
PHYSICAL REVIEW B 83, 113410 (2011)

Hydrodynamic theory of surface excitations of three-dimensional topological insulators
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Edge excitations of a fractional quantum Hall system can be derived as surface excitations of an incompressible
quantum droplet using one-dimensional chiral bosonization. Here we show that an analogous approach can be
developed to characterize surface states of three-dimensional time-reversal invariant topological insulators. The
key ingredient of our theory is the Luther’s multidimensional bosonization construction.
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Topological insulators (TIs) are materials with insulating
bulk and topologically protected metallic edge or surface
states.1–3 Two-dimensional (2D) TIs are also called quantum
spin Hall (QSH) systems. Edge states of QSH systems are
analogous to quantum Hall edge states. However, there is
an important distinction:3,4 edge states of the QH systems
with up and down spins propagate in the same direction,
whereas QSH edge states with opposite directions of spin
counterpropagate. This is the consequence of the time-reversal
invariance of quantum spin Hall effect (QSHE), which is
broken in conventional QH systems. Therefore the former are
called chiral and the latter are called helical edge states.

There are two classes of nontrivial time-reversal invariant
TIs in three dimensions which are called strong and weak.5–7

While weak TIs are layered 2D QSH states (in the sense
that these two systems can be adiabatically coupled to each
other), strong TIs are purely three dimensional. Surface states
of these TIs are massless 2D Dirac fermions. Weak and strong
TIs are distinguished by the number of Dirac cones on the
surface: Strong TIs have an odd number and weak TIs have an
even number of Dirac cones on the surface. Gapless modes of
strong TIs are robust and insensitive to weak interactions and
disorder.

Surface states of three-dimensional time-reversal invariant
TIs are spin filtered, such that 〈�s(−k)〉 = −〈�s(k)〉, which
means that spin density and charge current are coupled (see,
e.g., Ref. 8). This suggests that three-dimensional strong TIs
realize quantum spin Hall effect in every radial direction.
“Radial direction” here means that one considers tomographic
projection of the surface states on a certain direction. This
tomographically projected state in certain cases can be viewed
as a two-dimensional quantum spin Hall system. In this Brief
Report we explicitly show how to construct such mapping
mathematically. In constructing this mapping we assume that
a hydrodynamic theory of the QSHE edges can be developed
in the similar way as for QHE edges.9–11 Several interesting
physical quantities characterizing three-dimensional TIs are
introduced.

It should be made clear that many of the ideas presented
here taken separately are not new. We have only combined
them in a single picture. We also note that this Brief Report is
illustrative rather than rigorous.

A good description of the hydrodynamic theory of the
FQHE edge states can be found in Ref. 12. Here we briefly
mention the main points. Then we modify this theory to
describe surface states of strong topological insulators.

Suppose that the FQHE states are incompressible irrota-
tional liquid without bulk excitations. Then the only low-lying
excitations are the surface deformations of the quantum
droplet. The droplet is confined by a smooth potential well.
The electric field of the potential well will generate a persistent
current along the edge fluctuating part of which is given by

j = σxy[ez,E]h(x), σxy = ν
e2

h
,

where ν is the filling fraction, ez is the unit vector along the
z axis, h(x) is the displacement of the edge from its equilibrium
value, x is the coordinate along the edge.

The one-dimensional density of the edge wave ρ(x) is
related to the displacement of the edge h(x) through ρ(x) =
nh(x), where n = ν eH

hc
is the two-dimensional electron density

in the bulk. Then continuity equation reads

∂th − v∂xh = 0, (1)

where v = c E
H

. This means that the electrons at the edge drift
with the velocity v.

