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The experimental progress in synthesizing low-dimensional nanostructures where carriers are confined to bent
surfaces has boosted the interest in the theory of quantum mechanics on curved two-dimensional manifolds.
It was recently asserted that constrained electrically charged particles couple to a term linear in A3 M, where
Aj is the transversal component of the electromagnetic vector potential and M is the surface mean curvature,
thereby making a dimensional reduction procedure impracticable in the presence of fields. Here we resolve this
apparent paradox by providing a consistent general framework of the thin-wall quantization procedure. We also
show that the separability of the equation of motions is not endangered by the particular choice of the constraint
imposed on the transversal fluctuations of the wave function, which renders the thin-wall quantization procedure

well-founded. It can be applied without restrictions.

DOI: 10.1103/PhysRevB.83.113406

Introduction. A proper understanding of quantum physics
on surfaces in ordinary three-dimensional (3D) space has
become immediate due to the present drive in constructing
low-dimensional nanostructures such as sheets and tubes that
can be bent into curved, deformable objects such as tori!2
and spirals.>> The current theoretical paradigm relies on a
thin-wall quantization method of the two-dimensional (2D)
manifold introduced by Da Costa.® The quantum motion in
the 2D surface is treated as a limiting case of a particle
in an ordinary 3D space subject to a confining force acting
in the normal direction to its 2D manifold. Because of the
lateral confinement, quantum excitation energies in the normal
direction are raised far beyond those in the tangential direction.
Henceforth the quantum motion in the normal direction can
be safely neglected. On the basis of this, one then deduces
an effective dimensionally reduced Schrodinger equation. The
thin-wall quantization procedure has been widely employed
since.””'* From the experimental point of view, the realization
of an optical analog of the curvature-induced geometric
potential can be taken as empirical evidence for the validity of
Da Costa’s squeezing procedure.'

But in spite of its immediate relevance to constrained
nanosctructures, the thin-wall quantization procedure is still
theoretically debated,'®!” particularly in the presence of
externally applied electric and magnetic field.'® Indeed, it
has been asserted'® that a charged particle of charge Q
couples to a term linear in QA3M with A; the transverse
component of the electromagnetic potential and M the mean
curvature of the 2D manifold. Even more, it was argued
in Ref. 16 that, independent of the size of the charge O,
the essence of the thin-wall quantization procedure, i.e., the
decoupling of the transversal quantum fluctuations from the
motion along the surface, is necessarily undermined when
constraints different from Dirichlet ones are imposed on the
normal quantum degrees of freedom. In this Brief Report, we
resolve this paradoxical situation and show that (i) there is no
coupling between the mean surface curvature and the external
electromagnetic field, independently of the gauge choice'® and
(i) the thin-wall quantization procedure is well founded and
can be safely applied even when non-Dirichlet-type constraints
are considered for the transversal motion of the quantum
particle.
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Schrodinger equation. To derive the thin-wall quantization
in the presence of externally applied electromagnetic field
we follow the procedure of Refs. 16 and 18 and start out
with the Schrédinger equation minimally coupled with the
four-component vector potential in a generic curved three-
dimensional space. Adopting the Einstein summation conven-
tion and tensor covariant and contravariant components, we

have
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where Q is the particle charge, G is the inverse of the metric
tensor G;; and A; are the covariant components of the vector
potential A with the scalar potential defined by V = —A,.
The covariant derivative D; is, as usual, defined as D;v; =
ovj — Ff‘j vk, where v; are the covariant components of a 3D

vector field v and Ff‘j is the affine connection related to the 3D
metric tensor by

Fk—lGWaG-+aG»—an
ij—z jYli A 1Yijl.

The gauge invariance of Eq. (1) can be made explicit!®

by considering the gauge transformations A; — A; + 9d;w,
Ay — Ap+ 0w and ¥ — Yexp(iQw/h) with w a scalar
function. To proceed further, it is useful to define a coordinate
system. As in Refs. 6, 16, and 18 we consider a surface
S with parametric equations r = r(q;,q2). The portion of
the 3D space in the immediate neighborhood of S can be
then parametrized as R(q1,92) = r(q1.¢2) + ¢3N(q1.¢2) with
N (q1,92) the unit vector normal to S. We then find, in
agreement with previous studies,®!'®!® the relations among
G;; and the covariant components of the 2D surface metric
tensor g;; to be

i?j = 17 21
Giz =1,

Gij = gij + lag + (@) 1ijq3 + (aga’)ijq3
Giz=G3; =0 i=12;

where « indicates the Weingarten curvature tensor of the
surface S.%!'8 We recall that the mean curvature M and the
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Gaussian curvature K of the surface S can be related to the
Weingarten curvature tensor by

{ M= Tr;a)
K = Det(a).

Now we can apply the thin-layer procedure introduced by
Da Costa® and take into account the effect of a confining
potential V; (g3), where A is a squeezing parameter that controls
the strength of the confining potential. When A is large, the
total wave function will be localized in a narrow range close
to g3 = 0. This allows one to take the gz — 0 limit in the
covariant derivative appearing in Schrodinger equation Eq. (1).
From the structure of the metric tensor, it is straightforward to
show the following limiting relations for the affine connection
to hold:

lim GVT} = —2M,

q3—0 J
P,

ql_zlino Gy = 8"y

where we introduced yi’;. , the affine connection related to the 2D
surface metric tensor g;;. With this, the effective Schrodinger
equation in the portion of the 3D space close to the surface
Sis

ih [at - iQAO} "

h
. iQA; iQA;
o i)
2 QA5 2 i Oh
I 2 s+ D My,
2m h m m

@

where we left out the confining potential term and defined
the 2D covariant derivatives of the surface metric g;; as
div; = dv; — yl.’jvk where v; now indicates the covariant
components of a generic 2D vector field. In the equation
above, the term M 03y yields a coupling among the transversal
fluctuations of the wave function and the surface curvature.
Similarly, the linear coupling between the A3 component of the
vector potential and the mean curvature of the surface through
the term QM A3 yields an anomalous curvature contribution
to the orbital magnetic moment of the charged particle.'®
Now we show that both these terms vanish by considering
the effective Schrodinger equation for a well-defined surface
wave function. In agreement with Ref. 18, we subsequently
find that for arbitrary gauge, there is no coupling between
an external magnetic field and the curvature of the surface,
independent of the shape of the surface.

