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Exotic paired phases in ladders with spin-dependent hopping
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Fermions in two dimensions, when subject to anisotropic spin-dependent hopping, can potentially give rise
to unusual paired states in unpolarized mixtures that can behave as non-Fermi liquids. One possibility is a
fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a
“Cooper-pair Bose-metal” phase would be expected to have a singular Bose surface in momentum space. As
demonstrated in the context of two-dimensional bosons hopping with a frustrating ring-exchange interaction,
an analogous Bose-metal phase has a set of quasi-one-dimensional descendant states when put on a ladder
geometry. Here we present a density matrix renormalization group study of the attractive Hubbard model with
spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along
the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence
of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further
explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength,
finding a conventional superfluid phase as well as a phase of paired Cooper pairs with d-wave symmetry, similar
to the one found in models of hard-core bosons with ring exchange. We argue that simulating this model with
cold Fermi gases on spin-dependent optical lattices is a promising direction for realizing exotic quantum states.
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I. INTRODUCTION

The quest for exotic phases of matter of quantum origin
is one of the most exciting topics in modern condensed
matter physics. Very recently, the extraordinary progress in
experiments with cold atomic gases has motivated efforts
toward realizing artificial Hamiltonians in a laboratory, under
controlled experimental conditions.1 These Hamiltonians—
close realizations of paradigmatic models such as the Bose-
Hubbard model2–4—could, in turn, display very rich physics
that may or may not be present in actual condensed matter
systems. The ability to tune the interactions and hopping
parameters, even complex ring-exchange terms5 or artificial
vector potentials,6 allows for an unprecedented freedom to
explore new uncharted territory.

A very interesting avenue to explore is the realization of
non-Fermi liquids. One possibility is a state formed by bosonic
Cooper pairs that cannot condense due to the presence of
frustration. The bosons would then behave as a “normal” fluid
instead of a superfluid. Realizing and understanding such a
state could help to shed light on fundamental aspects of the
physics of pairing. Recently, in a series of papers,7–9 one of
the authors and collaborators proposed a “d-wave correlated
Bose metal” (DBM) state in terms of bosons. This itinerant
uncondensed state is constructed by writing a boson in terms
of fermionic partons with anisotropic Fermi surfaces. In this
paper we propose realizing such a DBM state in an optical
lattice, but using real fermions as the constituents of the fluid.

In a previous paper,10 we suggested a setup to access
unconventional paired states in ultracold fermionic systems.
Consider an experiment with two fermionic hyperfine states
(↑,↓) that move on a square lattice. We use spin-dependent
optical lattices to tune the hoppings such that one species
moves preferentially along the x direction, while the other
moves preferentially along the y direction. We consider for

simplicity a situation in which the respective Fermi surfaces
are rotated by 90◦, but the main ingredient is to have
mismatched Fermi surfaces. When one turns on a short-
range s-wave attractive interaction between the fermions,
Cooper pairs can form. In contrast to the spin-imbalanced
mixtures that can lead to Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconductivity,11–14 in our case we focus on
an unpolarized gas. But due to the mismatch in Fermi
momenta, different pairing solutions are possible. With a
strong attractive interaction, all of the fermions can pair and
condense into a conventional superfluid with zero center-
of-mass momentum. Alternatively, we can realize a gapless
state, similar to the Sarma or breached-paired (BP) state for
polarized mixtures, with coexistence of pairs and unpaired
fermions.15–17

In Ref. 10, we explored the BCS mean-field phase diagram
for such a problem and found that the gapless superfluid is
a stable solution in a wide region of parameter space. But
an even more exotic possibility would be a state in which all
of the fermions are paired into Cooper pairs, but the Cooper
pairs remain in an uncondensed nonsuperfluid phase. This
“Cooper-pair Bose metal” (CPBM) is not accessible in a BCS
mean-field treatment, or any other weak-coupling approach.
Even though there are no a priori arguments to prevent a
CPBM state from occurring, accessing such a phase would
necessarily require a strong-coupling treatment. To this end,
in this work we use the density matrix renormalization group
method18 to explore the phase diagram of the same model on a
two-leg ladder geometry, as a function of density, anisotropy,
and interaction strength.

A. Background

In our previous work,10 we studied the effects of an
attractive interaction in a Fermi mixture with anisotropic
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Fermi surfaces. In particular, we focused on the situation
where the Fermi surfaces of the two spin states are rotated
by 90◦ with respect to one another. The resulting model can
be described by a generalized Hubbard Hamiltonian with
spin-dependent near-neighbor hopping tx,σ , ty,σ . By simply
taking ty↓ = tx↑ = t , tx↓ = ty↑ = αt , we obtain single particle
dispersions

ε↑(kx,ky) = −2t cos (kx) − 2αt cos (ky), (1)

ε↓(kx,ky) = −2αt cos (kx) − 2t cos (ky). (2)

The parameter α, which we take between 0 and 1, determines
the eccentricity of the two Fermi surfaces.

