〈nij |nkl〉, (12)

where nij (r) = φi(r)φ∗
j (r), is used to screen for the significant

elements of v.
The eigenvectors of the overlap matrix [Eq. (12)] represent

a set of “optimized pair orbitals” and the eigenvalues their
norm. Optimized pair orbitals with insignificant norm must
also yield a reduced contribution to the Coulomb matrix, and
these are omitted in the calculation of v. We have found that the
basis for v can be limited to optimized pair orbitals with a norm
larger than 10−5a−3

0 without sacrificing accuracy. This gives a
significant reduction in the number of Coulomb elements that
needs to be evaluated, and it reduces the matrix size of P (ω)
and W (ω) correspondingly (see Appendix A).

D. Valence-core exchange

Since both core and all-electron valence states are available
in the PAW method, we can evaluate the contribution to the
valence exchange self-energy coming from the core electrons.
As the density matrix is simply the identity matrix in the
subspace of atomic core states, this valence-core exchange
reads

�core
x,ij = −

core∑
n

vin,jn, (13)

where i,j represent valence basis functions and n rep-
resents atomic core states. This contribution is added to
�GW describing the valence-valence interactions. We limit
the inclusion of valence-core interactions to the exchange
potential, neglecting it in the correlation. This is reasonable,
because the polarization bubble, P , involving core and valence
states will be small due to the large energy difference and small
spatial overlap of the valence and core states. In general we
have found that the effect of �core

x,ij on molecular energy levels
can be up to 1 eV.47 For the benzene-like molecules considered
in this work the effect is generally less than 0.4 eV for the
frontier orbitals.

E. Self-consistency

Since �GW and �VH depend on G, the Dyson equation (3)
must be solved self-consistently in conjunction with the self-
energies. In practice, this self-consistency problem is solved
by iteration. We have found that a linear mixing of the Green
functions,

Gn
in(E) = (1 − α)Gn−1

in (E) + αGn−1
out (E), (14)

with α = 0.15, generally leads to self-consistency within 20–
30 iterations.

Fully self-consistent GW calculations are not standard, and
in fact only few previous calculations of this type have been
reported.39,47,48 Conventional GW band-structure calculations
typically apply a one-shot technique where the self-energy is
evaluated with a noninteracting Green function, G0, usually
obtained from DFT.64 In comparison, the self-consistent
approach has the advantage of removing the G0 dependence
(i.e., it leads to a unique solution).

For an approach, like the present, where the chemical
potential is fixed by the external boundary conditions, some
kind of self-consistency (though not necessarily the full GW
self-consistency employed here) is essential to ensure charge
neutrality. This is particularly important for cases where a
molecular resonance lies close to the chemical potential. A
shift in the energy of such a resonance could lead to a large
change in its occupation. In a self-consistent calculation this
shift would be counterbalanced, mainly by a change in the
Hartree potential. On the other hand, the one-shot approach
does not account for this effect and unphysical level alignments
could occur as a result.

Finally, the fully self-consistent GW approximation is
a conserving approximation in the sense of Baym.65 This
becomes particularly important in the context of transport,
where it ensures that the continuity equation is satisfied.32,65

We mention that the recently introduced quasi-self-consistent
GW method (not to be confused with the fully self-consistent
GW approximation used here), in which G0 is chosen such as
to mimic the interacting Green function as closely as possible,
has shown that self-consistency in general improves the band
gaps of semiconductors as compared to standard one-shot
calculations.66

III. RESULTS

In this section we discuss the results of our self-consistent
GW calculations for the electronic structure and conductance
of the prototypical gold-1,4-benzenedithiolate (BDT), gold-
benzenedithiol (BDT + H), and gold-benzenediamine (BDA)
molecular junctions. We argue that the thiol structure can be
considered as a simple model for more complex gold-thiolate
structures which have been proposed recently15 but which
are currently too large to be treated satisfactorily at the GW
level. The transport results are rationalized by considering
the alignment of molecular energy levels in the junction.
Here we show that both DFT and Hartree-Fock provide
quantitatively and qualitatively wrong results by predicting
a gap opening rather than reduction when the molecule is
attached to electrodes. Finally, we investigate to what extent
the GW results can be reproduced by a simple scissors operator
applied to the DFT Hamiltonian.

