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Vortex states in layered mesoscopic superconductors
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Within the Ginzburg-Landau theory, we study the vortex structures in three-dimensional anisotropic mesoscopic
superconductors in the presence of a uniform magnetic field. Anisotropy is included through varied 7, in
different layers of the sample and leads to distinct differences in the vortex states and their free energy. Several
unconventional states are found, some comprising vortex clusters or exhibiting asymmetry. In a tilted magnetic
field, we found second-order transitions between different vortex states, although vortex entry is generally a
first-order transition in mesoscopic samples. In multilayered samples the kinked vortex strings are formed owing
to the competing interactions of vortices with Meissner currents and the weak-link boundaries. The length and
deformation of vortex fragments are determined solely by the inclination and strength of applied magnetic field,
and this lock-in does not depend on the degree of anisotropy between the superconducting layers.
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I. INTRODUCTION

Since the discovery of high-temperature superconductors
(HTSs),! much attention has been paid to their distinctly
anisotropic structure—a stack of the two-dimensional (2D)
superconducting layers separated by insulating layers and
coupled with each other by Josephson tunneling. To date,
the Josephson effect in superconductors found various ap-
plications, such as in microwave receivers, superconducting
quantum interference device (SQUID) magnetometers, and
logic elements, to name a few. Often, such applications are
better realized in a small-sized weak-link structures, i.e.,
Josephson junctions with non-tunnel-type conductivity, owing
to the low capacitance of such a junction.”? A weak link is
commonly achieved by two superconducting layers separated
by a normal metallic layer, or still a superconductor but
with weaker critical parameters than those of the linked
layers.

The layered structure of the superconducting sample cer-
tainly has important effects on the structure and behavior
of magnetic vortices, which in turn can strongly influence
the properties of the sample. The vortex matter in layered
superconductors with extreme anisotropy can be theoretically
described by the Lawrence-Doniach (LD) model,? in which
the continuous three-dimensional (3D) vortex line is replaced
by composite vortex structures dependent on the tilt angle
and strength of the applied magnetic field. In the simplest
cases, a field parallel to the superconducting layers will
induce a triangular, or in a suitable geometric confinement,
rectangular lattice* of Josephson vortices between the layers.
The field perpendicular to the layers will result in a triangular
lattice of pancake vortices in the superconducting planes.
The more complex cases, i.e., the vortex states in lay-
ered anisotropic superconductors under tilted magnetic field,
have also been extensively studied,”!? with the central issue
mainly focusing on the flux-line structure and the phase
transition between different vortex states as a function of the
field tilt.

In this paper, we introduce the weakly linked layered
structure in 3D mesoscopic samples, with the objective to
understand the penetration of (tilted) magnetic field in such
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samples, and the formation and rearrangement of vortex states
with respect to the superconducting layers and the sample
boundaries. As opposed to HT'Ss, where a tilted magnetic field
will result in a set of crossing lattices of qualitatively different
pancake and Josephson vortices, our system is anisotropic
with periodically modulated 7., where a tilted magnetic field
creates a set of composite but deformed (“kinked”) vortices.
We restrict ourselves to the stationary picture, but here the
reported complexity of vortex states will also have direct
implications on the dynamic response of layered mesoscopic
samples.'313

In this paper, as opposed to the LD approximation,
we take into account the full 3D of the sample structure.
Besides considering a layered superconductor, we add one
more degree of complexity—the sample size and geometry.
This is the core objective in mesoscopic superconductivity,
where enhancement of critical parameters is found owing to
quantum confinement.'®"'” A significant portion of earlier
works was also devoted to the topologic confinement of
flux structures,?2* and we focus our work on the similar,
though more complex and 3D, phenomenon. We analyze
the vortex structure and distribution in a cubic sample
with one or more weak links under (tilted) magnetic field
by a 3D Ginzburg-Landau (GL) simulation, a proven phe-
nomenological approach for studies of vortex matter in
superconductors.'8-2022-31 For example, successful numerical
simulations using 3D GL formalism were performed to study
the vortex states’®? as well as the calorimetric properties®
of cylindrical, spherical, and conical mesoscopic samples.

The paper is organized as follows. In Sec. II, we show the
derived GL equations with an anisotropy function and explain
the numerical method and procedure we use in the calculations.
In Secs. Il and IV, we analyze the results obtained for samples
with one central weak link and with multiple weak links,
respectively. Starting with the deformation of vortices inside
the weak link, we discuss further the issues concerning the
distribution, interaction, and structure of vortices in the sample.
In Sec. IV, we also present the M(H) magnetization curves
of our samples, which are of relevance to experiments. Our
results are finally summarized in Sec. V.
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II. THEORETICAL FORMALISM

