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Photonic analog of a spin-polarized system with Rashba spin-orbit coupling

Vassilios Yannopapas*

Department of Materials Science, University of Patras, GR-26504 Patras, Greece
(Received 24 November 2010; published 10 March 2011)

We show that a gyrotropic (chiral) medium supporting a longitudinal-wave excitation exhibits a Dirac point
in the corresponding photon dispersion lines. By breaking the time-reversal symmetry in such a medium, the
dispersion relation resembles the energy dispersion of a spin-polarized two-dimensional electron gas with Rashba
spin-orbit coupling. The resulting split bands of the dispersion relation correspond to nonzero Chern numbers
implying the existence of nontrivial topological states of the electromagnetic field.
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Photonic crystals (PCs) are man-made structures originally
introduced as the electromagnetic (EM) counterpart of atomic
solids. To this end, PCs with absolute frequency band gaps
have been proposed and realized, mimicking the electronic
band gap of atomic semiconductors.1,2 The analogy between
photonic and atomic semiconductors went further with the
study of deviations from perfect periodicity such as point
and linear defects, interfaces/heterostructures of different
PCs, photonic wells, wires, and dots (cavities).3 Perhaps
the only topic of semiconductor physics which had not
found analogy to the physics of PCs until recently has
been the quantum Hall effect. It was the advent of a new
allotropic form of carbon, graphene,4 which provided the
photonic analog of the quantum Hall effect. Namely, the
presence of a Dirac (conical) singularity in the electronic
band structure of graphene (gapless transition from the
valence to the conduction band) and the opening of the
singularity via time-reversal symmetry (TRS) breaking leads
to chiral edge states in graphene ribbons. These states are
topological electronic states similar to the states emerging
in a two-dimensional (2D) electron gas confined within a
semiconductor heterostructure and under the influence of a
strong magnetic field (integer quantum Hall effect). Adopt-
ing the lattice symmetry of graphene (honeycomb) in the
photonic problem, 2D PCs with honeycomb symmetry were
shown to exhibit a Dirac singularity in the corresponding
photonic band structure. The inclusion of a Faraday term
in either the permittivity or permeability tensor of the unit
cell of the PC leads to TRS breaking and the emergence
of topological states of the EM field5 which allow light
propagation along a sole direction at the edges of a finite slab
of the PC.6

In the anomalous quantum Hall effect, the Hall conductivity
may rise in the absence of an external magnetic field. Namely,
the presence of an exchange field may suffice for breaking
TRS in the spin space. The simultaneous presence of a
strong spin-orbit (SO) coupling introduces a TRS-breaking-
induced band gap in the band structure and the generation
of topological electron states. In this Brief Report, we
present an analogy between the energy spectrum of such an
electron system and the frequency spectrum of a Faraday-
active gyrotropic (chiral) medium exhibiting a strong resonant
behavior within a given frequency window. We show that
such a medium can be realized as a chiral lattice of resonant
spheres.

A spin-polarized 2D electron gas with Rashba SO coupling
in the presence of an exchange field is described by the
following Hamiltonian:7,8

H = h̄2k2

2m
+ λ(�k × �σ ) · ẑ − �σz, (1)

where �σ is the vector of Pauli spin matrices, λ the SO coupling
strength, and � the exchange field. The third term in Eq. (1)
breaks the TRS in spin space rendering the electron gas
ferromagnetic. The TRS breaking in real space is mediated
by the SO coupling [second term of Eq. (1)]. The energy
dispersion relation corresponding to Eq. (1) is given by

ε± = h̄2k2/2m ±
√

λ2k2 + �2. (2)

The above energy dispersion relation, which also holds for the
SO split bands in magnetic semiconductors9 and in graphene
doped with magnetic atoms,10 exhibits an energy gap of
width 2� between the two energy bands (the graph of the
dispersion relation is qualitatively the same as that depicted in
Fig. 1). When the Fermi energy lies within the gap, the Hall
conductivity is resonantly enhanced giving rise to the so-called
anomalous Hall effect. We note that the anomalous Hall effect
is evident even in the absence of an external magnetic field
since the necessary TRS breaking is provided by the (intrinsic)
exchange field [last term of Eq. (1)]. As it will be shown below,
EM modes within a resonant Faraday-active chiral medium are
analogous to the electron states described by Eq. (1).