A. Junction geometries

The junction geometries were optimized using the real-
space projector augmented wave method GPAW.59 We used
a grid spacing of 0.2 Å and the PBE functional for exchange
and correlation.67 The molecules were attached to Au(111)
surfaces, modeled by a seven-layer-thick 4 × 4 slab, either
directly (in the case of BDT) or via tips (in the case of
BDT + H and BDA) as shown in Fig. 2. The surface Brillouin
zone was sampled on a 4 × 4 k-point grid, and the structures
including molecule, Au tips, and outermost Au surface layers
were relaxed until the residual force was below 0.05 eV/Å.
The three structures are shown in the upper panel of Fig. 2 and
some key bond lengths are given here.68

It is generally accepted that the hydrogen atoms dissociate
from the thiol end groups, forming a gold-thiolate structure.69

Nevertheless, our total energy calculations show that the
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FIG. 2. (Color online) Atomic structure of the BDA (left), BDT + H (middle), and BDT (right) molecular junctions. The lower panels show
the transmission functions calculated using DFT-PBE (red), Hartree-Fock (blue), and the self-consistent GW approximation (green). The insets
show a zoomed-in area of the transmission functions around the Fermi energy (set to zero). The gray boxes indicate the conductance windows
0.007G0 ± 50% and 0.01G0 ± 50%, which cover the experimental values reported in Refs. 2–6, respectively.

benzenedithiol structure has a slightly lower energy than the
benzenedithiolate when inserted between two gold tips as
shown in Fig. 2 (middle). In these calculations the hydrogens
were either taken to be in the gas phase or are adsorbed on the
Au tips. In both cases the energy gain is less than 0.1 eV at
the equilibrium distance but increases to 0.3 eV for a junction
stretched by 1 Å. We stress that our calculations do not include
effects of entropy and furthermore assumes that hydrogen in
the gas phase is the proper reference for the solvated proton and
an electron in the electrode, i.e. the reaction H+ + e− ↔ H2(g)
is in equilibrium (in electrochemistry language we assume the
standard hydrogen potential at pH = 0). For these reasons our
calculations are not sufficient to address the relative stability
of thiols versus thiolates under the relevant experimental
conditions.

Importantly we note that new experimental evidence for
the chemical structure of the gold-thiolate interface at the
Au(111) surface10–12 or at Au nanocluster surfaces13,14 has
recently emerged, pointing to the existence of polymeric
SR-Au(I)-SR units where the formally oxidized Au(I) adatoms
are chemically bound to thiolates and form a part of a more
complex structure (see Ref. 15 and references therein). These
complexes are currently too challenging to treat satisfactorily
at the GW level. However, we have found that the electronic
structure and transport properties of such complexes is quite
similar to that of the dithiol structure (see Sec. III G). This is
because the hydrogen atoms play a role similar to that of the
Au adatom in passivating the sulfur atoms.

B. Energy levels of isolated molecules

A natural requirement for a method intended to describe
the energy levels of molecules in contact with electrodes is
that it should be able to describe the energy levels of isolated
molecules. As we show below, the DFT approach fails com-
pletely in this respect, underestimating the gap between the
highest occupied- and lowest unoccupied molecular orbitals

(HOMO-LUMO gap) of the three molecules by 5–6 eV, while
GW energies lie within 0.5 eV of the target values.

The gas-phase molecular structures have been relaxed in a
16 Å cubic cell using GPAW grid calculations as described
in the previous section. For consistency, all energy levels
have been calculated using the same double-zeta (DZ) atomic
orbitals basis set. This is the same basis as used for the
molecules in the transport calculations presented in the next
section. For the DFT and Hartree-Fock calculations we have
found that the energies obtained with the DZ basis agree
with accurate grid calculations to within 0.2 eV. For the GW
calculations the energies are within 0.1 eV of those obtained
with a DZ plus polarization basis set.

Table I summarizes the results for the HOMO and LUMO
orbital energies obtained from the DFT-PBE eigenvalues,
self-consistent Hartree-Fock, and self-consistent GW. The
energy levels have been identified as the peaks in the spectral

TABLE I. Calculated frontier orbital energies of the molecules
in the gas phase. All energies are in electron volts and measured
relative to the vacuum level. DFT-PBE refers to the Kohn-Sham
eigenvalues while �Etot represents addition or removal energies
obtained from self-consistent total energy calculations of the
neutral, anion, and cation species at the DFT-PBE level.