We consider a cubic mesoscopic sample with one or more
weakened superconducting regions as illustrated in Fig. 1. We
implement the GL theory by solving the equations obtained
by minimizing the following energy functional:
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where H denotes the applied magnetic field, and h is the
total local field, including the response of the superconductor.
We include the anisotropy in the functional through the GL
coefficient o, as o = {(+y,z)a0' Recalling the temperature
dependence of the parameter « in GL theory, the function ¢ >
1 in this case would correspond to (1 — T/T,.)/(1 — T/ T.y)
with the lower critical temperature 7,,, < T, in the regions with
weak superconductivity. In the presence of such anisotropy, by
minimization of Eq. (1), we obtain the following equations for

order parameter and vector potential,
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The above equations are given in dimensionless form, where
distances are measured in units of the coherence length
& =n//—2m*ay, the order parameter in Yo = /—oap/fB, and
the vector potential in cf1/e*&. The magnetic field is measured
in units of the second critical magnetic field Hy, = ch/e*£? =
k~/2H, and free energy in Fy = H*V /87, where H, is the
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FIG. 1. (Color online) The considered system: a superconducting
cube of lateral size a, with one (a) and four (b) weak links of thickness
d, in the presence of a tilted magnetic field.
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thermodynamic critical field, k = 1 /£ is the GL parameter,
and A = ci/m* /7 [2¢*y is the magnetic-field penetration
depth.

The weak link, i.e., the region in the sample with weak
superconductivity, can be directly modeled by a decreased
parameter «, or in other words, the anisotropy function ¢ larger
than unity. For simplicity, we assume in this work a steplike
behavior of ¢ across the sample, so that it becomes a coefficient
equal unity inside the superconducting layers, and larger than
1 inside the weak link(s). Then, for a fixed applied magnetic
field, we solve the two coupled GL equations self-consistently
using the Gauss-Seidel iterative procedure'® and the link
variable approach*” for a finite-difference representation of the
order parameter and the vector potential on a uniform Cartesian
space grid (x,y,z) with a typical grid spacing of less than & /3.
Solving Eq. (3) with respect to the boundary condition, Eq. (4)
enables us to calculate the full magnetic-field profile in and
around the sample, and further determine the magnetization of
the sample as

H — (h:
= M= (k)
4

with H; being the applied field and (4;) denoting the averaged
i-component of the local field in the measurement plane.

; &)

III. MESOSCOPIC CUBE WITH A CENTRAL WEAK LINK

In what follows, we first consider a superconducting cube
of size a = 300 nm with a single weak link of size d = 30, 50,
and 70 nm, centered in the sample. As an example, we chose
the coherence length £ = 10 nm and penetration depth A > &
so that the sample is an extreme type-II one. The anisotropy
coefficient in the weak link was typically varied up to 10 in
the simulations. It is important at this point to also define the
direction of the applied field. Throughout the paper, the field
direction will be specified by two angles—&6, which is the angle
with respect to the z axis, and ¢, which is the azimuthal angle
in the (x,y) plane with respect to the x axis (as depicted in
Fig. 1).

A. A single weak link: Deformation of the vortex core

To begin with, we discuss the deformation of the vortex
core in the weak link, as illustrated in Fig. 2. The anisotropy, as
included in our simulations, leads to the free-energy difference
between the weak link in its superconducting and in its
normal state smaller than that of the bulk superconductor
(for ¢ > 1). As aresult, it is easier (less energetically costly)
to suppress superconductivity inside a weak link than in the
strongly superconducting layers. For that reason, the vortex
core, as locally destroyed superconductivity, is more likely to
reside inside the weak links than elsewhere in the sample.
One should also note that the effective coherence length
&, =h/—2m*a is larger in the weak-link region owing to
smaller «. A larger coherence length in the weak link means
that the superconducting order parameter recovers slower from
0 inside the vortex to its equilibrium value far from the
vortex. In other words, the vortex core will expand inside
the weak link (proportionally to ¢?), compared to the vortex
size in the superconducting layers. However, the diffusion of
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FIG. 2. (Color online) Contour plots of the Cooper pair density
on the central (x,z) plane of a sample with a weak link of thickness
50 nm and with an anisotropy coefficient ¢ = 10, in a magnetic field
applied (a) parallel and (b) perpendicular to the weak-link plane.

Cooper pairs from strongly superconducting regions into the
weak link will also influence the deformation of the vortex
core. Therefore, if the vortex currents are fully exploring the
anisotropy of the sample, the 3D vortex tube can be strongly
deformed.

To investigate this phenomenon in more detail, we first
stabilized the L = 1 (single vortex, L being the vorticity) state
in the sample. In an applied magnetic field parallel to the
weak link, the vortex lies directly inside the weak link [see
Fig. 2(a)]. Such a central location of the vortex is favorable
in mesoscopic samples even in the absence of any weak
links, but we note here the strong deformation of the vortex
core, which is compressed between the superconducting layers
(while actually expanding inside the weak link). Without the
interaction with other vortices, we measured the ratio of the
diameters of the vortex core in the directions parallel and
perpendicular to the weak link as a function of anisotropy, as
shown in Fig. 3(a). In this analysis, we define the size of the
vortex core by a simple criterion of the rise of |¥|? to 10%
of the equilibrium Cooper-pair density of the superconducting
region in the particular direction. Figure 3(a) actually shows
the ¢ dependence of the deformation of the vortex core in the
weak link for three different thicknesses of the weak link. In
all cases, we conclude that the vortex core elongates along the
weak link when anisotropy is increased. The deformation is
expected to saturate at large anisotropy owing to the interaction
of the vortex core with the lateral boundaries of the sample.

