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Features of light reflection off metals with destroyed mirror symmetry
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Features of the electromagnetic field induced by the interaction with polar conductors, i.e., conducting crystals
whose symmetry with respect to reflection in a plane perpendicular to some axis (the polar axis) is broken,
is considered. As distinct from conventional, centrosymmetric metals, the constitutive relations of Maxwell’s
equations in such materials (which relate the electric current and the magnetization to the electric and the magnetic
field) are modified to include cross terms which relate the magnetization to the electric field and the electric
current to the magnetic field. It is found that due to the cross terms (i) the reflection of light depends on the sign
of the product n · c, where n is the normal to the surface of the metal and c is the direction of the polar axis, i.e.,
depends upon the polar-axes direction, and (ii) in the general case the electromagnetic wave in such materials
should have a longitudinal component.
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It is well known that the lack of central symmetry of crystals
and molecules (in solutions or gases) may have unusual
effects on their macroscopic properties. A most remarkable
example is the phenomenon of optical activity when right- and
left-handed circular polarized light waves propagate through
active media at slightly different speeds (for a review see,
e.g., Ref. 1). It is the purpose of this Brief Report to consider
optical properties of another class of materials with destroyed
space parity—conductors of polar symmetry. The doped A2B6

semiconductor CdS of the wurtzite structure (space group C4
6v)

apparently was the first conducting medium of polar symmetry
whose electromagnetic properties were investigated.2 At the
present time, quite a number of metals, whose symmetry
group includes a polar axis, is known. These are, for example,
Mo3AlC (space P 4132, Mo3P (space group I 4̄),3 and ternary
intermetallic silicides of the general formula RT Si3 (space
group I4mm), where R represents rare-earth metals and
T represents transition metals.4 The main feature of polar
conductors, which for the first time has been revealed by the
study of CdS, consists of a peculiar form of their electron
spectrum. Because from the symmetry viewpoint the existence
of a polar axis is equivalent to the constant electric field, the
electron Hamiltonian acquires a term of spin-orbital origin that
couples the electron’s momentum and spin5

Hso = α(p × c) · σ , (1)

where α is a constant characteristic of the crystal, c is the
unit vector directed along the polar axis, p is the momentum
operator, and σ represents the spin Pauli matrices. Polar metals,
as well as asymmetrical two-dimensional (2D) semiconductor
heterostructures where the spin-orbit coupling of form (1) is
also present, becomes nowadays the focus of intense research:
the bulk metals—since some of them turn into superconductors
with uncommon properties (for a review see, e.g., Ref. 6) and
both the metals and 2D structures—since the band spin-orbit
coupling gives hope to find a way to control the spin dynamics
by means of the electric field only, i.e., without the help of the
magnetic field (for a review see, e.g., Ref. 7).

Searches for uncommon electrodynamic properties of polar
conducting media were initiated by a paper8 where the
magnetoelectric effect (MEE) has been predicted, which states

that if, under the action of an electric field E, the electric current
J ∼ E passes through the system, it induces the spin magne-
tization of the carriers proportional to c × E.9 Afterwards,
the MEE has apparently been experimentally confirmed.10

Another anomalous property of a polar conducting medium
is that the circular polarized electromagnetic wave is capable
to induce in the medium the same effects as a constant
magnetic field: (i) The circular polarized light wave (with
the electric field E) induces a permanent spin magnetization
M ∼ ic (c · E × E ∗) which means the inverse Faraday effect
(IFE),11 and (ii) if the constant electric current J passes through
the system, the circular wave induces the Hall-like current
JH ∼ i(c × J)(c · E × E∗) = M × J, which means the zero-
magnetic-field Hall effect (ZMFH).12 A common trait of the
effects mentioned above is that all of them are consequences
of the electron kinetics modified by the presence of the band
spin-orbit coupling (BSOC) expressed by the Hamiltonian (1).
In other words, they are anomalous responses of the matter to
a given electromagnetic field. From the other hand, it is natural
to expect that the electromagnetic field itself can acquire
peculiar properties due to the interaction with a medium whose
behavior is free from constraints imposed by the invariance
under space reflections. The goal of the present Brief Report
is to reveal such properties in the light reflection off a polar
metal.