Molecule Orbital DFT-PBE HF GW �Etot

BDA HOMO −4.1 −7.2 −6.2 −6.8
(C6H8N2) LUMO −0.9 3.9 2.9 2.3

H-L Gap 3.2 11.1 9.1 9.1

BDT + H HOMO −5.1 −8.0 −6.9 −7.5
(C6H6S2) LUMO −1.3 3.3 2.2 1.3

H-L Gap 3.8 11.3 9.1 8.8

BDT HOMO −5.7 −8.6 −7.9 −8.3
(C6H4S2) LUMO −5.1 −1.6 −2.3 −2.7

H-L Gap 0.6 7.0 5.6 5.6
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function −1/πTr[ImGr (E)] extrapolated to η = 0+. Due to
lack of accurate experimental data we have also performed
DFT-PBE total energy calculations for the neutral, cation,
and anion species to obtain the addition or removal energies
(last column). This approach has been shown to produce very
accurate estimates of the experimental ionization and affinity
levels of small molecules.47

Relative to this reference, the DFT eigenvalues under-
estimate the HOMO-LUMO gap of all three molecules by
5–6 eV, Hartree-Fock overestimates it by 2–3 eV, while the
gap obtained with GW lies within 0.3 eV. These trends are
consistent with a recent study of ionization potentials of
a large number of molecules.47 The main reason for the
large underestimation of the gap by DFT is the presence
of self-interactions in the PBE functional.28 On the other
hand, Hartree-Fock is self-interaction free; here, by virtue of
Koopmans’ theorem, the overestimation of the gap can be seen
as a result of neglect of orbital relaxations. The effect of the
latter is included in GW via the screened interaction and this
reduces the gap relative to the unscreened Hartree-Fock result.

We furthermore note that DFT places the LUMO of
BDA and BDT + H below the vacuum level, thus incorrectly
predicting the anions to be stable. For BDT, the LUMO level is
predicted to be negative by all methods, indicating the radical
nature of this species. We note that our GW energies for BDT
are in good agreement with previous second-order perturbation
theory (MP2) calculations.70

C. Conductance calculations

The transmission functions of the relaxed junction ge-
ometries were calculated as described in Sec. II using three
different approximations for �xc, namely the PBE xc potential,
the bare exchange potential (leading to Hartree-Fock theory),
and GW. The former choice corresponds to the standard DFT
approach. All calculations employ a double-zeta basis set for
the molecules and double-zeta with polarization for the Au
atoms. The results are shown in the lower panels of Fig. 2, and
the corresponding conductances are summarized in Table II.

The conductance of BDA and BDT + H calculated with
the fully self-consistent GW approximation agree well with
the experimental values reported in Refs. 2 and 6 for ben-
zenediamine and Refs. 3–6 for benzenedithiol, as indicated
by the gray boxes in Fig. 2 (left, middle). In contrast, DFT
and Hartree-Fock calculations, respectively, overestimate and
underestimate the experimental conductances by factors of

TABLE II. Calculated conductance in units of G0 for the three
junctions shown in Fig. 2. The last two rows refer to non-self-
consistent GW calculations based on the DFT-PBE or Hartree-Fock
Green function, respectively.

Method BDA BDT + H BDT

DFT-PBE 2.1 × 10−2 5.4 × 10−2 2.8 × 10−1

HF 4.0 × 10−4 2.7 × 10−3 5.7 × 10−1

GW 4.2 × 10−3 1.0 × 10−2 8.3 × 10−1

G0W0(PBE) 8.0 × 10−3 1.6 × 10−2 7.5 × 10−1

G0W0(HF) 2.2 × 10−3 9.8 × 10−3 8.7 × 10−1

5–10. Our DFT result for the BDA junction is in good
agreement with previous calculations.23,53

It is striking that the conductance of the “classical” BDT
junction shown in Fig. 2 (right) is predicted by all three
methods to be significantly higher than the experimental value.
[We obtain the same high conductances for the BDT between
tips, i.e., the structure in Fig. 2 (middle) without hydrogen on
sulfur.] Our DFT conductance for the BDT is in overall good
agreement with the large number of previous calculations for
the same or similar similar structure.71 The high conductance is
clearly due to a strong peak in the transmission function close
to the Fermi level. The peak moves to higher energies when
going from DFT-PBE over GW to Hartree-Fock, opposite to
the trend normally seen for occupied states.