We assumed that the particles interact through a short-range
s-wave potential, which we represent using the attractive
Hubbard model:

H = ∑
k,σ

εσ (k)c†k,σ ck,σ + U
∑
i

ni,↑ni,↓, (3)

where c
†
k,σ creates a fermion with spin σ = ↑,↓ at momen-

tum k, niσ = c
†
iσ ciσ is the local onsite density, and U is the

interaction strength that we take to be negative (attractive).
For a very strong attractive interaction, |U | � t , a state with

zero momentum pairing and a fully gapped Fermi surface is
expected. For smaller U , a zero-momentum paired state with
gapless single fermion excitations, analogous to the Sarma
or BP phase in mass-imbalanced mixtures, could occur.
Alternatively, pairing could occur across the two mismatched
Fermi surfaces, leading to a superfluid state with finite center-
of-mass momentum. The resulting order parameter would be
the same as in the FFLO state with a spatially modulated
condensate at some nonzero wave vector Q.

A more exotic possibility that we suggested is a Cooper-pair
Bose metal, a state in which the fermions are fully paired
with a fermion gap, but the Cooper pairs have nevertheless not
condensed. Rather, the Cooper pairs form a nonsuperfluid Bose
metal. As explained in Ref. 7, our motivation for considering
the CPBM phase was based upon a mapping to an effective
boson model in the |U | � t limit. In addition to the usual
boson hopping term with strength J ∼ αt2/|U |, one obtains a
four-site ring exchange term with strength K ∼ t4/|U |3:

Hring = K
∑

plaquettes

b
†
1b2b

†
3b4 + H.c., (4)

with i = 1,2,3,4 labeling sites taken clockwise around a
square plaquette. Here, bi = ci↑ci↓. Importantly, while J ∼
α vanishes with the anisotropy parameter, the ring term
is independent of α for α → 0. Thus, with large Fermi
surface anisotropy, one expects the ring term to become more
important. In Refs. 7 and 8 it was established that the presence
of such a ring term can lead to the existence of an exotic
unpaired Bose-metal phase, referred to as a d-wave Bose
metal. Extensive numerics were done on the two-leg ladder to
establish this, which were bolstered by a parton construction
wherein the boson was expressed as a product of two fermionic
partons.

Here we are interested in using real fermions as the
constituents of the fluid, and we are interested in whether
they can pair and form an analogous Bose metal, but made of
Cooper pairs. To be specific, in this work we study numerically

a version of this model on a two-leg ladder geometry using the
DMRG method, which is an unbiased technique that allows
one to study large quasi-one-dimensional (1D) systems with
extraordinary accuracy.18 Our main finding is that in a range of
intermediate coupling with |U |/t ∼ 4 we find strong evidence
for the existence of the two-leg ladder descendant of the
Cooper-pair Bose metal.

II. ANISOTROPIC HOPPINGS ON A LADDER GEOMETRY

Throughout we study the Hubbard Hamiltonian

H = −
∑
i,λ,σ

tx,σ (c†i,λ,σ ci+1,λ,σ + H.c.) −
∑
i,σ

ty,σ (c†i,1,σ ci,2,σ

+ H.c.) + U
∑
i,λ

ni,λ,↑ni,λ,↓. (5)

In this expression, c
†
i,λσ (ci+1,λσ ) create (annihilate) a fermion

with spin σ on leg λ, and U quantifies the onsite Coulomb
interaction, which we take to be negative (attractive). In the
rest of this work, we consider tx↑ = ty↓ = 1, tx↓ = ty↑ = α,
defining all energies in units of the hopping tx↑. In the case of
two-leg ladders, the leg index assumes the values λ = 1, 2. We
also define the total fermion density as n = ∑

σ 〈ni,λσ 〉, which
lies in the range 0 to 2. Owing to a particle-hole symmetry
which takes n → 2 − n, without loss of generality we can and
do take n between 0 and 1.

As a reference we consider the noninteracting limit (U = 0)
of this model. We pick a convention to denote what bands are
partially filled, or depleted, as a function of the anisotropy and
filling fraction. The different possibilities for an unpolarized
mixture are depicted in Fig. 1. The three “phases” are labeled
by the number of bands that are partially filled, for each
orientation of the spin (m↑,m↓), where mσ can assume the
values 1 or 2. For instance, (1,1) means that the bonding
bands for both the ↑ and ↓ species are partially filled, while
the antibonding bands are empty. It is important to notice
that the Hamiltonian without interactions and finite anisotropy
0 < α < 1 has a ground state with finite polarization, as shown
in Fig. 1. This is easy to understand, and it is essentially
due to peculiar band structure arising from the geometry we
have considered: a majority of ↑ fermions would gain kinetic
energy, since they have larger hopping along the leg direction.
Therefore, it is natural to expect a ground state with Sz

tot > 0. In
some regimes the polarization is negative: for large anisotropy
(small α), the band for spin ↓ is very flat, and it fills up very
quickly as we increase the number of particles. However, we
are primarily interested in strong enough attractive interaction
to pair all of the fermions into a state with zero polarization.