Similar vortex features were found in the case of a magnetic
field applied perpendicularly to the weak-link plane [see
Fig. 2(b)]. As explained earlier, a large anisotropy coefficient
leads to a large effective coherence length in the weak link.
As a consequence, the vortex tube expands inside the weak
link owing to easily suppressed superconductivity. To illustrate
this phenomenon, the ratios of the diameters of the vortex core
inside the weak link (of different thicknesses) and on the top of
the sample (fully superconducting region) were calculated as
a function of anisotropy and shown in Fig. 3(b). As expected,
the core inside the weak-link plane grows with increasing
anisotropy. However, here the thickness of the weak link
plays an important role, because the vortex tube is continuous
between the strong and the weak superconducting region, and

PHYSICAL REVIEW B 83, 104524 (2011)

20 T T T T
19[ (@) =
18 | .
1.7 + E
1.6 - E
<"
<X 151 B
14 F -
——d =30nm
13 |+ u
——d =50nm ]
12 ——d =70nm b
1.1k .
1.0 1 1 1 1
2 4 6 8 10
¢
35 T T T T
(b)
——d =30nm
3.0 - ——d =50nm T
——d=70nm
25 =
=
<3
201 .
15 F -
1.0 1 1 1 1
2 4 6 8 10

FIG. 3. (Color online) (a) Parallel field: The ratio of diameters of
the (Josephson-like) vortex in directions across and along the weak
link, as a function of the anisotropy, for three thicknesses of the weak
link. (b) Perpendicular field: The ratio of diameters of the (Abrikosov)
vortex core inside the weak link and on top of the sample.

the deformation of the core is also bound by the elasticity of the
vortex tube. Therefore, for thin weak links, the vortex core is
influenced more by the surrounding strong Meissner currents
above and below the weak link than in the case of thicker weak
links, and therefore the core deforms less.

B. A single weak link: The vortex states

After the analysis of the single-vortex state, we now
calculate the full free-energy spectrum and the corresponding
vortex states as a function of applied magnetic field for the
sample with a central weak link of different thicknesses and
anisotropy coefficients. In the first step, the magnetic field is
kept parallel to the weak-link plane, and more specifically,
parallel to the y axis. For comparison, we also calculated the
vortex states for a sample without any weak link, as shown
in Fig. 4. The procedure for finding vortex states is multifold:
(i) We first increase and decrease the magnetic field in the
considered range, with a kept history of the previously found
states in the field sweep; and (ii) for each value of the magnetic
field, we also initialize the calculation from the fluctuating
normal state (randomized |W| < 0.01) and from the fully
superconducting state (|| & 1). In such a way, we construct
the energy diagram of all stable vortex states, even those with
higher energy. As a result, we found that for the same vorticity
of the vortex state, there can exist more than one stable vortex
distribution, i.e., one with lowest energy (ground state) and
several others with higher energy (usually called metastable).
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FIG. 4. (Color online) Free-energy curves and the corresponding
vortex states in a sample without a weak link as a function of applied
magnetic field parallel to the y direction. Insets show the contour
plots of the Cooper-pair density for selected different vortex states
with the same vorticity.

In the insets of Fig. 4, we show three sets of such vortex states,
for vorticities L = 5, 6, and 7. The states obeying most the
square symmetry of the sample are the lowest-energy ones,
regardless of the vorticity, which is the conclusion that holds
also in 2D mesoscopic polygons.??

This finding demonstrates the competition between the
confinement imposed on vortices by Meissner currents and
the vortex-vortex repulsion. The Meissner current is strongest
at the edges of the sample and it confines vortices toward
the interior of the sample. On the other hand, vortices are
basically parallel magnetic moments that repel each other, and
this repulsion, in the absence of sample boundaries, leads to the
formation of a triangular (Abrikosov) lattice. For five vortices,
the triangular lattice state is satisfied if vortices sit on apexes
of a rectangle a x a+/3 with one vortex in the center. This
is why the L = 5(a) square distribution in Fig. 4 has a lower
energy and a higher stability than the also found pentagonal
state, because it conforms both to the sample symmetry and
closely to the low-energy triangular arrangement of vortices.
For L = 6, there are also two different states found. One is a
diagonal-symmetric hexagonal configuration [L = 6(b)], and
the other is a zigzag structure [L = 6(a)]. The latter is more
reminiscent of a triangular lattice and therefore has lower
energy. A similar conclusion supports the low energy of the
twofold mirror-symmetric L = 7(a) state in Fig. 4, compared
to the one with diagonal symmetry [L = 7(b)].
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Therefore, one concludes that the metastability of different
vortex states results from a competition between the vortex
interaction with Meissner currents (which actually represent
the effect of sample boundaries) and the vortex-vortex interac-
tion. However, when weak links are present in the sample, we
add one more competing effect to this analysis, namely, the
suppressed superconductivity in parts of the sample, where
vortices favorably reside (minimize their energy). To begin
with, we first consider a sample as in Fig. 4 but now with
a central weak link of 50-nm thickness. The results are
summoned in Fig. 5 for the anisotropy coefficients ¢ = 5.
As can be seen in these figures, vortices sit preferably inside
the weak link until the saturation number is reached, i.e., there
are enough vortices in the weak link so that the increased
vortex-vortex interaction expels some of them into the fully
superconducting part of the sample. Note also that vortices not
only favorably reside in the weak link to minimize energy, but
they also enter the sample through the weak link owing to the
lower-energy barrier for vortex entry there.