The photonic analog of the above electron system will
be clear below. We consider an isotropic gyrotropic (chiral)
medium described by a permittivity tensor ε̂(ω). The electric
displacement D(ω,k) is related to the electric field E through11

D = ε̂E + iγ E × k, (3)

where k is the wavevector and γ is the gyrotropic parameter.
The second term of equation (3) describes the spatial dis-
persion of the chiral medium. Because of this term, it is not
necessary to write down the corresponding expression for the
magnetic field H.11,12

In general, the permittivity tensor ε̂ will contain a Faraday
term iη which explicitly breaks TRS;5 i.e.,

ε̂ =

⎛
⎜⎝

ε(ω) 0 iη

0 ε(ω) 0

−iη 0 ε(ω)

⎞
⎟⎠ . (4)

113101-11098-0121/2011/83(11)/113101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.113101


BRIEF REPORTS PHYSICAL REVIEW B 83, 113101 (2011)

0.995

1.000

1.005

1.010

1.015

1.020

-0.2 -0.1 0.0 0.1 0.2

ω
/ω

L

η = 0.001
η = 0

ck/ω
L

FIG. 1. (Color online) Dispersion relation for a gyrotropic
medium with (solid line) and without (dashed line) Faraday
term η.

For plane waves, Maxwell equations yield

D
ε0

= k2c2

ω2
[E − k(k · E)/k2]. (5)

Considering transverse waves (k · E = 0), Eq. (5) becomes

D
ε0

= k2c2

ω2
E. (6)

From Eqs. (3), (4), and (6) we obtain the following homoge-
neous systems of equations:

[ε(ω) − k2c2/ω2]Ex + iγ kzEy + i(η − γ ky)Ez = 0,

−iγ kzEx + [ε(ω) − k2c2/ω2]Ey + iγ kxEz = 0, (7)

−i(η − γ ky)Ex − iγ kxEy + [ε(ω) − k2c2/ω2]Ez = 0.

For nontrivial solutions for the unknowns Ex,Ey,Ez, the
corresponding determinant of Eqs. (7) must vanish; i.e.,∣∣∣∣∣∣∣
[ε(ω) − k2c2/ω2] iγ kz i(η − γ ky)

−iγ kz [ε(ω) − k2c2/ω2] iγ kx

−i(η − γ ky) −iγ kx [ε(ω) − k2c2/ω2]

∣∣∣∣∣∣∣
= 0

(8)

Eq. (8) yields the following dispersion relations:

ε(ω) = k2c2/ω2 (9)

and

[ε(ω) − k2c2]2 − γ 2
(
k2
x + k2

z

) + (η − γ ky)2 = 0. (10)

Obviously, Eq. (9) is a dispersion relation describing wave
propagation in an isotropic homogeneous medium (no chirality
or time-reversal symmetry breaking is present) and, as such,
it will not concern us here. Since our system is effectively
two-dimensional, we may set ky = 0 in Eq. (10) and obtain a
simpler dispersion relation:

ω2 = c2k2

ε(ω) ±
√

η2 + γ 2k2
(11)

with k2 = k2
x + k2

z . Solving for k we obtain

k2
± = ω{2c2ε(ω) + γ 2ω2 ±

√
4c4η2 +γ 2ω2[4c2ε(ω) + γ 2ω2]}√

2c2
.