As is customary in most DMRG calculations, we take open
boundary conditions along the leg direction, which improves
convergence and reduces calculation time.

III. RESULTS

We are interested in establishing and characterizing the
various phases which appear in the model. The parameters in
the model are the hopping anisotropy α, the filling factor n,
and the Hubbard attractive U measured in units of the hopping
strength, t . Since our main goal is to access the Cooper-pair
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FIG. 1. (Color online) Phase diagram for noninteracting (U = 0) fermions with anisotropic hoppings on a ladder geometry, as a function
of anisotropy α and density n. (left) Polarization of the ground state and (right) different “phases” in the unpolarized situation, in terms of the
band fillings.

Bose-metal phase, we focus primarily on the regions of the
U = 0 “phase diagram” in Fig. 1 labeled (2,1), wherein
the up fermion has two partially filled bands and the down
fermion only one. This corresponds to a regime of “extreme”
Fermi surface anisotropy. More specifically, we often report
results for α = 0.3 and n = 0.75. We are then interested in
the accessible phases as the Hubbard U is systematically
increased.

In order to characterize the different phases, we define
several quantities of interest. We define the charge gap as the
sum of the energies required to extract and inject a fermion
into the system. Since our model breaks SU(2) symmetry, we
can define

�+
c = E(N+1,S+ 1

2 ) + E(N−1,S− 1
2 ) − 2E(N,S),

(6)
�−

c = E(N+1,S− 1
2 ) + E(N−1,S+ 1

2 ) − 2E(N,S),

where E(N,S) denotes the ground-state energy in the subspace
with N particles and Sz = S. Since each spin flavor has a
different dispersion, these two quantities are not necessarily
the same. The spin gap is defined as the energy required to flip
a spin. Similarly, we can have

�+
s = E(N,S+1) − E(N,S),

�−
s = E(N,S−1) − E(N,S), (7)

�s = �+
s + �−

s . (8)

We can also define the binding energy as the energy required
to break a pair:

�E = [E(N−2,S) − E(N,S)] − [
E(N−1,S+ 1

2 ) − E(N,S)
]

− [
E(N−1,S− 1

2 ) − E(N,S)
]

= E(N−2,S) + E(N,S) − E(N−1,S+ 1
2 ) − E(N−1,S− 1

2 ). (9)

Here, the first difference corresponds to the energy required
to remove a pair, and the second (third) differences, the
energy required to remove a single spin-up (spin-down)
fermion. If the particles minimize their energy by creating

a bound state, �E is negative, whereas for two indepen-
dent particles �E = 0 in the thermodynamic limit. In the
case where the particles repel each other, this quantity is
positive.

In Fig. 2 we show results for the charge gap as a function
of the attraction U . We show results for the binding energy in
the lower panel of Fig. 2. Figure 3 show results for the spin
gaps as a function of the attraction U .
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FIG. 2. Charge gaps for α = 0.3 and n = 0.75 as defined in the
text, as a function of the attraction U and for different system sizes.
We also show the binding energy in the bottom panel.
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FIG. 3. Spin gaps as defined in the text, for α = 0.3 and n = 0.75,
as a function of the attraction U and for different system sizes.

A. “Metallic” state

We first focus on the values of |U | < 3. Here the charge
gap vanishes in the thermodynamic limit, indicative of gapless
fermion excitations. Moreover, the binding energy �E is very
close to zero, suggesting an unpaired phase. Finally, the spin
gap also appears to vanish for these values of U in the large
system size limit. The gap �+ seems to show a tendency
toward negative values, indicating that this phase may in fact
have a small polarization. These results strongly suggest that
for |U | < 3 the system is in a “metallic” phase that is smoothly
connected to the U = 0 state, except with Luttinger liquid
exponents characterizing the three gapless modes.

B. Paired states

For larger strengths of the attractive interaction, |U | > 3,
there is a tendency for charge and spin gaps to open. Moreover,
the binding energy becomes negative, indicating that all of
the fermions are bound into Cooper pairs. It is natural to
guess that, once the fermions pair, they will “condense” into
a quasi-1D superfluid phase. But, as we now demonstrate,
for intermediate values of U this appears not to be the
case.

To characterize the nature of the paired state it is con-
venient to consider various correlation functions. These are
conveniently constructed from the onsite Cooper-pair creation
and annihilation operators b

†
i = c

†
i↑c

†
i↓ and bi = ci↓ci↑. In the

low-density limit the pairs behave in good approximation
like canonical bosons since [bi,b

†
i ] = 1 − ni ≈ 1. In other

regimes, these would not be canonical bosons, but would give
an indication of the nature of the Cooper-pair excitations in
the system.