In what follows, we will address different vortex distribu-
tions found for the same vorticity, shown as insets in Fig. 5.
For an anisotropy coefficient { = 5, up to L = 3, all vortices
reside inside the weak link. However, three possible vortex
states were found for the L = 4 state. In one, all vortices lie
within the weak link, and this state is stable in the range of
fields from 0.164H., to 0.243H,.,. The second L = 4 state
is asymmetric, and stable in the field range from 0.144H,,
to 0.229H,,. The third is another symmetric state with two
vortices in the weak link, two vortices outside, and stable in the
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FIG. 5. (Color online) Free-energy curves and the corresponding
vortex states in a sample with one central weak link of 50 nm and
an anisotropy coefficient { = 5 in a magnetic field applied parallel to
the y direction. The insets show the contour plots of the Cooper-pair
density in the central (x,z) plane for selected vortex states.
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range of fields from 0.200H,, to 0.219H,,. The asymmetric
state, in which one vortex is expelled from the weak link,
is the second lowest-energy one. Vortex-vortex interactions
inside the weak link expel one vortex out to the strongly
superconducting region. Although this allows, to some extent,
for the triangulation of the vortex arrangement, the interaction
between vortices and the Meissner current is increased in this
state. Because the weak link is located in the center of the
sample, the excess vortex must choose a preferential side to go
away from it. As a consequence, the symmetry is broken, and
an asymmetric vortex state is formed, which cannot be found
in an isotropic superconducting cube. Note, however, that a
similar phenomenon can be observed in 3D superconductors
with a hole for a vorticity beyond the saturation vorticity of
the hole.2* There, the first excess vortex after the saturation of
the hole is reached must also break the symmetry, even though
nothing in the theoretical formalism breaks the symmetry.

However, such an asymmetric vortex structure is less stable
as a function of applied field than the linear one, not only
because of the asymmetry, but also because of the increasing
confinement. With increasing magnetic field, the asymmetric
state loses stability in competition with encircling Meissner
currents, which are growing stronger. Ultimately, all four
vortices are compressed inside the weak link (as a first-order
transition). When the anisotropy coefficient was increased to
10, we found the state with even five vortices inside the weak
link without any vortex inside the strongly superconducting
regions, whereas a maximum of four vortices were found
inside the weak link in Fig. 5. In other words, the increased
anisotropy increases the energy gain for a vortex residing
in the weak link, overpowering the loss in energy owing to
unfavorable vortex-vortex repulsion.

The L =4 state is not the only vortex state exhibiting
asymmetry in this system. For example, in Fig. 5 three
possible configurations were found for both the L =5 and
L = 6 states. For L = 5, one state [L = 5(c)] is similar to
the state L = 4(b), with one vortex residing outside and
others residing inside the weak link. In the second allotropic
configuration for L =5, three vortices fit inside the weak
link, and two extra vortices are located, one at each side
of the link. The vortices inside the fully superconducting
regions occupy central positions owing to strong interactions
with the Meissner currents. However, they also interact with
vortices inside the weak link, particularly with the central
vortex. To minimize this interaction, the central vortex shifts
inside the weak link, breaking the symmetry now along the x
direction. This state decreases the repulsion among vortices
without greatly increasing the interaction of vortices with
Meissner currents and is therefore the lowest-energy state
in a relatively high magnetic field. The third state with five
vortices, L = 5(a), is a pentagonal structure that resembles the
pentagonal vortex state in the solid cube (Fig. 4), but with two
vortices inside the weak link.