These results suggest that the structures probed in ex-
periments on benzenedithiol junctions involve a chemically
passivated form of the thiolate linker group. As we show in
Sec. III G, the high conductance of BDT is due to unsaturated p

states on the sulfur atoms with energy close to the Fermi level.
In the thiol and SR-Au(I)-SR structures, these states form
bonds to H and the Au adatom, respectively, and are thereby
shifted away from the Fermi level. On the other hand, the
electronic structure and transmission functions of BDT + H
and the SR-Au(I)-SR structure are rather similar, indicating
that the BDT + H can be viewed as a simple model of the
more complex SR-Au(I)-SR structure.

It should of course be kept in mind that experiments
are performed in solution and at room temperature and are
subject to variations in the detailed atomic structure. Thus
the measured conductance values should not be considered
as highly accurate references for theoretical calculations on
idealized junctions.

D. Energy level alignment

In Fig. 3 we show the calculated HOMO and LUMO energy
levels of BDT + H and BDA in the gas phase and in the
junction. All energies have been aligned relative to the vacuum
level. At this point we note that an accurate description of the
vacuum level, i.e., the work function, can in general be difficult
to obtain with an atomic orbital basis.72 However, by using
more diffuse basis functions (and noting that an energy shift
of 0.01 eV has been used for all Au basis functions throughout
this work58) we obtain a work function for Au(111) of 5.4 eV,
in good agreement with the experimental value of 5.31 eV.73

At the position of the molecule, i.e., in the region between
the two tips, the electrostatic potential from a calculation
where the molecule has been removed converges to a constant
value of 4.9 eV above the metal Fermi level. This value has
been used as reference for the vacuum level in Fig. 3. In the
junction where the levels are broadened due to hybridization
with the metal states, the level positions have been defined
as the first moment of the projected density of states of the
relevant molecular orbital, Im〈ψn|Gr (E)|ψn〉. Here the |ψn〉
are obtained by diagonalizing the Kohn-Sham Hamiltonian
within the molecular subspace.

The orbital energies obtained from a GW calculation
include the dynamical response of the electron system to
the added electron or hole via the correlation part of the
self-energy. In general, the correlations will shift the occupied
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FIG. 3. (Color online) Top panel: The change in the HOMO-
LUMO gap as the molecules are brought from the gas phase into the
junction. Bottom panel: The energy of the HOMO and LUMO levels
(relative to vacuum) in the gas phase and in the junction. The left and
right set of levels correspond to BDT + H and BDA, respectively.
The calculated work function of the gold junction (with tips) in the
absence of a molecule is � = 4.9 eV as indicated.

levels up and the empty levels down relative to the bare
Hartree-Fock energies. When a molecule is brought from
the gas phase into a junction the electronic character of
its environment changes from insulating to metallic. The
enhanced screening should thus cause the gap to shrink
(neglecting shifts due to hybridization) as compared to its
gas-phase value. However, it has recently been shown for
molecules weakly bonded to a metal surface that this effect is
completely missing in effective single-particle theories based
on a (semi)local description of correlations.49,50

As a result, in our DFT and Hartree-Fock calculations, the
change in the frontier orbital energies induced by the coupling
to gold is completely governed by the effect of hybridization,
which tends to open the gap by 0.7 eV for both molecules
(see top panel of Fig. 3). In contrast, the GW gap is reduced
by 1 eV due to the enhanced screening in the contact. Since
the hybridization shift is of course also present in the GW
calculation, we conclude that the enhanced screening due to
the metal contacts reduces the HOMO-LUMO gap by 1.7 eV.