Consider the normal incidence of light when the polar
axis is perpendicular to the surface of the metal. As is
known, the standard macroscopic electrodynamics13 supposes
that properties of a conducting medium enter the Maxwell’s
equations

∇ × E = −1

c

∂B
∂t

, (2)

∇ × H = 1

c

∂E
∂t

+ 4π

c
J, (3)

∇ · B = 0, ∇ · E = 4πρ, H = B − 4πM, (4)

where c is the velocity of light, through the so-called
constitutive relations. The relations express the electric current
J and the electron magnetization M through the electric and
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magnetic fields, E and B, in the medium. In polar metals, the
constitutive relations have the form14

M = χB + γ E × c, (5)

J = σE + γ
∂B
∂t

× c. (6)

The presence of the cross terms of this form is a specific
property of a conducting media of polar symmetry;15 two terms
in the right-hand side of the equations have opposite parity
under space inversion. The magnetoelectric susceptibility γ is
a material characteristic additional to the electric conductivity
σ and the magnetic susceptibility χ . Since these equations
satisfy the polar symmetry requirements, they can be viewed
as phenomenological equations. But they can be also derived
microscopically by considering a model electron system with
the Hamiltonian H = H0 + Hso + Himp, where H0 = p2

2m
is

the operator of the kinetic energy of the Fermi gas, Hso is
given by Eq. (1), and the Hamiltonian Himp accounts for the
electron impurity scattering. Then the equations are obtained
as linear responses of the current and the spin magnetization
densities to the electric and magnetic fields. Strictly speaking,
Eqs. (5) and (6) were derived in Ref. 14 for 2D systems. An
analogous analysis of a 3D system with the same Hamiltonian
gives rise to the same equations with

γω = γ

1 − iωτso

, γ = α
(egμB

2π2

)
mpF τ, (7)

where e and μB are the electron charge and the Bohr magneton,
m and g are the effective electron mass and g factor, pF is
the Fermi momentum, τ is the mean electron lifetime, and
τso = 3τ (2αpF τ )−2 is the spin-relaxation time due to impurity
scattering in the presence of the BSOC.16 Note that τso � τ

at small α and short τ . Equation (7) has been written taking
into account the frequency dispersion; in the following, for
the sake of simplicity, we confine ourselves to the case of
low frequencies ωτ � 1, ωτso � 1. We shall also neglect the
magnetic susceptibility χ assuming it very small and treat γ

as being small so that all powers of γ in excess of the first
can be ignored. By excluding the magnetic field Hr, ω from
Maxwell’s equations and neglecting terms quadratic in γ we
obtain the electric field wave equation in the form

∇ × [∇ × Er, ω] − ω2

c2
Er, ω − 4πiω

c2
σ (r)Er, ω

= 4πiω

c
γ (r)[(c × ∇) × Er, ω] + 4πiω

c
∇γ (r) × (Er, ω × c).

(8)

For the metal occupying the homogeneous half space
z � 0, the coordinate dependence of the conductivity and the
magnetoelectric susceptibility is given by(

σ (r)

γ (r)

)
=

(
σ

γ

)
�(−n · r), (9)

where n is the external normal to the surface of the metal and
�(z) is the Heaviside step function. Since

∇γ (r) × (Er, ω × c) = −δ(n · r)[Er, ω(n · c) − c(n · Er, ω)],

(10)

the last term on the right-hand side of Eq. (8) is a surface
term. It is this term which does not turn to zero at the
normal incidence. The wave equation (8) can be solved
following the wave-vector-space method proposed in Ref. 17.
Below, only the logic and results of the application of the
method to polar metals are presented; for details the reader is
referred to the original paper. The Fourier transform of Eq. (8)
is

q2Eω, q − q(q · Eω, q)

−q2
0

[
Eω, q − 4πiσ

ω

∫
dq

′
z

2πi

Eω, q′

qz − q ′
z − i0

]

= − 4πω

c
γ

∫
dq

′
z

2πi

[
(c × q′) × Eω, q′

qz − q ′
z − i0

− n × (Eω, q′ × c)

]
,

(11)

where q′ = (qx,qy,q
′
z). Further, it is assumed that the electric

field can be written as a sum of two functions, Er, ω =
E(+)

r, ω + E(−)
r, ω, one of which, E(+)

r, ω, is responsible for a mode
propagating in the medium while another, E(−)

r, ω, corresponds to
modes propagating in the vacuum. Accordingly, the transform
Eω, q can be written as a sum of two functions, E(+)

ω, q, which
has poles only in the upper half complex q plane, and E(−)

ω, q,
which has poles only in the lower half complex q plane.
Note that only the component qz is a true variable in Eω, q,
qx and qy being fixed by the problem definition. In the case
of the orthogonal incidence E(±)

ω, q = (2π )2δ(qx)δ(qy)E(±)
ω (qz),

where

E(+)
ω (qz) = E0

i

te3

qz − qM − i0
,

E(−)
ω (qz) = −E0

i

[
e1

qz − qV + i0
+ re2

qz + qV + i0

]
. (12)

Here E0 is a given incident electric field amplitude, r is a
reflection coefficient, t is a transmission coefficient, e1,e2, and
e3 are as yet undetermined unit vectors, and positions of the
poles qM and qV are determined by the dispersion relations of
the medium and the vacuum, respectively. It can be directly
verified that the dispersion relation of the medium coincides
with that of an ordinary metal up to perturbations quadratic
in γ so that qM = q0

√
εω,qV = q0, where q0 = ω

c
and εω =

1 + 4πi
ω

σ . The substitution of Eqs. (12) into Eq. (11) gives
rise to the equations

−e1 − re2 + te3 = 0,
(13)