Following this observation we define the pair momentum
distribution function (PMDF)

npair(k) = (1/L)
∑
ij

exp[ik(ri − rj )] 〈b†i bj 〉, (10)

and the density structure factor

Dpair(k) = (1/L)
∑
ij

exp[ik(ri − rj )] 〈nbinbj 〉. (11)

Here, the Cooper-pair number operator is defined as nbi =
b
†
i bi = ni↑ni↓.

1. Cooper-pair Bose metal

In two dimensions, the CPBM is defined as being a
fully paired state with a single Fermion charge gap that
is distinct from a conventional superfluid in that the pairs
are uncondensed. Moreover, the pair (Bose) momentum
distribution function is singular (nonanalytic) along a surface
in momentum space (a Bose surface). The two-leg ladder
descendant of the CPBM is likewise fully paired with a
single fermion charge gap and is qualitatively distinct from
a quasi-1D superfluid. Specifically, in a quasi-1D superfluid,
the pair momentum distribution function is only singular
at zero momentum (kx = ky = 0), whereas in the two-leg
ladder CPBM there are finite-momentum singularities at
Bose points, that is, singularities at nonzero kx occurring
for ky = 0, π .

We now present evidence that the CPBM phase exists at
intermediate values of U . Specifically, we focus on |U | = 4.
At this value of U , as is evident from Figs. 2 and 3, there is a
fermion charge gap (both spin and charge are gapped) and the
fermions are bound into pairs as implied by a negative value
for �E.

To distinguish the CPBM from a quasi-1D superfluid,
we next examine the pair momentum distribution function.
Remarkably, as is evident from Fig. 4, the pair momentum
distribution function has singular features at nonzero kx for
ky = 0, π . This is qualitatively different than a quasi-1D
superfluid which only has a singular peak at zero momentum,
as we see below.

We can now proceed to analyze all of the singularities in
both the PMDF and pair structure factor following.8 In both
cases, we can trace the position of the peaks by just looking
at the prediction from the noninteracting band structure.
Consider first the pair momentum distribution function. Due
to the mismatched Fermi surfaces, up fermions and down
fermions cannot pair at zero momentum. Rather, there are
pairing tendencies at finite center-of-mass momentum, Q =
k↑

F − k↓
F , where the Fermi momenta are defined with respect

to the noninteracting dispersion. Specifically, a pair with zero
y-component center of mass, Qy = 0, can be formed by
combining a right-moving up-spin fermion from the bonding
band, with x-momentum k

↑0
F , with a left-moving spin-down

fermion from the bonding band with momentum −k
↓0
F . As

shown in the top panel of Fig. 4, the resultant center-of-mass
momentum Qx = k

↑0
F − k

↓0
F corresponds nicely to the location
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FIG. 4. Pair momentum distribution function and pair density
structure factors for L = 48 and parameters corresponding to the
CPBM phase.

of the peak. Similarly, the peak at center-of-mass momentum
Qy = π results from a right-moving up-spin fermion from the
antibonding band, k↑π

F , “pairing” with a left-moving down-spin
fermion from the bonding band.

It must be emphasized that these singular features that
“know” about the noninteracting Fermi surface are appearing
in the pair correlator despite the fact that all of the fermions
are bound into Cooper pairs and the system has a fermionic
(charge) gap! This most surprising feature is a hallmark
of the Cooper-pair Bose metal. Propagating Cooper pairs
moving through a fluid with a fermion gap are somehow still
sensitive to the underlying Fermi surfaces of the constituent
particles.

In Fig. 5 we show the comparison with this theoretical
prediction for a fixed value of U = −4 and α = 0.3, as a
function of the density n. As the band fillings change, the
Cooper-pair momenta change accordingly. Again, deep in the
CPBM phase, the pairs keep memory of the noninteracting
Fermi surfaces.

In the bottom panel of Fig. 4, we show the pair density
structure factors. Again, there are a number of singular features
in momentum space. Since the fermions are all paired in this
regime, one might anticipate that the density fluctuations of
the up- and down-spin fermions are identical to one another,
and equal to the pair density fluctuations, but this is not
the case. Rather, density fluctuations of the fermions differ,
and both appear to contribute to the pair density structure
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π
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L=32; U=-4; α =0.3

FIG. 5. Position of the singular momenta Qx in the CPBM phase
as a function of the density, for fixed anisotropy α = 0.3 and U = −4.
Results are for a system with L = 32, the same used for determining
the phase diagram. Lines correspond to the prediction from the
noninteracting picture, while symbols are DMRG results. The two
lines correspond to pairing between fermions in different bands
(k↑0

F − k
↓0
F and k

↑π

F − k
↓0
F , respectively).

factor. In the figure we have demarcated various 2kF momenta
constructed from the noninteracting dispersion of the fermions.
Some of the features line up with the singularities remarkably
well.