Note that we refrain from using the term “image charge
effect” to describe the renormalization of molecular orbitals.
This term is appropriate only for weakly coupled molecules.
For intermediate or strongly coupled molecules, there is no
clear distinction between metal states and molecular states,
and the screening is more appropriately described as dynamical
charge transfer.51

From Fig. 3 it follows that the HOMO level of the molecules
in the junction is predicted by DFT-PBE to lie 0.5–0.7 eV

higher than obtained with GW. This agrees well with a recent
study of benzenediamine derivatives on gold (111), which
showed that DFT places the HOMO level about 1 eV too
high compared to photo-emission experiments.74

The fact that the DFT-PBE description of the energy levels
is better for the adsorbed rather than isolated molecules may
be seen as a result of the metallic screening build into the
DFT xc functional via its origin in the homogeneous electron
gas.75 It should also be noted that the error (compared to GW)
of the DFT eigenvalues is significantly larger for the LUMO
than for the HOMO. This is in good agreement with previous
plane-wave calculations for molecule-metal interfaces.50

E. G0W0 calculations

To test the role of self-consistency (in the GW and Hartree
self-energies) we have performed non-self-consistent G0W0

calculations using both the DFT-PBE Green function and the
Hartree-Fock Green function as the initial G0. The results for
the conductance of all systems are summarized in the last
two rows of Table II. We notice that the conductance can
vary by a factor of 3 depending on G0. We also note that the
Hartree-Fock starting point comes closer to the self-consistent
result. This is because the Hartree-Fock Green function is an
overall better approximation to the GW Green function than is
the DFT Green function (see, e.g., the comparison of frontier
orbital energies in Fig. 3). As an example, Fig. 4 shows the
calculated transmission functions for the BDA junction.

For the BDA and BDT + H junctions, G0W0[PBE] over-
estimates the conductance while G0W0[HF] underestimates
the conductance relative to GW. This can be understood
as follows: Since DFT-PBE (Hartree-Fock) underestimates
(overestimates) the HOMO-LUMO gap, the use of these
Green functions to evaluate the GW self-energy will lead
to an overestimation (underestimation) of the screening. As
discussed above, the screening contained in the correlation
part of the GW self-energy tends to reduce the HOMO-LUMO
gap. This reduction of the gap is thus overestimated in the
G0W0[PBE] calculation and underestimated in the G0W0[HF]
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FIG. 4. (Color online) Transmission functions for the BDA
junction calculated with self-consistent GW and non-self-consistent
G0W0 using either the Hartree-Fock or the DFT-PBE Green functions
as input.
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calculation, which explains the trends in conductance, i.e.,
more screening → smaller gap → higher conductance.

The G0W0 results for the strongly coupled BDT junction
show less variation. This is perhaps surprising given the
large difference between the DFT-PBE and Hartree-Fock
results shown in Fig. 2. However, DFT-PBE and Hartree-Fock
give almost equal density of states at the Fermi level (the
transmission functions at the Fermi energy are also rather
similar) and therefore the screening contribution obtained with
the two choices for G0 is also very similar.

F. Scissors operator

In this section we investigate to what extent the GW
transmission function can be reproduced by a DFT calculation
where the occupied and unoccupied molecular levels have been
shifted rigidly to match the GW energies. This is illustrated by
applying a scissors operator (SO) to the Au-BDA-Au junction
shown in Fig. 2 (left). After shifting the molecular levels we
perform a non-self-consistent calculation of the transmission
function. A similar procedure has previously been successfully
used to include image charge effects and correct for self-
interaction errors in DFT-transport calculations.23,53,54 We
refer the reader to Ref. 23 for more details on the SO technique
applied here.

In Fig. 5 we show contour plots of the DFT conductance
for the BDA junction where the shift of the occupied
and unoccupied molecular orbital energies has been varied
independently over 4 eV. The three values for the contour
lines shown correspond to the conductance obtained with

FIG. 5. (Color online) DFT conductance of the Au-BDA-Au
junction for different shifts of the occupied and unoccupied molecular
orbital energies. The three isocontours with values of 4.2 × 10−3,
6.4 × 10−3, and 2.1 × 10−2 in units of G0 correspond to the GW,
experimental, and DFT conductance values, respectively. The dot
indicates the conductance obtained by fitting the DFT HOMO and
LUMO level positions to the corresponding GW level positions. Inset:
Transmission function calculated with GW (green) and DFT + SO
(red). The SO shifts are −0.6 eV and 3.8 eV for the occupied and
unoccupied molecular orbitals, respectively, which makes the HOMO
and LUMO energies of the DFT calculation coincide with the GW
energies.