(12)

We consider a gyrotropic medium where the diagonal ele-
ment ε of the permittivity tensor supports a longitudinal mode
at frequency ωL; i.e., ε(ωL) = 0. Such types of permittivity
are offered by the lossless Drude model,

ε(ω) = 1 − ω2
p

ω2
, (13)

or the single-oscillator model, i.e.,

ε(ω) = εb

(
ω2 − ω2

L

ω2
L − ω2

T

)
. (14)

In the vicinity of ωL the permittivity can be written as

ε(ω) � DL(ω − ωL). (15)

Substituting Eq. (15) in Eq. (12) we obtain the graph of the
dispersion relation (see Fig. 1) which refers to a gyrotropic
medium with γωL/c = 0.1, η = 0.001, and DLωL = 1/2
(solid lines). The broken lines refer to a gyrotropic medium
with TRS, i.e., η = 0, and, as can be seen, the dispersion
relation exhibits a Dirac point at ω = ωL. The inclusion of the
off-diagonal Faraday terms in the permittivity tensor breaks
TRS and a frequency gap is formed. The dispersion relation
of Eq. (11) depicted in Fig. 1 is analogous to that of Eq. (2).
Also, an analogy can be seen between the Hamiltonian of
Eq. (1) and the constitutive relations of the EM field, namely
Eqs. (3) and (4). The diagonal part of the permittivity tensor
of Eq. (4) describes free-space propagation similarly to the
term h̄2k2/2m of Eq. (1). The term iγ E × k describing spatial
dispersion is analogous to the SO coupling term λ(�k × �σ ) · ẑ
while the off-diagonal Faraday term iη of the permittivity
tensor is the EM counterpart of the exchange-field term �σz.
We note that an analogy has been experimentally demonstrated
between a system exhibiting anomalous quantum Hall effect
via SO coupling and a light beam following a curved trajectory
within a graded-index medium (ray-optics regime).13

In order to establish the existence of topologically nontrivial
phases of the EM field, we need to calculate the Chern number
for both branches of the dispersion relation of Eq. (12). The
Chern number is defined as

C± = 1

2πi

∫
d2k
±

y , (16)

where 
±
y is the Berry curvature. By employing the effective-

Hamiltonian description for a frequency gap generated by TRS
breaking at a Dirac point,5 the Berry curvature reads as


±
y = ± 2γ 2η

(η2 + γ 2k2)3/2
. (17)

We note that an effective-medium approach for quadratic
degeneracies (a Dirac point is a linear degeneracy) also
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FIG. 2. (Color online) A gyrotropic metamaterial: tetragonal
crystal consisting of four nonprimitive planes of spheres parallel
to the (001) surface at positions (0,0,0), (b,0,d/4), (b,b,d/2), and
(0,b,3d/4), with b = 0.3a and d = 2a.

exists.14 From Eqs. (16) and (17) the Chern number for each
branch of Eq. (12) is

C± =
∫ ∞

0

±

y kdk = ±2γ 2η

∫ ∞

0

kdk

(η2 + γ 2k2)3/2
= ±2.

(18)

The nonzero values of the Chern numbers for each branch of
the dispersion indicate that the corresponding EM states are
true topological states.

Next we present an artificial EM structure (chiral metama-
terial) which mimics the resonant chiral medium examined
above. The structure is shown in Fig. 2 and can be described
as a tetragonal crystal with a four-point basis. The crystal
is viewed as a succession of planes of spheres parallel to
the xy plane. Each plane possesses the same 2D periodicity
defined by the primitive vectors a1 = (a,0,0) and a2 = (0,a,0)
[(001) crystallographic surface]. A unit layer of the crystal
consists of four nonprimitive planes of spheres at (0,0,0),
(b,0,d/4), (b,b,d/2), and (0,b,3d/4). The (n + 1)-th unit layer
is obtained from the n-th layer by the primitive translation
a3 = (0,0,d). Such a structure (one with dielectric spheres)
was originally suggested15 as an artificial chiral material which
can be used for rotating the plane of polarization of linearly
polarized light. The spheres of the crystal of Fig. 2 are metallic
having radius S = 0.2a. Their electric response is described
by Eq. (13). The lattice constant a of the 2D square lattice is
taken to be a = c/ωp. For example, for gold h̄ωp = 8.99 eV
and therefore the lattice constant is a = 22 nm and the radius
of the spheres S = 4.4 nm.