2. Superfluid

We now look for evidence of the superfluid phase on the
two-leg ladder. Since true condensation is not possible in
a quasi-1D system, care is needed in specifying what we
mean by a superfluid. The natural definition of the two-leg
ladder superfluid is a phase with a gap to all single fermion
excitations with a concomitant spin gap, which has only a
single charge carrying mode. Moreover, one would expect
the pair momentum distribution function to show a large
singular peak at zero x momentum for ky = 0 with smooth
analytic behavior for all kx when ky = π . On the other
hand, a two-dimensional gapless superfluid which has a Fermi
surface with gapless spin carrying excitations coexisting with
a pair condensate, such as the Sarma or BP phase, does not
have a natural descendant on the two-leg ladder. Indeed, the
only simple state on the two-leg ladder with gapless fermion
excitations is the metallic state that is smoothly connected to
the U = 0 state.

To show the evolution to the conventional superfluid out of
the Cooper-pair Bose-metal phase, we can continue to increase
|U |. Figure 6 shows the PMDF for density n = 0.75, and
α = 0.3 for a system of length L = 48 at various different
values of U . As U increases from zero, the noninteracting
curves start developing a two-peaked structure at both ky = 0
and ky = π , with singularities at finite momentum. The
two-peaked structure is maximum near U = −4, where the
system is in the Cooper-pair Bose-metal phase. But for still
larger U somewhere in the region 5 < |U | < 6, the two-peaked
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FIG. 6. (Color online) Pair momentum distribution for α = 0.3,
n = 0.75, and different values of U , showing the transition from metal
to CPBM-like to superfluid at large values of U . (top) Momentum
ky = 0 and (bottom) ky = π . Results are for a ladder of length
L = 48.

structure gradually evolves into a single peak at zero
momentum.

At the largest value, U = −8, we are presumably in the
conventional quasi-1D superfluid. Indeed, the most prominent
feature is a large peak at momentum Q = (0,0), which
continues to grow with increasing U . This is indicative of
a quasicondensate. The pair momentum distribution function
at ky = π , on the other hand, appears to have saturated with
increasing U and shows a rather smooth structure throughout
the momentum space. For bosons moving on a two-leg ladder,
these are the expected signatures of a quasi-1D superfluid (see
Fig. 5 in Ref. 8).

In the thermodynamic limit, one expects that the pair mo-
mentum distribution function would develop a true nonanalytic
singularity at zero momentum in the superfluid phase and
singularities at finite kx for ky = 0,π in the CPBM. In a
finite-size system, these singularities are rounded out, which
makes it difficult to determine the precise location of the
boundary between the superfluid and the CPBM. We can take
as an operational definition for the transition point the value of
U where the pair momentum distribution function at ky = 0
first evolves into a single peak structure centered about kx = 0.

A similar change of behavior is observed in the singularities
of the pair density structure factor (Fig. 7). For small |U |, the
ky = 0 component shows a linear behavior near kx = 0 and
kinks or singularities at finite momentum, which are largest
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FIG. 7. (Color online) Pair density structure factor α = 0.3, n =
0.75, and different values of U , showing the transition from metal to
CPBM-like to superfluid at large values of U .

near U = −4 in the Cooper-pair Bose-metal phase (and also
observed in the DBM phase; compare to Fig. 8 in Ref. 8). For
the largest values of U the density structure factor at ky = 0
has a V shape, being quite smooth away from zero momentum,
as expected in a superfluid.

At ky = π the singular features at U = −4 in the Cooper-
pair Bose metal evolve into rather large peaks with increas-
ing U . The peak height appears to saturate at the largest value
of U and is perhaps becoming smoother. The behavior here is
somewhat puzzling, since a quasi-1D superfluid should have
a pair distribution function at ky = π which is analytic in kx

(see, for example, Fig. 5 in Ref. 8). Ideally, one would try to
obtain data for increasing system size to see if the behavior
in the superfluid regime saturates and smoothens. One would
expect the data at U = −4 in the CPBM to become more
singular in this limit.

3. Pairing of Cooper pairs?

We further explored a wider region of parameter space,
varying both density and hopping anisotropy. Building on
predictions from Refs. 7 and 8, we anticipated the possibility of
a phase of paired Cooper pairs, or paired bosons. The bosonic
ring models indeed display such phases, and bosons can pair
with both s-wave symmetry and d-wave symmetry. A state
with paired Cooper pairs would in turn have a finite binding
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FIG. 8. Finite size study of the binding energy for U = −4 and
n = 0.25. We show results for L = 16, 24, 32 and an extrapolation
to L = ∞: (top) binding energy for fermions and (bottom) binding
energy for pairs.

energy for breaking a pair of Cooper pairs. We can define the
binding energy for bosonic pairs (Cooper pairs) as

�Epair = E(N−4,S) + E(N,S) − 2E(N−2,S). (12)

Figure 8 shows our results for the pair binding energy as a
function of anisotropy α for a fixed value of interaction U =
−4 and density n = 0.25. We find a negative binding energy
for the fermions in the entire range of α, a clear indication
of pairing. The bosonic binding energy is indeed positive
or very small for large α > 0.1, but for large anisotropy
(small α), it dramatically turns negative. This seems to indicate
the presence of a new exotic phase with paired Cooper
pairs.