GW (0.0042G0), the experimental conductance (0.0064G0),
and the DFT conductance (0.021G0), respectively. The dot
indicates the energy shifts which make the HOMO and LUMO
levels of the DFT calculation match the corresponding levels
of the GW calculation; the required SO shifts are −0.6 and
3.8 eV for the occupied and unoccupied molecular orbitals,
respectively. Shifting the levels by this amount reduces the
DFT conductance by a factor of 3 from 0.02G0 to 0.0072G0.
Interestingly, the GW conductance is not reproduced by these
shifts; it is even lower by a factor of 1.5. In fact, to reproduce
the GW conductance a shift of about −1.3 eV of the DFT
HOMO is required (keeping the LUMO position fixed at the
GW position). This shows that while the renormalization of
the molecular level energies can explain the main part of
the difference between the DFT and GW conductance, the
different shape of the transmission resonances also plays a role.
This is clear from the inset, which shows the GW transmission
function (green) and the DFT transmission with SO chosen to
match the GW HOMO and LUMO levels (the dot in the main
figure). The lower conductance obtained with GW is seen to
be a consequence of a faster decay of the HOMO resonance
toward the Fermi level. This difference comes from the energy
dependence of the GW self-energy.

G. Thiol versus thiolate structures

In Fig. 6 we compare the DFT transmission functions for
(a) the “classical” structure of benzenedithiolate [structure in
Fig. 2 (right)], (b) benzenedithiol between tips on Au(111)
[structure in Fig. 2 (middle)], and (c) benzenedithiolate in
a SR-Au(I)-SR molecular unit form [structure 2 of Fig. 1
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FIG. 6. (Color online) DFT-PBE transmission functions for three
different structures of the Au-BDT-Au junction: (a) the “classical”
benzenedithiolate, (b) benzenedithiol, and (c) the SR-Au(I)-SR
complex (with two benzene molecules replaced by CH3 units for
simplicity). The transmission function of (b) and (c) are rather similar
while that of (a) shows a peak close to the Fermi level.
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FIG. 7. (Color online) Projected density of states for the
HOMO-1 of the C6H4 moeity and its group orbital (sulfur p orbital).
These orbitals essentially determine the transmission function around
the Fermi energy for all the three structures. It should be noticed that
for structure (a) (the “classical” BDT structure) the sulfur p orbital has
a peak in the PDOS just below the Fermi level which is responsible for
the high conductance. In (b) and (c) the sulfur is chemically passivated
and the PDOS of the p orbital splits into bonding and antibonding
states at ±3 eV, thereby lowering the conductance.

in Ref. 15]. The conductance (essentially the transmission
function at the Fermi energy) obtained for structures (b) and
(c) is very similar but markedly different from that in (a).
The high conductance of the structure (a) is due to the strong
transmission resonance lying just below the Fermi level. This
resonance has also been found in many previous studies and
seems to be a characteristic and robust feature of this junction.
As shown in this work this transmission resonance is also
present in GW and Hartree-Fock calculations. In contrast, for
both structure (b) and (c) the transmission function is rather
flat in an energy window of ±1 eV around the Fermi level.

To examine the origin of the different transmission func-
tions we found it useful to consider the molecular orbitals of
the C6H4 moiety of the three molecules. By diagonalizing the
(Kohn-Sham) Hamiltonian of this part of the molecules we
found that the orbital depicted to the left in the upper panel of
Fig. 7, which constitutes the HOMO-1 of the C6H4 moiety, is
responsible for all the structure in the transmission functions
below the Fermi level. Note that the orbitals obtained in this
way are different from the HOMO and LUMO levels shown in
Fig. 3, which were obtained by diagonalizing the Hamiltonian
for the entire molecules including the SH and NH2 end groups.