A similar breaking of the vortex pattern inside the weak
link is found for L = 6 in the ground state, with four vortices
inside the weak link and an additional one on each side.
The enforced central position of the vortices in the fully
superconducting regions causes the rearrangement of vortices
inside the weak link [state L = 6(c) in Fig. 5]. Namely, two
vortex dimers form inside the weak link, avoiding the central
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position (which is usually the most favorable position for
a vortex in a symmetric mesoscopic superconductor). This
shows that vortices may conglomerate inside the weak link to
preserve the overall symmetry and minimize the energy of the
vortex state, which is a fascinating phenomenon in light of the
fact that vortices in type-II samples repel each other and there
is no reason for them to conglomerate in clusters (contrary
to type-I samples®®). Typically, as a result of repulsion,
vortices form Abrikosov lattice or ringlike multivortex states
when confined in a mesoscopic sample. In the presence of a
weak link, there exists additional quasi-one-dimensional (1D)
confinement in the sample, as vortices preferably sit inside
the weak link. As a result, not all vortices interact uniformly.
The first vortex in the chain interacts weakly with the last one,
but very strongly with the nearest one. Therefore, owing to
such nonuniform interactions and quasi-1D confinement, the
clustering is possible. In addition, the vortex dimer formation
is caused by competing interactions, in part owing to the finite
size of the sample. If the sample is made larger, dimers will
relax closer to equidistant chains.

In the next step, we change the thickness of the weak
link while keeping the anisotropy coefficient ¢ fixed at 10.
The results for a weak-link thickness of 30 nm are shown
in Fig. 6(a) and for 70-nm thickness in Fig. 6(b). For a
thinner weak link, fewer vortices get inside the link, and
correspondingly different vortex configurations are found. For
example, in L = 3(a), the symmetry in the z direction is broken
with only two vortices sitting in the weak link. For the L = 5
case, we observed a square vortex configuration, with just
one vortex inside the weak link. This state actually closely
corresponds to the vortex state in the solid cube (Fig. 4),
and is only slightly affected by the presence of a weak link.
Nevertheless, the novel vortex states owing to the presence of
a weak link are still found in this case, exhibiting asymmetry
in the x and z directions, as well as the formation of vortex
dimers [see the states shown in Fig. 6(a)].

In Fig. 6(b) we have the opposite case, as more vortices
reside in the weak link layer owing to its larger thickness.
As a consequence, the vortex rearrangement and symmetry
breaking occur mainly along the weak link, i.e., in the
x direction. Besides vortex dimers, we also found the states
with vortex clusters of different size inside the weak link
[see the contour plots in Fig. 6(b) for L = 7(a)], where we
found not only dimers but vortex trimers as well. As a general
trend, owing to the large size of the weak-link layer, it is less
energetically costly to break configurational symmetry in the
x direction than in the z direction.

In summary of the special vortex features observed in
Figs. 5 and 6, we can conclude that, for a given vorticity, the
states with more vortices inside the weak link tend to be more
stable in high magnetic fields, while those with more vortices
inside the superconducting layers tend to be more stable in
low magnetic fields. Because the vortices enter (or leave) the
sample through the weak link, preexisting vortices inside
the weak link can prevent new ones from entering, making
the previous state stable in a relatively high magnetic field.
In general, the number of vortices inside the weak link
depends not only on the size of the weak link and the level
of anisotropy, but also on the total number of vortices in
the sample, their configuration with respect to the sample
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FIG. 6. (Color online) (a) Free-energy curves and corresponding
vortex states in a sample with one central weak link of 30 nm and
an anisotropy coefficient { = 10, in a magnetic field parallel to the
y direction. The insets show the contour plots of the Cooper-pair
density for selected vortex states. (b) The contour plots of the Cooper-
pair density for selected vortex states in a sample with a thicker
weak link, i.e., for d = 70 nm. The white dots indicate the centers of
vortex cores, for clarity (the larger dot denotes a double vortex). The
left-hand panel shows the ground-state configurations, and right-hand
panel shows the metastable states for a given vorticity.

geometry, and the magnitude of applied magnetic field and
the resulting screening currents.

This far, the magnetic field was always parallel to one of the
sample sides. In what follows, we investigate the interaction
between the vortices and the sample boundary further by tilting
the in-plane magnetic field away from the y direction in the
(x,y) plane. The results are shown in Fig. 7 for a sample with
d =50 nm, ¢ =10, and the tilt angle of the applied field
@ = 45°.
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FIG. 7. (Color online) Free energy of the found vortex states
by sweeping magnetic field up and down, in a sample with one
central weak-link layer of 50-nm thickness and with an anisotropy
coefficient { = 10, in a magnetic field rotated by ¢ = 45° in the
(x,y) plane. The insets show the isoplots of 5% of the maximal
Cooper-pair density for the found vortex states, where isosurfaces
outline the shape and arrangement of vortices. The gradual flux entry
as a function of magnetic field for L = 26 is shown as an animation
in supplementary material (Ref. 33).

With a magnetic field not parallel to the x or y axis,
the vortices attempt to change their orientation accordingly.
However, they must avoid sharp corners of the sample, where
superconductivity is particularly strong (see, e.g., Ref. 25).
Namely, in mesoscopic superconductors, the screening effects
of Meissner currents that are generated to expel the magnetic
field are always maximal in the corners2? and vortices, as tubes
of magnetic flux avoid those regions. For that reason, the end
of each vortex is bent, and the vortex line turns gradually
to avoid the corner of the sample. At the boundaries of the
sample, the supercurrent can only have the component parallel
to the surface (owing to the Neumann boundary condition).
Therefore, the vortex endings must be aligned perpendicular
to the surface of the sample.