To characterize this phase, we looked at the PMDF as well
as the pair density structure factor. Figure 9 shows our results
for α = 0.05 and L = 48. By comparing with the prediction
from Ref. 8, we conclude that this profile corresponds to the
d-wave paired state of Cooper pairs. (Compare to their Fig. 14.)
Specifically, since the Cooper pairs are paired, one expects a
gap for the single Cooper pairs. This corresponds to a smooth
pair momentum distribution function, as indeed seen in Fig. 9.
Moreover, at density n = 0.25, the distance between pairs of
Cooper pairs down the ladder is 2/n = 8 sites. One would then
expect that the density structure factor at qy = 0 would show
a singular feature at wave vector 2π/8 = π/4. This singular
feature is indeed prominent in Fig. 9.

We performed a similar analysis of binding energies for
n = 0.75, shown in Fig. 10. For values of anisotropy α > 0.5,
the results correspond to a superfluid phase. At intermediate
values (0.1 < α < 0.5), we found a wildly oscillatory behavior
in the bosonic binding energy, accompanied by strong finite-
size effects. We attribute this behavior to the CPBM phase.
The Cooper-pair structure in this phase is strongly dependent
on the availability of momenta to pair, which varies in finite
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FIG. 9. Pair momentum distribution function and pair density
structure factors for L = 48 and parameters corresponding to d-wave
bosonic pairs.

systems for different system sizes. At small values of α we
found again the d-wave bosonic paired state.

IV. BOSONIZATION

This collection of results can be summarized in the phase
diagram of Fig. 11, as a function of density and anisotropy,
for fixed values of U = −4. The region of stability for the
CPBM phase, roughly in the range 3 < |U | < 5, shrinks
with increasing |U |, leading to a conventional superfluid
with pairing momentum Q = (0,0). At U = −4 it is strik-
ing that the region of the Cooper-pair Bose-metal phase
roughly corresponds to the region where the noninteracting
band structure is in the (2,1) regime. Loosely, this can be
understood via a bosonization analysis that we now briefly
sketch.

We follow very closely Ref. 8, where a detailed analysis was
performed by bosonizing the fermionic partons which were
introduced by decomposing the hard-core boson as b = d1d2.
In that work, the partons were coupled to a U (1) gauge field
that glued them back together. Here we instead can directly
bosonize the “fundamental” fermions, cσ , that enter into the
Hamiltonian. As we see, this leads to the same description of
the DBM phase.

To proceed, when U = 0 we can conveniently linearize the
fermion bands about their respective Fermi momentum, focus-
ing on the slowly varying fields, c

(ky )
σP , where P = R/L= ±
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FIG. 10. Finite-size study of the binding energy for U = −4 and
n = 0.75. We show results for L = 16, 24, 32 and an extrapolation
to L = ∞: (top) binding energy for fermions, and (bottom) binding
energy for pairs. Again, notice the size-dependent oscillatory behavior
in the CPBM region.

corresponds to a right- and left-moving field, σ = ↑,↓ denotes
the spin, and ky = 0, π labels the bonding and antibonding
bands, respectively. We employ bosonization,

c
(ky )
σP = η

(ky )
σ exp

[
i
(
φ

(ky )
σ + Pθ

(ky )
σ

)]
, (13)

where φ,∂xθ are conjugate fields and the η’s are Klein factors.
The noninteracting Lagrangian density can be expressed as

L0 = 1

2π

∑
σ,ky

[
v

(ky )
σ

(
∂xθ

(ky )
σ

)2 + 1

v
(ky )
σ

(
∂τ θ

(ky )
σ

)2
]
. (14)

We now focus initially on the (1,1) case, where only the
two bonding bands are partially filled. In the case of zero
polarization, the Fermi wave vectors satisfy k

(0)
F↑ = k

(0)
F↓. In

0.0 0.2 0.4 0.6 0.8 1.0
n

0.0

0.2

0.4

0.6

0.8

1.0

α

CPBM

Superfluid

d-wave boson pairs

FIG. 11. (Color online) Phase diagram of the Hubbard ladder with
anisotropic hopping α, and length L = 32, U = −4, as a function
of the density and anisotropy. We find a Cooper-pair Bose-metal
(CPBM) phase and a superfluid phase. States of d-wave boson pairs
are found at high density and small α.

the presence of an attractive U , there is then an allowed
momentum-conserving four-fermion interaction in the Cooper
channel,

Hu = −uc
(0)†
R↑ c

(0)†
L↓ c

(0)
R↓c

(0)
L↑ + H.c. (15)

This term can lead to a paired superfluid phase with a spin
gap, as can be seen by bosonization: Hu ∼ −u cos[2(θ (0)

↑ −
θ

(0)
↓ )]. Provided this term is marginally relevant, it grows under

renormalization, and the cosine term can be expanded. This
gaps out the spin mode, θ↑ − θ↓ and leads to a single gapless
mode which describes the quasi-1D superfluid state. It is worth
commenting that, in the presence of a nonzero polarization in
the (1,1) regime, the Cooper channel is no longer momentum
conserving. Nevertheless, nonperturbatively one expects the
attractive Hubbard U to drive the system into a superfluid,
beyond some threshold.