The different panels of Fig. 7 show the projected density
of states (PDOS) of the HOMO-1 for the three structures
together with the PDOS of the sulfur p orbital to which
the HOMO-1 couples. Within the Newns-Anderson model,76

the sulfur p orbital is the so-called group orbital. Note
that the PDOS of the p orbital has been calculated in the
absence of coupling to the HOMO-1, as it should in the
Newns-Anderson model. The transmission function is then
essentially the product of the PDOS of the HOMO-1 and the
PDOS of the group orbital.77 It is clear that the origin of the
(double) transmission peak around −1 eV for structure (a) is

due to a resonance formed by the HOMO-1 and the sulfur
p orbital. The chemical passivation of sulfur, by either
hydrogen or the Au adatom, implies that the PDOS of the
p orbital splits into bonding and antibonding states around −3
and 3 eV, respectively. This in turn shifts the PDOS of the
HOMO-1 downward in energy. In particular, its magnitude
around the Fermi level is lowered and as a consequence the
transmission function (being essentially the product of the two
curves) is suppressed in a broad energy window around EF .
Thus chemical passivation of the sulfur is the main reason for
the lower conductance observed in structures (b) and (c) as
compared to (a). A secondary effect, giving rise to differences
in the transmission of structures (b) and (c) is the different
interface dipoles, which shift the electrostatic potential at the
C6H4 moiety by different amounts. This shift, however, has
little influence on the conductance due to the flatness of the
transmission functions around EF .

To verify this scenario, we have applied a scissors operator
of 1 eV to the C6H4 moiety of structure (b) in order to align
the on-site energy of the HOMO-1 to that of structure (c). The
resulting transmission function (not shown) is very similar to
that of (c) and the conductance is 3.5 × 10−2G0, compared to
3.3 × 10−2G0 obtained for structure (c). On the other hand,
the conductance of BDT cannot be brought below 0.1G0 by
sifting the levels of the C6H4 moiety downward (by up to 2 eV)
because of the strong peak around −1 eV due to the sulfur p

orbital.
Although the above picture is based on the DFT electronic

structure, the qualitative similarities of the DFT and GW
transmission functions in Fig. 2 implies that the same picture
applies to the GW calculations.

IV. SUMMARY

We have presented a first-principles method for model-
ing quantum transport in molecular nanostructures beyond
the single-particle approximation. The method is based on
nonequilibrium Green functions and applies to the general
case of a finite bias voltage, but in this work we focused on
the zero-bias regime. The conductance of benzenedithiolate,
benzenedithiol, and benzenediamine was calculated using the
self-consistent GW approximation. In contrast to standard
DFT and Hartree-Fock methods, the GW approximation was
found to yield consistently accurate values for the energy levels
of both isolated and contacted molecules due to its proper treat-
ment of self-interaction and dynamical screening. In general,
results obtained with GW for the electronic conductance and
energy gaps of contacted molecules lie in between the values
obtained with DFT and Hartree-Fock. The latter methods,
respectively, overestimate and underestimate the screening
and neither can detect the change in the molecule’s electronic
environment when it is coupled to electrodes.

Non-self-consistent G0W0 calculations were found to yield
conductance values within 50% of the GW results depending
on the initial G0. It was shown that the main difference between
the GW and DFT calculations comes from the renormalization
of the position of the molecular energy levels. However,
changes in the shape of transmission resonances, and thus
the conductance, also occur due to the energy dependence of
the GW self-energy.
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The GW conductance of benzenediamine was found to be
in good agreement with experiments. For benzenedithiolate
between Au(111) surfaces we found a conductance well
above 0.1G0 and thus conclude that this structure cannot be
responsible for the measured conductance around 0.01G0. On
the other hand, a conductance close to this value was found
for a hydrogenated benzenedithiol junction, which, as we
demonstrated, represents a reasonable model of more complex
gold-thiolate structures where the chemical passivation of
sulfur is provided by a gold adatom rather than hydrogen.
These gold-thiolate structures are presently too demanding for
our self-consistent GW method; however, our results suggest
that such structures are responsible for the 0.01G0 conductance
reported experimentally.