The Hamiltonian (energy) of the edge waves is given by

H = 1

2
e

∫
hρEdx = πv

ν

∫
ρ2dx. (2)

It is easy to quantize this Hamiltonian. Rewriting Eqs. (1) and
(2) in the momentum representation and identifying ρk with the
coordinate variable, one finds that the corresponding canonical
momentum is given by pk = 2πiρ−k/νk (the zero mode with
k = 0 is excluded from the theory due to incompressibility of
the liquid). From the commutation relations [pk,ρk′ ] = iδkk′

one obtains the Kac-Moody algebra for the currents,

[ρk,ρk′] = ν

2π
kδk+k′ . (3)

This theory provides a complete description of low-lying
excitations of the Laughlin state.12

Now we want to employ this theory to QSH systems.
The easiest way to understand QSHE is to consider the case
when spin ŝz is conserved.13 Then one can define two sectors
with spin up and down. Such decomposition is possible even
when spin is not conserved.14 Then one can define the Chern
numbers n↑,↓ for the spin up and down sectors in the usual
manner.15,16 In a time-reversal invariant system the total Chern
number n↑ + n↓ = 0 is zero. However, the difference of the
two Chern numbers in general is not zero and one can define
the spin Chern number according to Cs = 1

2 (n↑ − n↓). Loosely
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speaking, Cs determines the number of gapless edge modes in
the system. It was shown that the edges of a QSH system
with even Cs are localized by disorder, while edges of a QSH
system with odd Cs are robust against small time-reversal
invariant perturbations.17,18 The case n↑ = −n↓ = 1 is the
simplest and to describe edge states of such a system one
needs two uncoupled incompressible liquids ρ1 and ρ2 with the
edge state Hamiltonians (2), which are related by time-reversal
symmetry. Edge excitations travel in opposite directions with
the velocity u = eE/hn. Here the index 1 refers to spin-up
and the index 2 refers to spin-down sectors.

In analogy with the above case, we assume that the low-
lying excitations of a three-dimensional topological insulator
are the surface excitations of two uncoupled incompressible
quantum liquids confined by a potential well, with the
following Hamiltonian:

H =
∫

1

2
ρ0eE

[
h2

1(x,y) + h2
2(x,y)

]
dxdy, (4)

where ρ0 is the density of the electronic liquid, x = (x,y), x

and y are coordinates along the surface. The two-dimensional
density of the surface waves is ρi(x,y) = ρ0hi(x,y), i = 1,2.
Incompressibility of the liquid means that

∫
hi(x,y)dxdy = 0.

It will turn out that after making some assumptions about the
dynamics of the fields hiθ this case corresponds to a strong TI
with a single Dirac cone on the surface.

The essence of Luther’s approach is to consider a D-
dimensional space as a set of one-dimensional “rays.”19–23 Fol-
lowing these ideas, we write the surface state Hamiltonian (4),
as a sum over tomographic projections,

H =
∫
R

dθ

∫
1

2
neE

[
h2

1θ (ξ ) + h2
2θ (ξ )

]
dξ, (5)

integrating over the right hemicircleR = {−π/2 � θ � π/2}.
Here the surface displacement of the tomographically pro-
jected system hθ (ξ ) is defined as

hiθ (ξ ) =
∫ ∞

0

(
kρ0

2π3n

)1/2

dk

∫
cos k(ξ − ξ ′)

× hi(x
′,y ′) dx ′dy ′. (6)

k = |k|k̂,k̂ = (cos θ, sin θ ), ξ = k̂ · x, ξ ′ = k̂ · x′; since the
z coordinate remains intact, we can consider the planes
(ξ,z) which are labeled by θ . We call these planes to-
mographic planes or tomographic projections of the initial
three-dimensional system. n is the two-dimensional density
of the electronic liquid in the tomographic plane, which is
determined from the consistency of the two descriptions. The
electric field of the confining potential well is the same in
both cases.24 It is easily verified that tomographic projections
are also incompressible liquids. Now we make the following
assumption that these tomographic planes are QSH systems.
From the topological band theory we can be sure that this is
correct at least for three values of the parameter θ (see the
discussion at the end of the Brief Report). The fact that this is
correct for all θ will be justified below, because this is the only
assumption that leads to the desired result: a single Dirac cone
on the surface, which will be obtained after fermionization
of the model. Then one finds that excitations have the linear
spectrum ωk = u|k|, where u = eE/hn. Thus one can relate

the unknown parameter of the theory n to the parameters of
the three-dimensional theory.

