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Effects of the Fermi-surface shrinking on the optical sum rule in pnictides
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In this paper, we investigate the effects of the band shifts induced by the interband spin-fluctuation coupling
on the optical sum rule in pnictides. We show that, despite the shrinking of the Fermi surfaces with respect to
first-principles calculations, the charge-carrier concentration in each band is almost unchanged, with a substantial
conservation of the total optical sum rule. However, a significant transfer of spectral weight occurs from low-
energy coherent processes to incoherent ones that is carried out integrating the data up to a finite cutoff, with
practical consequences on the experimental estimate of the sum rule. This has profound consequences both on
the absolute value of the sum rule and on its temperature dependence, which must be taken into account while
discussing optical experiments in these systems.
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I. INTRODUCTION

Since the discovery of superconductivity in iron-based
superconductors, a renewed interest has emerged in the
properties of interacting multiband systems. Indeed, all the
families of pnictides are semimetals, with several small hole
and electron pockets at the Fermi level, originating from almost
empty hole and electron bands. Such a topology has been
predicted by density-functional-theory (DFT) calculations and
confirmed by several experiments sensitive to the Fermi
surface structure, such as de Haas–van Alphen1–3 and angle-
resolved photoemission spectroscopy (ARPES).4–7 Despite
the qualitative agreement with DFT predictions as far as
the number and the character of the bands is concerned, the
experimental data suggest the existence in the real materials of
a band narrowing operating over an energy scale of hundredths
of meV and of a shrinking of the Fermi surface areas with
respect to DFT.

The first feature has been associated with the presence
of electronic correlations8,9 leading to an enhancement of
the band mass m of the carriers with respect to the DFT
value mDFT, in agreement with several DFT + Dynamical
Mean Field Theory (DMFT) calculations giving m � 2mDFT.
This effect can possibly be detected also by an experi-
mental estimate of the optical sum rule, which relates the
integrated optical conductivity σ (ω) to the carrier density n

and band mass, W = ∫ ∞
0 dωσ (ω) ∝ n/m.10,11 Indeed, recent

experiments in LaFePO show that the experimental weight
Wexp is significantly reduced with respect to the DFT value,
Wexp/WDFT ≈ 0.5.12 Assuming that DFT correctly estimates
the number of carriers n in each band, this result can be
interpreted thus as an effect of the band-mass renormalization
mentioned above, Wexp/WDFT ∼ mDFT/m.

In addition to the electronic correlations operating on large
energy scales, a retarded low-energy interaction, mediated by
the spin fluctuations, is also present in pnictides.13,14 Within
this context, the shrinking of the Fermi surface areas has been
explained as an effect of the band shifts originating from
the interband coupling of electron and hole bands mediated
by low-energy spin fluctuations.15 It is worth noting that
these Fermi-surface shrinkings do not violate the total charge
conservation, which, in multiband systems, is determined

by the balance of the charge carriers in all the bands. In
contrast to the many-body picture, an alternative explanation
for the Fermi-surface shrinkings has been proposed to be an
intrinsic inaccuracy of the DFT calculations in determining
the energy of the band edges with respect to the Fermi
level.16 In this case, a simple rigid shift of the DFT bands
could account for the observed shrinking of the Fermi surface
areas1 without involving many-body interaction effects. A
natural consequence of this shift would be a reduction of the
carrier concentration in real materials with respect to the DFT
prediction, with direct implications for the optical sum rule.
Indeed, the experimental observation of a low value of Wexp

could not be attributed only to mass-renormalization effects,
but should be associated (at least in part) with a reduction of
n due to the rigid-band shift.16,17

Motivated by this framework, in this paper we present an
extensive analysis of the effect of the Fermi-surface shrinking
induced by the interband interactions on the charge-carrier
conservation and on the optical properties of a multiband
system. In particular, we show that within this context, in
contrast to a Fermi-surface shrinking induced by a rigid-band
shift,16 the charge-carrier concentration in each band does
not scale with the Fermi area, and it is instead only weakly
affected by its shrinking, leading to a redistribution of spectral
weight between coherent and incoherent processes and to a
substantial conservation of the optical sum rule with respect
to the noninteracting case. Notably, as we will show, the
redistribution of optical spectral weight is remarkably different
with respect to the rigid-band shift suggested in Ref. 16, where
the reduction of the Fermi area is reflected in a corresponding
reduction of both the Drude peak and the incoherent band
(Fig. 1). On the contrary, in the case of a Fermi-surface
shrinking induced by the retarded interband interactions, the
reduction of the coherent Drude part associated with the Fermi-
surface shrinking is accompanied by an additional transfer of
spectral weight to incoherent processes [Fig. 1(c)]. As we
shall see, this has practical consequences on the experimental
determination of the optical sum rule, which is usually carried
out integrating the data up to a finite cutoff.