In conclusion, we showed that a consistent and quanti-
tatively accurate description of energy level alignment and
charge transport in phase-coherent molecular conductors can
be obtained from first principles when exchange and correla-
tion is treated at the level of the GW approximation. We believe
this development is important for increasing the synergy
between theory and experiments in molecular electronics,
which is essential for continued progress in the field.
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APPENDIX A: THE GW SELF-ENERGY

Let U denote the rotation matrix that diagonalizes the
pair orbital overlap Sij,kl = 〈nij |nkl〉, i.e., U †SU = σI . The
columns of U are truncated to those which have corresponding
eigenvalues σq > 10−5a−3

0 . We then only calculate the reduced
number of Coulomb elements

vqq ′ = 〈nq | 1

|r − r′| |nq ′ 〉, (A1)

where nq(r) are the optimized pair orbitals,

nq(r) =
∑
ij

nij (r)Uij,q/
√

σq, (A2)

which are mutually orthonormal, i.e., 〈nq |nq ′ 〉 = δqq ′ .
The determination of the GW self-energy proceeds by

calculating first the lesser and greater components of the
polarization matrix in the time domain:

P <
ij,kl(t) = 2iG<

ik(t)G>
jl(t)

∗, (A3)

P >
ij,kl(t) = P <

ji,lk(t)∗. (A4)

where the factor 2 accounts for spin and we have used
G>

lj (−t) = −G>
jl(t)

∗. This is then downfolded to the reduced
representation

P
<>

qq ′ =
∑
ij,kl

√
σqU

∗
ij,qP

<>

ij,klUkl,q ′
√

σq ′ . (A5)

The screened interaction can be determined from the lesser
and greater polarization matrices, and the static interaction
vqq ′ , via the relations

P r (t) = θ (t)[P >(t) − P <(t)], (A6)

Wr (ω) = [I − vP r (ω)]−1v, (A7)

W>(ω) = Wr (ω)P >(ω)Wr (ω)†, (A8)

W<(ω) = W>(ω) − Wr (ω) + Wr (ω)†, (A9)

where all quantities are matrices in the optimized pair orbital
basis and matrix multiplication is implied. We obtain the
screened interaction in the original orbital basis from

W
<>

ij,kl(ω) ≈
∑
qq ′

Uij,q
√

σqW
<>

qq ′ (ω)
√

σq ′U ∗
kl,q ′ , (A10)

which is an approximation due to the truncation of the columns
of U . Finally, the GW self-energy can be determined from

�
<>

GW,ij (t) = i
∑
kl

G
<>

kl (t)W
<>

ik,j l(t), (A11)

�r
GW(t) = θ (t)[�>

GW(t) − �<
GW(t)] + δ(t)�x. (A12)

The exchange and Hartree potentials are given by

�x,ij = i
∑
kl

vik,j lG
<
kl(t = 0), (A13)

VH,ij = −2i
∑
kl

vij,klG
<
kl(t = 0). (A14)

The latter equals the first term in Eq. (7).
In equilibrium the lesser and greater Green functions are

obtained from

G<(E) = −f (E − μ)[Gr (E) − Gr (E)†], (A15)

G>(E) = (1 − f (E − μ))[Gr (E) − Gr (E)†], (A16)

where f is the Fermi-Dirac distribution function. For self-
consistent calculations, Eqs. (A3)–(A16) are iterated until
convergence in G.
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FIG. 8. (Color online) Transmission function for the BDA junc-
tion calculated at the G0W0(PBE) level and with a minimal single-zeta
basis set. The three curves correspond to different numbers of gold
atoms in the extended molecule region.
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APPENDIX B: SIZE OF THE EXTENDED MOLECULE

As explained in Sec. II A the GW self-energy of the
molecule has contributions from screening diagrams extending
into the electrodes. This is included by calculating P and
W for the extended molecule, which includes the Au atoms
closest to the molecule. In Fig. 8 we show the dependence of
the transmission function on the size of the extended region.
The latter has been varied from zero Au atoms (in which
the extended molecule coincides with the molecule), to the
Au tip atoms, to the four-atom Au pyramids on each side

of the molecule. From this we conclude that it is sufficient to
include polarization diagrams for the Au tip atoms as was done
for the calculations presented in the main text. We mention
that, for simplicity, the calculations shown in Fig. 8 have
been performed at the G0W0(PBE) level and using a minimal
single-zeta basis set. However, the conclusions regarding the
convergence of the GW self-energy with respect to the size
of the extended molecule should be equally valid for the case
of self-consistent GW with the DZ-DZP basis set used for all
calculations in the main text.
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