The choice of the range of θ is not unique and this reflects
the fact that the splitting of the full Hilbert space induced by
the time-reversal operation is not unique. When time-reversal
symmetry is preserved such splitting is necessary to obtain
a nontrivial Chern number of a 2D system, because the
Chern number of the whole Hilbert space vanishes (in three
dimensions one needs to consider certain 2D sections of the
Brillouin zone and further split them using the time-reversal
operation).

One can define Fourier components of hiθ (ξ ):

h̃iθ (k) =
∫

hiθ (ξ )e−ikξ dξ. (7)

Since by our assumption h̃iθ (k) are the edge modes of a QSH
system, they must satisfy the equations of motion (continuity
equations) ∂t h̃1θ (k) = iukh̃1θ (k) and ∂t h̃2θ (k) = −iukh̃2θ (k).

From Eq. (6) one also has h̃1θ (±|k|) =
√

|k|ρ0

2πn
h1(±k). This

finally leads to

∂th1(±k) = ±iu|k|h1(±k), (8)

∂th2(±k) = ∓iu|k|h2(±k) (9)

when k is in the right hemicircle. In the second-quantized
form, Hamiltonian (4) is

HB =
∑
k∈R

u|k|(α†
kαk + β

†
kβk), (10)

where

[αk,α
†
k′ ] = [βk,β

†
k′ ] = δk,k′ , [αk,β

†
k′ ] = 0,

e.g, αk is related to h1(k) through αk = √
ρ0/n|k|h1(−k),

α
†
k = √

ρ0/n|k|h1(k) when k ∈ R. Hamiltonian (10) is half
of the massless Klein-Gordon model, exactly what is needed
to construct a massless two-component Dirac fermion.19 This
is similar to that chiral bosons in one dimension are half of
the ordinary bosons. One can associate the following bosonic
fields with this model:

φ1(θ,k̂ · x) =
(

S

2π2

)1/2 ∫ ∞

0
e−αk/2dk

× (αke
ik(k̂·x) + H.c.) (11)

φ2(θ,k̂ · x) = −
(

S

2π2

)1/2 ∫ ∞

0
e−αk/2dk

× (β†
ke

ik(k̂·x) + H.c.). (12)

α is the cutoff which should be taken to zero at the end; S

is the surface area. These fields do not correspond to any
local observables. However, Luther showed that appropriate
functions of these fields do.

Here we review some of the details of Luther’s construction
for completeness.25 Suppose we have a fermionic Hamiltonian

HF = u
∑

k

a
†
k(�k · �σ )ak. (13)
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This is a Hamiltonian of massless Dirac fermions. It can be
diagonalized by a transformation

U = eiS, S = i
∑

k

π

4
a
†
kV · �σak, (14)

where V = (− sin θ, cos θ ). Fermi operators transform accord-
ing to

a′
k = e−iπV·�σ/4ak. (15)

The diagonal Hamiltonian is

H ′
F =

∑
k

u|k|a′†
k σ̂za

′
k. (16)

The boson representation is given by

ψ(θ,k̂ · x) = e−iπV·�σ/4ψ ′(θ,k̂ · x), (17)

ψ ′(θ,k̂ · x) = 1

2πα

(
exp[φ1(θ,k̂ · x)]

exp[φ2(θ,k̂ · x)]

)
(18)

(the Klein factors necessary to ensure anticommutation re-
lations are omitted for simplicity; for details, see Refs. 19
and 20). The usual Fermi fields are given by

ψ(x) =
∫
R

dθψ(θ,k̂ · x). (19)

Representation (11), (12), (17)–(19) is constructed in such a
way that the correlation functions of free fermionic fields are
correctly reproduced. Note a crucial point that in definition
(19) the integration is only over half of the whole circle. Thus
we see that Hamiltonian (4) together with equations of motion
(8) and (9) [or alternatively Hamiltonian (5) where hiθ (ξ ) are
edge states of a QSH insulator] is equivalent to the massless
Dirac Hamiltonian. This corresponds to a strong TI with a
single Dirac cone on the surface. These calculations confirm
our initial intuition.