−e1 + re2 + te3[
√

εω − 4πγ (n · c)] = 0,

the solution to which has the form

e1 = e2 = e3,

r ∼=
√

εω − 1√
εω + 1

[
1 − 8πγ

εω − 1
(n · c)

]
,

(14)

t ∼= 2√
εω + 1

[
1 + 4πγ

1 + √
εω

(n · c)

]
.
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Thus despite that the electromagnetic wave propagating
along the polar axis of the infinite metal does not feel (with
the adopted accuracy) the absence of mirror symmetry, it is
sensitive to the orientation of the polar axis in the case of the
half space metal. At higher frequencies when the conditions
ωτ � 1 and ωτso � 1 are not fulfilled, Eqs. (14) remain to
be valid if one replaces σ and γ with the dynamic kinetic
coefficients σω and γω, where σω = σ (1 − iωτ )−1 and γω is
given by Eq. (7).

The evaluation of the light reflection at an arbitrary
angle of incidence is out of the scope of the present Brief
Report. Nevertheless, to show an exceptional character of the
reflection at the normal incidence, we mention here a physical
consequence of the modified Maxwell’s equations that may
play a role at the oblique incidence. Consider a wave in the
bulk. For a single frequency propagation, E,H ∼ exp{−i[ωt −
q · r]}, the Maxwell’s equations with the adopted accuracy
yield

Hω, q = 1

q0
(q + 4πγ q0c) × Eω, q,

(15)

εωEω, q = − 1

q0
(q − 4πγ q0c) × Hω, q.

Thus just as in the case of conventional metal, Eω, q ⊥ Hω, q,
but opposed to that both the fields Eω, q and Hω, q do not have to
be orthogonal to the wave vector q except for the case q‖c, i.e.,
they contain longitudinal components. (Nevertheless, one can
show that the equality q · Bω, q = 0 remains valid.) It follows
from Eqs. (15) that

i

(
q
q0

· Eω, q

)
∼= γ

ω

σ

(
q
q0

)2

(c · Eω, q). (16)

In the coordinate space,

∇ · Er, t
∼= −γ

c

σ
∇2(c · Er,t ). (17)

The nonzero value of the longitudinal component of Eω, q
means that the plane wave should be accompanied by a
perturbation of the electron density, i.e., should induce a
local violation of the electrical neutrality. This anomalous
perturbation does not appear if (c · Er,t ) = 0, in particular,
when the electromagnetic wave propagates along the polar
axes. It should be noticed that the possibility of a P polarized
wave at non-normal incidence to give rise to ∇ · E �= 0 within
a metal is known (see, e.g., Refs. 18). However, in the case of a
conventional metal, it is caused by the presence of the surface
and takes place under the anomalous-skin-effect conditions

on account of the nonlocality (the space dispersion) of the
conductivity tensor. As opposed to that, the induced density
oscillations in the case under consideration are a volume effect
that takes place when the length of the electromagnetic wave
exceeds both the mean free path and the field penetration depth,
and the frequency of the electromagnetic field is less than the
inverse impurity scattering time.

The values of α in the metallic systems mentioned are not
determined yet. For doped CdS crystals with m = 0.2m0 and
g = 1.8, it has been found by means of the spin-flip inelastic
light scattering2 that αpF � 0.3 meV at at the electron density
n = 1.8 × 1018 cm and the mean free time τ � 10−13 sec.
Thus α � 1.3 × 105 cm sec−1. It follows from Eq. (7) that

γ �
(

e2

h̄c

) (
m

m0

) (αpF τ

h̄

) ( g

2π2

)
, (18)

hence γ � 3 × 10−6. To find a reliable way to measure α in
dirty metals is an actual problem.

In summary, we have considered the propagation of
electromagnetic waves in a metal of polar symmetry. In a
particular case of the normal incidence of a wave on the metal
with the surface perpendicular to the polar axes, the problem
of the light reflection has been solved. It has been found that
the wave feels the absence of the mirror symmetry in the metal
in the sense that the coefficients of reflection and transmission
of the wave depend on the scalar product (n · c), where n is
the external normal to the surface of the metal and c is the
polar direction, i.e., they change at c → −c. The effect could
be experimentally detected by comparing the light reflection
off two opposite oriented domains of the crystal. It has been
also found that at an arbitrary direction of the propagation with
respect to the polar axis, the wave cannot be pure transversal,
hence it should be accompanied by a perturbation of the
electron density. The disturbance disappears in the limit of
long wavelength so that the uniform electric field does not
disturb the electron density.

It would be interesting to consider in detail the case of
the light reflection at the oblique incidence that could reveal
additional distinctive features of optics of polar metals. An
account of effects of the space dispersion, which can be
anomalous in crystals with destroyed mirror symmetry subject
to an external magnetic field (see, for example, Refs. 2 and 19),
is also of interest. Solution of these problems could be of
importance for polar superconductors as well.
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