Owing to the perfect symmetry of our sample and the field
applied diagonally across it, the L = 1 state is entirely absent.
In increasing magnetic field, once the Meissner state is no
longer stable, a vortex should enter the sample and lower the
total energy. In this particular case, however, the vortex must
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avoid the sample corner and the resulting vortex state must
be asymmetric, or the vortex line must be sufficiently long to
avoid two diagonal corners on opposite sides and preserve the
symmetry. Either of the two states is energetically expensive;
instead, because the sample is geometrically ideal, vortex entry
occurs on both sides of the sample simultaneously, in the two
corners of the weak-link layer on the diagonal orthogonal
to the direction of the applied magnetic field. Finally, two
vortices enter the sample, although (by default) having a higher
total energy than just a single vortex. Note, however, that the
slightest asymmetry in the sample geometry (as is the case in
real experimental conditions) would favor the appearance of
the single vortex in the ground state.

It is also worth noting that in this group of free-energy
curves we discovered several second-order-like transitions
between different vortex states. See, for example, the transition
from the L = 2 to L = 4 state and the subsequent transition
from the L = 4 to L = 6 state in Fig. 7. This kind of behavior
is not expected, because the vortex entry in superconductors
is a first-order transition, with an abrupt change in free energy
as a function of the applied field.?> The latter is owing to the
finite barrier for vortex entry, composed of the geometric®*3>
and the Bean-Livingston (BL)*® barrier. In our present system,
both those contributions to the barrier for vortex entry are
suppressed. The BL barrier is weak inside the weak link, as
there superconductivity in general is weak. Nevertheless, if
there are vortices already present in the weak link, new vortices
will be repelled by the preexisting ones, which will enforce
the BL barrier. On the other hand, the geometric barrier is
entirely absent in the present geometry of the sample and the
direction of the applied field, as vortices enter the sample
as pointlike objects at the corners of the weak-link layer.
Therefore, the increase of magnetic “pressure” with increasing
magnetic field can gradually balance out and overcome the BL
barrier (interaction with the existing vortices inside the weak
link), and cause the second-order-like manifestation of the
vortex entry.

IV. VORTICES IN SAMPLES WITH MULTIPLE
WEAK LINKS

To further expand this study, in this section we increase
the number of weak links in the sample to four, and study the
behavior of this system in a tilted magnetic field [see Fig. 1(b)].
The thickness of the weak-link layers is taken as d = 30 nm,
and the anisotropy coefficient is kept at { = 10. We apply a
magnetic field parallel to the weak-link planes but deviating
by ¢ = 45° from the y axis, as was considered previously in
Fig. 7. The obtained free-energy curves as a function of the
magnetic field, with insets illuminating different vortex states,
are shown in Fig. 8.

In the discussion of Fig. 7, we emphasized that transitions
between vortex states can appear as second-order ones. This
is not the case for low vorticity in Fig. 8. Namely, because
there are four weak links in the sample, each new vortex can
enter the sample at a different layer without feeling strong
repulsion from the preexisting vortices. However, this does
not suggest that the interaction between vortices across weak
links can be neglected. In fact, such an interaction can be
clearly observed in the analysis of the vortex distribution in
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FIG. 8. (Color online) Free energy of selected vortex states in a
sample with four weak links of thickness d = 30 nm and with an
anisotropy coefficient { = 10, in a magnetic field rotated by ¢ = 45°
in the (x,y) plane. The insets show the isoplots of 5% of the maximal
Cooper-pair density for the selected states, where isosurfaces outline
the vortices. The shown vortex states are obtained by sweeping the
magnetic field up and down in the considered field-range. For the
transition between states 4(a) and 4(b) and all found vortex states,
please consult supplementary material (Ref. 33).

adjacent weak links. An example is presented in the insets
of Fig. 8, showing two different states found for L = 4. In
the L = 2 state, two vortices enter simultaneously one of the
central layers. Subsequently, the two new vortices penetrate
the above layer, but cannot take the central position in the
layer owing to the repulsion from the two vortices already
in the lower layer. This constitutes one L = 4 state [labeled
(a) in Fig. 8], stable in the low magnetic field. However, an
increasing magnetic field compresses vortices more toward
the center of the sample, owing to the increasing Meissner
currents at the sample boundaries. As vortices approach each
other, they interact more also with vortices in an adjacent
weak link. This repulsion prevents the vortices passing over
one another, and leads to a transition to a new L = 4 state,
in which two vortices that are closest to the center of the
sample are in two different weak links [state labeled (b)
in Fig. 8]. This (and similar) rearrangement is a first-order
transition, and therefore observable in experiment. These
calculations in a parallel field have a certain connection to the
previously intensively studied case of Bi-2212 mesa structures
that are always in the mesoscopic limit with respect to the
long Josephson penetration depth and the London penetration
length in the c-axis direction. A similar metastability of the
vortex configurations (fluxon modes) was observed there.’38