The structure of the paper is the following. In Sec. II, we
introduce the model and we show how in a multiband system
with interband interactions the charge-carrier concentration
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FIG. 1. (Color online) Sketch of the optical conductivity in three
representative cases: (a) Infinite-band system interacting with a
bosonic mode. The optical conductivity is characterized by a coherent
Drude peak and an incoherent band. No Fermi-surface shrinking is
present. (b) Same as in (a), but with a Fermi-surface shrinking due to
a rigid-band shift. In this case, both the Drude peak and the weight of
the incoherent processes are reduced. (c) Effects of a Fermi-surface
shrinking due to a many-body interaction in a multiband system.
In this case, the total spectral weight is (almost) unchanged, but the
Fermi-surface shrinking reflects in a reduction of the coherent spectral
weight in the Drude part, with an additional increase of the incoherent
processes.

in each band does not scale with the corresponding Fermi-
surface area. In Sec. III, we compute the optical conductivity
in the presence of interactions and we analyze the effects of
the Fermi-surface shrinking on the optical spectra. In Sec. IV,
we focus on the temperature effects on the optical-conductivity
sum rule by considering a bosonic spectrum that is either
constant in temperature or temperature-dependent. In Sec. V,
we comment on the outcomes of our results for the experiments
in pnictides. In Sec. VI, we summarize our conclusions.

II. FERMI-SURFACE SHRINKING AND NUMBER
OF CARRIERS

In this paper, we investigate the effect of a retarded
interaction on the optical properties of a multiband system
characterized by two peculiar features: (i) a strong particle-
hole asymmetry of the bands and (ii) a predominant interband
character of the interaction. The outcomes of these features
on the one-particle properties have been discussed in Refs. 15
and 18, and the main results relevant to the present analysis
will be recalled below. We will then follow here the same
effective low-energy multiband scheme of Refs. 15 and 18,
which contains also the main ingredients needed to discuss the
physics of iron-based superconductors. In particular, we will
focus on the parameter values appropriate for LaFePO, where
both de Haas–van Alphen measurements of the Fermi-surface
shrinking1 and measurements of the optical conductivity12 are
available in the literature.
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FIG. 2. (Color online) Sketch of the band structure and of the
Fermi surfaces with the main interband interactions.

We consider two holelike bands (1,2) located close to the
� point and two electronlike degenerate bands (3,4) close to
the M point (see Fig. 2). All the bands close to the Fermi level
can be schematized as parabolic,

εk,α = Emax,α − h̄2|k|2
2mα

, α = 1,2 (1)

for the hole bands and

εk,α = Emin,α + h̄2|k|2
2mα

, α = 3,4, (2)

for the electron ones, respectively. We assume also that
carriers interact via a bosonic mode with a typical energy
scale ω0. In the case of pnictides, where the largest source
of interactions comes from the exchange of spin fluctuations
between quasinested hole and electron pockets, the interac-
tions Vαβ between two bands α and β will have a predominant
interband character. As has been discussed in Ref. 18, the
coupling to a low-energy mode cannot account for the overall
reduction of the bandwidth with respect to DFT observed
in ARPES experiments. This effect must be attributed to
Coulomb repulsion occurring at high-energy scales,8,9 and we
model it by assuming our input masses as a factor of two
larger than the DFT estimate, mα ≈ 2mα,DFT.15,18 To be more
explicit, setting for convention the Fermi level μ = 0, we first
estimate from DFT calculations the Fermi vectors kF,α and
the nearest band edge for each band, namely Emax,1,Emax,2

for the holelike bands and Emin,3,Emin,4 for the electronlike
ones. From these we estimate the noninteracting mass for each
band, mα = h̄2k2

F,α/2Emax(min),α , and the corresponding bare
density of states N0

α = mαa2/2πh̄2 (where a is the in-plane
lattice constant). Accordingly, the effective band edge far from
the Fermi level19 follows from the relation N0

α = 1/(Emax,α −
Emin,α). Finally, to account for the correlation effects, we
simply divide by 2 the values of the band edges extracted by
DFT, which corresponds to the mentioned increase of a factor
2 for the effective mass mα and for the density of states N0

α .
The estimated band parameters in the presence of correlation
are summarized in Table I.