There is only one Z2 invariant in two dimensions.26 It can
be defined as Cs mod 2.27 In three dimensions there are four
Z2 invariants.5–7 Three of them are equivalent to invariants
of two-dimensional topological insulators and are defined as
invariants of some sections of the Brillouin zone. The fourth
topological invariant ν0 is purely three dimensional. TIs with
ν0 = 0 are called weak and TIs with ν0 = 1 are called strong.
This invariant determines the number of Kramers degenerate
Dirac points enclosed by the Fermi surface.

In any time-reversal invariant system with spin-orbit
interactions there are two-dimensional Dirac points in the
surface spectrum. Therefore the above considerations should

be clarified. A single Dirac fermion on the surface already
means that the insulator is a strong topological insulator. We
will show this directly and in parallel discuss the relation of
our picture to the conventional theory of topological insulators.
To make connection of this picture with the band topology,
we use the simple argument for counting the topological
invariants due to Roy,28 which is quoted below. For us the
important aspect of this work is how the Z2 invariants of
certain planes in the Brillouin zone, such as px = py , can
be computed.

Let represent the Brillouin zone by a cube {−π �
px,py,pz � π} and the Z2 invariants associated with the
planes px = 0, px = π , py = 0, py = π by ν1,ν̃1,ν2,ν̃2,
respectively. Then the Z2 invariant of the plane px = py equals
ν1 + ν̃2 and the Z2 invariant distinguishing strong topological
insulators from weak topological insulators equals ν0 = ν1 −
ν̃1 = ν2 − ν̃2. Any 3D topological insulator with time-reversal
invariance can be characterized by four invariants, which may
be chosen to be ν1,ν2,ν3, and ν0.

Above we assumed that every tomographic plane supports
QSHE. In fact, it is sufficient to consider only three planes
(then for the rest this would be satisfied automatically). Let
these planes be px = π , py = π , px = py . We will consider
for concreteness the Dirac point (π,π,0) and the surface states
on the (x,y) plane having small 2D momentum k around px =
π ,py = π (the direction of k is given by the angle θ ). In this
case θ = 0 corresponds to the plane py = π , θ = π/2 to the
plane px = π , and θ = π/4 to the plane px = py . Suppose that
Z2 invariant of each of these planes is odd, thus corresponding
to a nontrivial insulator. Then we have ν̃1 = ν̃2 = ν1 + ν̃2 = 1,
which gives ν0 = 1. This corresponds to a strong topological
insulating phase. If there is no such point in the Brillouin zone,
for which all three Z2 invariants are 1, then the insulator is in
the weak topological insulating phase with ν0 = 0 (see also
Fig. 3 in Ref. 29).

In general, it is not possible to define a Z2 invariant of a
plane with arbitrary θ using topological band theory. It seems
that this is possible only for planes such as tan θ = m/n,
where m and n are two coprime integers. In the case we have
considered, all such invariants are equal to 1.

Recently, bosonization approach was applied to topological
insulators also in the Ref. 30, but in a different context. In
passing we also note that surface excitations of certain 3D
topological superconductors31 can be viewed, in every radial
direction, as edge states of a 2D topological superconductor in
the same class. It would be interesting to explore this case as
well.

In summary, we have shown that low-lying excitations of a
strong TI with a single Dirac cone on the surface are the surface
deformations of a droplet of incompressible quantum liquid.
These excitations have very unusual form, however, they have
a simple meaning when one considers tomographic projections
of this liquid (as defined in the text): They are two chiral waves
propagating in opposite directions. Thus, surface excitations
of a strong TI with a single Dirac cone on the surface are the
sum of QSH edge states. However, this is not true for the entire
topological insulator, i.e., a strong TI can not be presented as
a sum of 2D TIs. This Brief Report can be considered as an
another physical illustration of the fact that 3D topological
insulators can be characterized by 2D invariants.
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