Figure 3 shows the frequency band structure (solid lines),
for k‖ = 0 [normal to the (001) surface], of the crystal of
Fig. 2 with b = 0.3a and d = 2a. The calculation was based
on the layer-multiple-scattering method.16 All bands appearing
in Fig. 3 are nondegenerate due to the chiral symmetry of the
crystal. We identify a Dirac point at ω/ωp = 0.558. Although
the structure of Fig. 2 is three-dimensional, for k‖ = 0, it can be
described by the 2D effective-medium of Eq. (11). The dashed
lines in Fig. 3 are obtained by fitting the dispersion relation
of Eq. (11) for η = 0,ωL/ωp = 0.558,DL = 125,γ = 1 to the
actual frequency bands (solid lines).

By introducing a Faraday term with η = 0.1 we break TRS
and obtain the dispersion lines (solid lines) of Fig. 4. Again,
the frequency dispersion is similar to that of a spin-polarized
electron gas with SO coupling.7 The dashed line refers to the
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FIG. 3. (Color online) Frequency band structure (solid lines)
for k‖ = (kx,ky) = 0 corresponding to the structure of Fig. 2. The
dashed lines correspond to Eq. (12) with γωp/c = 1 and Eq. (15)
with DLωp = 125 and ωL/ωp = 0.558.

corresponding Berry curvature which seems to be significant
around the gap (k‖ = 0). Besides the chiral metamaterial
studied here, other types of chiral metamaterials such as a
2D lattice of chiral “Swiss rolls”17 exhibit a Dirac point in
the dispersion lines and are thus able to present nontrivial
topological states of the EM field with the inclusion of a
Faraday active material.

The presence of Berry curvature in the studied systems
betokens the presence of one-way states5,6 at the
edges/surfaces of a finite slab of a gyrotropic medium with a
Faraday term. If ones employs the effective-medium approach
presented above without a reference to a specific structure (e.g.,
such as that of Fig. 2), the EM scattering or transfer matrix of
a finite slab is needed in order to search for edges states. Since
we are dealing with a spiral structure, one needs to employ
the Berreman method where the unit cell of a chiral structure
is piecewisely approximated as a succession of optically thin
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FIG. 4. (Color online) Frequency band structure (solid lines, left
axis) for the structure of Fig. 2 including a Faraday term in the
permittivity tensor (η = 0.1). The dashed lines (right axis) refer to
the corresponding Berry curvature.
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layers with a homogeneous dielectric tensor.18,19 Then one
couples the corresponding matrices of the successive layers
either by the scattering or by the transfer matrix technique in
order to obtain the final matrix of the entire slab. On the other
hand, if one departs from the effective-medium treatment and
explores the appearance of edge states for a specific structure,
e.g., the crystal of Fig. 2, then it is necessary to incorporate
within the layer-multiple-scattering method the scattering T-
matrix from a Faraday active spherical particle.20 The existing
layer-multiple-scattering code provides the scattering matrix
for a finite number of crystal layers which can reveal the
existence of edge states. However, the calculation of the
T-matrix for a Faraday active sphere is much more involved
and computationally cumbersome than for the case of a
homogeneous sphere and it is left for a future publication.

In conclusion we have presented a generic model of a
resonant, Faraday-active chiral medium which is the EM
analog of a spin-polarized system with Rashba SO coupling
exhibiting intrinsic (anomalous) Hall conductivity. Such a
chiral medium possesses a frequency gap stemming from
TRS breaking and supports nontrivial topological EM modes
with nonzero Chern numbers. A helical lattice of lossless
Drude-type spheres models the behavior of the presented
photonic analog.
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