In the presence of a retarded boson-mediated interaction,
the Green’s function Gα(z) for a generic band α can be written
as

Gα(k,ω) = 1

ω − εk,α − χα(ω) + μ + i�α(ω)
, (3)
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TABLE I. Microscopic band parameters used in this work.
Following the approach of Ref. 15, we use DFT band parameters
renormalized by a factor 2 to account for the correlation effects.

Band Emax,α Emin,α N 0
α

index mα/me (eV) (eV) (eV−1)

1 1.16 0.102 −2.516 0.382
2 2.28 0.102 −1.231 0.750
3,4 1.58 1.776 −0.147 0.520

where we introduced the short-hand notations

χα(ω) = Re
α(ω), �α(ω) = −Im
α(ω).

The self-energy 
α(ω) in the Matsubara space can be com-
puted as


α(iωn) = −T
∑
m,β

Vα,βD(ωn − ωm)Gβ(iωm), (4)

where Gβ(iωm) = ∫
(d2k/4π2)Gβ(k,iωm) is the local one-

particle Green’s function, D(ωl) = ∫
d�2�B(�)/(�2 + ω2

l )
is the propagator of the bosonic mode, and B(�) is the density
of states of the bosonic excitations. Here we assumed for
simplicity that the interaction does not depend on the momen-
tum, so that also the self-energy is momentum-independent.
Finally, the self-energy 
α(ω) and the Green’s function
Gα(k,ω) on the real-frequency axis can be obtained employ-
ing the standard Marsiglio-Schossmann-Carbotte analytical
continuation,20 and the number of charge carriers per band
can be obtained as

nα = Ns

∫
dω[1 − f (ω)]Nα(ω), α = 1,2 (5)

for the hole bands and

nα = Ns

∫
dωf (ω)Nα(ω), α = 3,4 (6)

for the electron bands, where f (x) = 1/[exp(x/T ) + 1] is
the Fermi function, Nα(ω) is the interacting density of states
(DOS), Nα(ω) = N0

α

∫
dεA(ε,ω), and where Aα(εk,ω) =

−(1/π )ImGα(k,ω + i0+) is the one-particle spectral function.
To account for a spin-mediated interaction mechanism, we

use here the Lorentzian spectrum21

B(�) = 1

π

�ω0

ω2
0 + �2

(7)

with a characteristic energy scale ω0 = 20 meV. From the
above relations, we can introduce the matrix of the dimension-
less coupling λα,β = Vα,βNβD(0), which is related to the low-
energy mass renormalization due to the retarded interaction as
m∗

α = (1 + λα)ma , where λa = ∑
β λα,β . Following Ref. 15,

we take Vαβ = V for the (α,β) values shown in Fig. 2, and
Vαβ = 0 otherwise. This choice is appropriate for LaFePO,
while for 122 pnictides the anisotropy of Vαβ must be taken into
account.18 Nonetheless, all the results we will discuss below
depend only quantitatively on the exact form of the spectrum
and of the Vαβ matrix, and will be qualitatively the same also
for other choices of the boson mediator and of the interactions,
provided that interband terms Vαβ, α �= β dominate over the
intraband ones.

As we discussed in Ref. 15, the strong particle-hole
asymmetry of each band in pnictides forces us to calculate
the Eliashberg self-energy by taking into account the finite
bandwidth. In contrast to the usual infinite-band Eliashberg
approximation, this leads to a finite value of χα(ω = 0), and
to a corresponding change of size of the Fermi surface that
depends on the interband versus intraband character of the
interaction. In the case of dominant interband scattering, in
particular, these finite-bandwidth self-energy effects result in
a shrinking of the Fermi surface, whose new Fermi vectors can
be obtained from the poles of the Green’s function (3) as

k2
F,α = 2mα[Emax,α + χα(0)]

h̄2 (8)

for hole bands (α = 1,2), while for electron bands (α = 3,4)
we have

k2
F,α = 2mα[|Emin,α| − χα(0)]

h̄2 . (9)