To further investigate the structure of vortices crossing a
set of weak links, we now apply to our sample with four weak
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FIG. 9. (Color online) Free energy of selected vortex states in a
sample with four weak links of thickness d = 30 nm and with an
anisotropy coefficient { = 10, in a magnetic field tilted by 6 = 60° in
the (x,z) plane. The insets show the isosurfaces of 5% of the maximal
Cooper-pair density for the selected vortex states. The shown vortex
states are obtained by sweeping the magnetic field up and down in
the considered field-range. For all found vortex states, please consult
supplementary material (Ref. 33).

links a tilted magnetic field in the (x,z) plane. The results
are shown in Fig. 9 for the tilt angle 6 = 60° with respect to
the z axis, where selected vortex states and their energies are
presented as a function of the applied field. The first conclusion
we can draw is that vortices attempt to maximize their length
within the weak links. However, for a sufficiently acute 6 angle
and a large component of the magnetic field perpendicular to
weak links, i.e., along the z axis, vortices have to cross through
superconducting regions and vortex kinks are formed, the 3D
analogs of pancake vortices in HTSs (see the insets of Figs. 9
and 10).

If we increase the tilt angle 6 of the magnetic field,
the vortices will change their orientation accordingly. As a
consequence, the vortex strings will become longer in weak
links, and vortex fragments in the fully superconducting
regions will tilt more with respect to the z axis, and elliptically
deform in the (x,y) plane. To illustrate this, we calculated the
length of vortex strings in weak links and the ratio of diameters
of vortex fragments within fully superconducting regions in the
x and y directions for three levels of anisotropy, namely, { = 5,
10, and 20. Our results (shown in Fig. 10) clearly demonstrate
that the length of vortex strings in weak links and the
deformation of the vortex fragments in fully superconducting
regions both increase with 6. However, neither of them
significantly depends on anisotropy. This suggests that the 3D
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FIG. 10. (Color online) (a) Dependence of the length of vortex
strings in weak links of the 3D curved vortex line on the tilt angle 6 of
the applied field, in a sample with four weak links of 30-nm thickness,
for different anisotropy coefficients (the magnitude of the magnetic
field is fixed at 0.103 H,,). (b) The dependence of the deformation of
vortex fragments within fully superconducting regions in the (x,y)
plane (ratio of the corresponding vortex diameters /; and /) on tilt
angle 0 for the same sample and magnitude of the magnetic field. The
insets depict vortex states in two regimes through isosurfaces of 5%
of the maximal Cooper-pair density. The transition between regimes
(1) and (II) as a function of the tilt angle of the applied field is shown
in supplementary material (Ref. 33).

vortex-line configuration is determined solely by the direction
of the applied field and the mutual interaction of the vortex
parts in different layers, incorporated into the full elasticity of
the vortex line. In other words, weak anisotropy of our sample
results in an almost negligible field-locking angle compared
to that of a few degrees in extremely anisotropic, layered
(quasi-2D) superconductors such as Bi-2212.%°

In Fig. 10, we also observed a kink at 6 = 45°. The reason
for this kink is illustrated in the insets of Fig. 10. Because
the vortex line tilts according to the direction of the magnetic
field, its endings will move first on the upper surface of the
sample, from the interior of the sample toward the boundary,
as angle 0 is increased from zero. However, for 6 & 45°, the
vortices will avoid the corner of the sample owing to strong
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FIG. 11. (Color online) Magnetization as a function of applied
magnetic field, of a sample with four weak links with d = 30 nm
and with an anisotropy coefficient { = 10, and for a tilt angle of the
field & = 60°. The insets are the isosurfaces of 5% of the maximal
Cooper-pair density of the selected vortex states, indicated in the
magnetization curve. As an example, « is chosen as 0.9.

Meissner screening there. Ultimately, for 6 > 45°, vortex
endings jump over the sample edges to the adjacent surface.
After this first-order transition, the length of the vortex strings
in weak links and the deformation of vortex fragments in fully
superconducting regions will increase faster with increasing
tilt angle, as the vortex line falls in plane.

Such a first-order transition leads to a hysteretic behavior
of the superconducting quantities as a function of the angle 6,
which is certainly observable in experiment. One experimental
possibility is to measure the magnetic response of the sample,
by, e.g., Hall magnetometry. By solving the two GL equations
self-consistently [Egs. (2) and (3)) with k = 0.9], and by using
Eq. (5), we can obtain the magnetization M (H) curves for our
sample in a tilted magnetic field, as shown in Fig. 11 for
0 = 60°. We deliberately separate the magnetic response into
the Cartesian components, because in the experiment the Hall
bar must be placed in a particular 2D plane, and would detect
a linear combination of M,, M,, and M_, depending on its
relative position to the sample surfaces.