Next consider the (2,1) regime, focusing on the case with
zero polarization, so that the Fermi wave vectors satisfy
k

(0)
F↑ + k

(π)
F↑ = k

(0)
F↓. In the presence of an attractive U , there

are various allowed four-fermion interactions, but the Cooper
channel is not present due to a lack of nesting between the
up- and down-spin Fermi wave vectors. There is, however,
an important momentum-conserving six-fermion term of the
form

Hv = −v6c
(0)†
↑R c

(0)
↑Lc

(π)†
↑R c

(π)
↑Lc

(0)†
↓L c

(0)
↓R + H.c. (16)

Because it is sixth order, this term is irrelevant at weak
coupling (each fermion operator contributes 1/2 to the scaling
dimension, and 3 = 6 × 1/2 is larger than the space-time
dimension) and the system is in a metallic state with three
gapless modes. But at stronger coupling above a threshold
value of U when the forward scattering interactions shift the
scaling dimension of v6, this term can become relevant. The
precise critical value of U where this occurs cannot be accessed
from a weak-coupling analysis. Under bosonization, the v6

term becomes

Hv = −v6 cos[2(θ (0)
↑ + θ

(π)
↑ − θ

(0)
↓ )], (17)

and above the threshold we can expand the cosine term to
obtain a mass term for the combination θM = (θ (0)

↑ + θ
(π)
↑ −

θ
(0)
↓ )/

√
3. In the gauge theory analysis in Ref. 8, just such

a mass term is present due to the long-ranged interactions
mediated by the gauge field. The main difference here is
that the mass term is generated via an instability driven, at
intermediate coupling, by the attractive Hubbard U .

Following Ref. 8, upon integrating out θM , one obtains a
theory of two-coupled harmonic modes, θ1 = (θ (0)

↑ + θ
(π)
↑ +

2θ
(0)
↓ )/

√
6 and θ2 = (θ (0)

↑ − θ
(π)
↑ )/

√
2. As discussed in detail

in Ref. 8, this is the fixed-point description of the DBL (2,1)
phase, which we refer to as the Cooper-pair Bose metal.

To evaluate correlators it is convenient to define new
conjugate fields, φM, φ1, φ2, in the same way. Inverting the
canonical transformation gives

θ
(0/π)
↑ = 1√

6
θ1 ± 1√

2
θ2 + 1√

3
θM, (18)

θ
(0)
↓ =

√
2

3
θ1 − 1√

3
θM, (19)

115104-8



EXOTIC PAIRED PHASES IN LADDERS WITH SPIN- . . . PHYSICAL REVIEW B 83, 115104 (2011)

with identical expressions for the φ’s. Using these, one
can show that the bosonized expressions for the fermion
operators always involve an exponential of φM . Since θM is
massive, the dual field φM fluctuates wildly, and the fermion
correlator decays exponentially (the fermion is gapped).
However, the Cooper-pair creation operators, c

(ky )
↑P c

(0)
↓P ′ , are

independent of φM (since the φM cancels when adding
φ

(ky )
↑ + φ

(0)
↓ ). Since the other five Boson fields θ1,2, φ1,2, θM

are massless, the Cooper-pair correlator exhibits power law
correlations. These are properties of the Cooper-pair Bose
metal.

V. SUMMARY AND DISCUSSION

In this paper we explored the possible phases present
in a model of fermions hopping on a two-leg ladder with
spin-dependent hopping strengths. Our main conclusion is
the presence of an unusual Cooper-pair Bose-metal phase for
intermediate values of the attractive Hubbard U . In this novel
phase, the fermions are fully gapped, but the Cooper-pair
operator is in a gapless state that is qualitatively distinct
from the quasi-1D superfluid.19 In particular, there are two
gapless modes in the Cooper-pair Bose-metal phase, in contrast
to the conventional superfluid, which has only one gapless
mode. Moreover, in the CPBM the Cooper-pair momentum
distribution function shows singularities at ky equal to both
zero and π and at nonzero values of the longitudinal
momentum kx . By contrast, the quasi-1D superfluid has a
Cooper-pair momentum distribution function that is smooth
at ky = π , and at ky = 0 it has a singular peak at the
origin, kx = 0.