In order to find a surface wave function with a definable
surface density probability,® we are led to introduce a new wave
function x(q1,92,¢93) for which in the event of separability
the surface density probability is | x(g1,92)I* [ dg3lxn(g3)I*.
Conservation of the norm requires

—1/2
V(g1,92,93) = [1 +2Mqs + Ka3] " x(91,42.93)-
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In the immediate neighborhood of the surface (g3 — 0) the
original wave function and its corresponding derivatives in the
normal direction are related to the new wave function x by

limq3—>0w =X
limg, 0 93¢ = d3x — Mx
limg, 03¢ = 05 x —2Mdsx +3M*x — K x.

With the relations above, the effective Schrodinger equation
Eq. (2) takes the following form:
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The purely quantum potential o /2% in the equation above
corresponds to the curvature induced geometric potential
originally found by Da Costa.® Apart from that, Eq. (3)
represents the gauge invariant Schrodinger equation minimally
coupled to the four-component vector potential in a curved
three-dimensional space with metric tensor'8

_ gu g2 0
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We therefore obtain a mapping of the original metric tensor
G;; into G;; preserving the gauge invariance. If we now choose
to fix the gauge, the new metric tensor Eq. (4) has to be taken
into account. For instance, by imposing the Lorentz gauge, '
the condition reads

V'AEVH'A”+83A350.

Itis then clear that independent of the electromagnetic gauge, a
quantum charged particle does not couple to the mean surface
curvature and the gauge choice is free of pathologies. This
allows us to apply a gauge transformation to Eq. (3) such as to
cancel A3,'® thereby reaching a separability of the dynamics
along to direction normal to the surface S from the tangential
one.

General action. Next, we reinforce our conclusions by
analyzing in the same spirit of Refs. 16, 19, and 20 a gauge
invariant canonical action for the Schrodinger field in the
embedding space,
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By performing an integration by parts we can separate a
volume integral contribution
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and a total spatial derivative term

n . i QA
/ S [w* (Di_lQh -’)w]. )

By varying Sy alone, we can easily reach the gauge in-
variant Schrodinger equation Eq. (1). It is also clear that
under confinement the volume integral Eq. (6) transforms
to

, i0Ap n? ~. iQAJ
= | —inx* (9, — ——x* (D -
Sv / X (f n )X 2mx< 7
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where we have introduced the covariant derivative D related
to the metric tensor G;; and to conserve the norm we are
considering the rescaled scalar field x. Variation of the
action written above gives precisely the confined Schrédinger
equation of Eq. (3). Since the dynamical Schrodinger equation
comes entirely from a volume contribution, it directly follows
that the total derivative term Eq. (7) acts as a boundary
condition which is stipulated by the vanishing of the three-

dimensional field
N iQA;
4 (Dj - ]> ¥

along the surface 92 of the region of integration. As
pointed out in Ref. 16, this boundary condition is fulfilled
by construction if the wave function v identically vanishes
on dQ2—Dirichlet-type constraints are imposed. This can be
achieved by considering a squeezing potential V;(g3) in the
form of an infinite potential well. This assumption, however,
seems not to be the most physically sound one since under
confinement (g3 — 0) it would break the natural limits set by
the uncertainty principle. That the wave function should vanish
along the surface of integration is too restrictive a condition.
In the confinement procedure, indeed, it is natural to consider
regions of integration that are symmetrical to the 2D manifold
S in the normal direction. Therefore the boundary condition
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reads
!grg) [(W*d39)e — (Y d39)—c] =0, (®)

where we have considered a region of integration with a 2e
width in the normal direction and we have set the transversal
component of the electromagnetic field A3 = 0. By referring
to the rescaled scalar field y, Eq. (8) becomes

lim [(x*dsx = M1xX)e = (x*d3x = MIxI)-c] = 0. 9

This implies that the smoothness of the rescaled wave
function and of its first derivative as they pass through the
curved surface are enough to fulfill the canonical action
boundary condition. With this, other types of squeezing
potentials can also be considered in the thin-wall quantization
scheme. As an example, we can consider a harmonic trap
Vi(g3) = mA*q;/2. Since, after gauge fixing, the variation
of the canonical action leads to the separable Schrodinger
equation Eq. (3), we may write the rescaled wave function as

1/4
x(q1,92.93) = x1(q1,92) % (’:—2) e~ Mai - (10)
which readily satisfies Eq. (9). It is worth noticing that the
harmonic trap potential corresponds to the Neumann-type
boundary conditions for which a coupling of the quantum
particle to the mean surface curvature was put forward.'®
Conclusions. Here we have provided a consistent frame-
work of the thin-wall quantization procedure for charged
particles in the presence of externally applied electric and
magnetic field. Contrary to previous claims,'® we have shown
that the mean surface curvature does not couple to the
transversal component of the vector potential, either explicitly
in the effective dimensionally reduced Schrodinger equation'®
or implicitly in the gauge fixing procedure.!” We have also
considered a canonical Schrodinger action and shown that
the thin-wall quantization procedure is not endangered by the
particular constraints imposed on the transverse fluctuations
of the wave function. Therefore Da Costa’s method is well
founded and can be applied without restrictions.
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