As is well known, the diamagnetic response of the sample in
the Meissner state manifests as the magnetization of the sample
increasing with the applied magnetic field. When vortices
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enter the sample, the magnetization decreases in a steplike
manner. In the present case (Fig. 11), the first entering vortex
lines penetrate the sample on its (y,z) face, and leave on the
(x,y) side (or vice versa). For that reason, the first jump in
magnetization, owing to the transition from the Meissner state
to the L = 2 state [see the inset in Fig. 11(a)] is detected in
both M, and M, components of the magnetization. However,
the further increasing field pushes the vortices toward the
6 = 60° line, and causes two top vortices in the L = 3 state
to spring entirely to the (y,z) surfaces of the sample [state (b)
in Fig. 11], which decreases |M,| but increases |M,|, as part
of the z-magnetic response of vortices is lost compared to the
previous vortex state (a).

Furthermore, we were also able to magnetically observe
the subtle reconfiguration of vortices between different weak
links, as is illustrated by states (g) and (h) in Fig. 11. There,
two vortices symmetrically penetrating on the (y,z) sides of
the sample and leaving on the (x,y) faces shift from the outer
to the central weak links, with the up (bottom) vortex part also
shifting more centrally in the (x,y) plane. Such transitions
leave a decreasing mark in both |M, | and | M, |, but a fractional
one compared to a vortex entry signal (i.e., as a noninteger flux
change in units of a flux quantum). Therefore, without going
into the fine features of the other vortex states, we hereby
conclude that a careful analysis of the corresponding changes
in the magnetic response of the sample in different directions
can provide information not only about vorticity, but also about
the 3D vortex (re)arrangement, even about the very subtle
changes as the ones shown above.

V. CONCLUSIONS

To summarize, we investigated the vortex states of a cubic
mesoscopic superconductor, layered by one or more weak
links—areas with a lower critical temperature, where the
change in T, across the sample can be translated into an
anisotropy coefficient ¢. As a first finding, we showed the
degree of vortex deformation in the weak link when the applied
magnetic field is parallel or perpendicular to the weak-link
plane, as a function of the level of anisotropy between the
superconducting and the weak-link layers. We found that the
deformation increases with increasing anisotropy coefficient.
Further, we investigated the full vortex phase spectrum and
the corresponding free-energy levels in a sample with one
central weak link of different thicknesses and anisotropy. We
found that the energy barrier for vortices to enter a weak link
is smaller than that for vortices to enter a superconducting
region. The final distribution of vortices is determined by
the competition between the 3D square confinement from
the boundary of the sample, the quasi-1D confinement in
the weak link, and the interaction between the vortices. As
a consequence, we found that asymmetric vortex states are
possible. Moreover, vortices inside the weak link can even
form dimers and/or trimers as a stable configuration, even
though our samples are firmly in the type-II regime and no
vortex attraction is present. If the direction of the applied
magnetic field is rotated in the plane of the weak-link layer,
the vortices attempt to orient accordingly. However, vortices
must still adjust their orientation near the boundary of the
sample to avoid the corners where the superconductivity is
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strongest, and remain perpendicular to the sample face of
entry (exit). Under a particular angle of the rotated field (more
specifically, ¢ = 45°), vortices enter the sample as pointlike
objects at opposite corners of the weak link. In that case,
the geometric barrier is fully suppressed, and the BL barrier
can be balanced by an applied magnetic field, which causes
the vortex entry to be gradual and manifest as a second-order
transition, contrary to a conventional first-order picture. This is
somewhat changed in the case of multiple weak links, because
then the crosstalk across the layers must be taken into account,
as vortices interact not only with the vortices present in the
same weak link but also with ones in adjacent weak links. This
can lead to configurational transformations of the vortex state
in multiple weak links, with transitions being of first order.
Under a tilted magnetic field in the (x,z) plane, vortices in
our mesoscopic sample are kinked when crossing the fully
superconducting regions. We investigated the deformation
of the 3D vortex line owing to the change of direction of
the magnetic field and concluded that the deformation of
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vortex fragments in fully superconducting regions and the
elongation of the vortex strings in weak links do not depend
on the anisotropy across the sample owing to very small
anisotropy and a field-locking angle compared to, e.g., high-
temperature superconductors. As the tilt angle of the applied
field was changed, we observed a number of interesting vortex
transitions, mainly related to the 3D geometry of the sample
and the vortex hopping between sides of the sample and also
between adjacent weak links. As we showed in our calculated
magnetization curves of the sample under a tilted magnetic
field, almost all configurational changes in the vortex states
leave clear, experimentally detectable signatures in the M (H)
loops. A similar conclusion can be expected for the transport
measurements, as the dynamic response of the sample will be
very sensitive to the shape of the vortex state. Owing to the
complexity of the equilibrium vortex phase diagram reported
here, we leave the detailed analysis of vortex dynamics in
layered mesoscopic superconductors under an applied drive
for a separate study.
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