In addition to the CPBM at intermediate U and the
superfluid phase at larger values of U , the model studied here
has a stable metallic phase which is continuously connected
to the noninteracting (2,1) phase. In this metallic phase, there
are three gapless modes, just as in the noninteracting limit.
The same occurs in a quasi-1D Larkin-Ovchinnikov (LO)
state, which also has as many gapless modes as the reference
noninteracting limit. Analogs of both the CPBM and the
superfluid are present in the hard-core boson hopping with
ring exchange studied in Ref. 8. Here, the onsite Cooper-pair
operator is playing the role of the boson. But the metallic
phase can exist only in the fermion model studied in this
work.

To distinguish these three phases experimentally would
require measuring both the fermion momentum distribution
function and the Cooper-pair momentum distribution function.
The former could be measured by releasing the atoms from
the trap in the usual way. But to extract the Cooper-pair
momentum distribution function would require a sudden
quench to |U | → ∞ just before releasing the atoms from
the trap.

In the metallic phase, the fermion momentum distribution
function is singular (i.e., nonanalytic), with a Fermi liquid
jump discontinuity in two dimensions and a Luttinger liquid
singularity on the two-leg ladder, whereas this distribution
function is analytic (smooth) in both the CPBM and the
superfluid phase. However, the Cooper-pair momentum dis-
tribution function is singular (i.e., nonanalytic) at ky = 0, π

in both the metallic and CPBM phases, while the superfluid
is smooth at ky = π and has a singular peak at zero mo-
mentum. In a paired Cooper-pair phase, both the fermion
and the Cooper-pair momentum distribution functions are
analytic.

The low dimensionality of the ladder geometry studied here
implies that the singularities in the pair momentum distribution
function can only appear at discrete points in momentum
space. However, in two dimensions we expect7 the Cooper-pair
Bose-metal phase to exhibit a pair momentum distribution
function that is singular along lines or “Bose surfaces” in
momentum space. In contrast, the only way to obtain a true
Bose condensate in two dimensions is by a macroscopic
condensate into a state with a single momentum, or a finite
discrete set of momenta, Q, such as the structures predicted
for FFLO-like condensates.20 Due to the strong frustration in
our model—responsible for the ring-exchange term—we are
inclined to believe that the more likely scenario is the first one,
with uncondensed Cooper pairs. However, an answer to this
question would require an actual strong-coupling study of the
two-dimensional system.

One of the most striking features of our study is the
conclusion that fermions with spin-dependent anisotropic
Fermi surfaces and attractive interactions behave very much
like hard-core bosons with a ring exchange, giving rise
to much of the same physics already observed in these
models.7,8 In the case of hard-core bosons, the wave function
is accurately described by fractionalizing the bosons into two
partons, or fermions with anisotropic Fermi surfaces. However,
these partons are a fictitious construction while our fermions
are real. This implies that “constructing” frustrated boson
systems with, for example, ring-exchange interactions might
be much easier by pairing underlying spinful fermions than
by working directly with bosonic atoms. Indeed, as proposed
in Ref. 10, a cold Fermi gas of Yb atoms21 loaded in a
spin-dependent optical lattice subject to an attractive s-wave
potential22–24 might work just as well as the proposed setup for
generating ring-exchange interactions in a system of hard-core
bosons.5

An alternative setup to realize exotic paired states could
be achieved by using a Fermi mixture with different atomic
species, such as Li and K for instance, with interspecies
Feshbach tunable interactions. This would give one the ability
to make spin-dependent optical lattices since the two atoms
are distinct and so are much easier to independently optically
control than merely distinct hyperfine states of the same atom
(which tend to have similar polarizability and so see a much
more similar optical potential). Moreover, one may only use
an optical lattice for only one of the species, leaving the other
basically free.

If—contrary to our argument—a 2D system of fermions
with spin-dependent hopping indeed undergoes a true Bose
condensation, the condensate could be described by a nodal
structure that would have similar characteristics as the one
for “striped superconductivity” or pair-density wave order.
This type of order, proposed in Refs. 25 and 26 to account
for experimental observations in La2−xBaxCuO4,27 would
actually break rotational symmetry. In Ref. 28 the authors
argue that a thermal melting of the stripe superconducting
state could give rise to 4e superconductivity originating
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from the coupling between condensates with perpendicular
stripe order, similar to the 4e superconductivity we see in
the very anisotropic regime of our ladder model. We point
out that a similar behavior has been predicted to occur in
polarized mixtures.29 At finite temperatures the LO state is
always unstable to a nematic superfluid. Fluctuations can
destroy the superfluid, leading to a state of paired Cooper
pairs.

Finally, we want to point out that we did not consider the
possibility of phase separation in the present study.13,14 Even
though it may in fact occur, as it happens in the BCS mean-field
treatment of the model in two dimensions,10 we suspect that

it only takes place in narrow regions of the phase diagram
separating the different phases, and is not a dominating
feature.
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