Note that, as shown in Ref. 15, for interband interactions
χα(0) is negative for the hole bands while it is positive for
the electronic one, so that kF,α is reduced in both cases.
From the Fermi area we can define a coherent charge-carrier
concentration per band:

ñα = a2k2
F,α

2π
, (10)

where we have taken into account the spin degeneracy Ns = 2.
In the case of a rigid band shift, as hypothesized in Ref. 16,
ñα is also equivalent to the total charge-carrier concentration
per band nα . Things are, however, very different when the
shrinking of the Fermi surface is induced by a retarded
interaction mediated by a low-energy boson. Indeed, in this
case although the reduction of the Fermi areas and hence of
ñα is remarkable, the total charge-carrier concentration per
band nα is almost unaffected. Note that this result does not
violate the Luttinger theorem, since for a multiband system
there is no equivalence within each band between the charge
concentration nα and its corresponding Fermi area encoded
in ñα , as is instead the case in a single-band system. Indeed,
the usual argument used to prove such an equivalence for
the single-band case22 shows that in the multiband case the
Luttinger theorem only applies to the sum of the carrier
density in all the bands. In Fig. 3, we plot the variation
of both the total nα and the coherent ñα carrier density for
each band as a function of the corresponding band shift
χα(0), which is proportional to the coupling to the bosonic
mode.15 The corresponding shrinking of the Fermi area can be
directly obtained by Eqs. (8) and (9). As one can see, a band
shift χα(0) ≈ 25 meV [that corresponds to the Fermi-surface
shrinking observed experimentally in LaFePO (Refs. 1 and
15)] leads to a remarkable reduction of ñα , up to almost 25%,
whereas the reduction of nα is much less pronounced, with the
largest variations of nα of the order of 5%.

To understand why the total charge-carrier concentration
per band nα is almost unaffected by the interaction in spite
of the strong shrinking of the Fermi areas, let us examine
the behavior of the interacting DOS N (ω). As an explicative
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FIG. 3. (Color online) Variation of the hole and electron densities
as a function of the energy shift at the Fermi surface. Here nα is the
total number of carriers in each band, while ñα is the number of
coherent carriers related to the Fermi area according Eq. (10).

example, we compare in Fig. 4 the DOS of the electron band
3 in three cases: (a) without interaction, (b) in the presence of
a rigid-band shift equivalent to χ3(0), and (c) in the presence
of the coupling to spin fluctuations. Here we used a relatively
large value of the coupling [V = 0.92 eV, leading to χ3(0) ≈
60 meV] to make more visible in the figure the effects of
the interaction. In each panel, the shaded area corresponds to
the integral of the DOS up to Fermi level (i.e., ω = 0 in our
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FIG. 4. (Color online) DOS of the electron band 3 in three
representative cases: (a) bare DOS; (b) rigid-band shift; and
(c) interacting case, computed using V = 0.92 eV. The shaded areas
correspond to the particle number at T = 0 in the three cases. The
arrow in panel (c) marks the new band edge due to the energy shift
induced by χ3(0). Note, however, that the DOS extends also below
this limit due to the finite value �3(ω) of the imaginary part of the
self-energy.

notation), which gives the carrier density at T = 0 according
to Eq. (6). In the case of a rigid-band shift, the number of
carriers decreases following the Fermi-surface shrinking (10).
However, as shown in Fig. 4(c), when the shrinking is due to
a many-body interaction, the redistribution of spectral weight
in the DOS is remarkably different. Here the presence of a
finite χ3(ω) is reflected, in analogy with the rigid-band case,
in a shift of the band bottom with respect to the noninteracting
case, visible at the energy level where the quasiparticle DOS
has a rapid drop [blue arrow in Fig. 4(c)]. However, this effect
is balanced by a strong redistribution of spectral weight in an
extended tail of the DOS for ω � Emin,3 = −0.15 eV, which
(almost) compensates for the band-edge shift and explains why
n3 is only slightly smaller than the bare value, as shown Fig. 3.
Such a long tail in the DOS is due to the incoherent states
induced by the imaginary part of the self-energy �3(ω), and
it is a characteristic signature of the interband nature of the
interaction.

To better understand this issue, we plot in Fig. 5 both the
DOS and the self-energy for bands 2 and 3 over a larger energy
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FIG. 5. (Color online) (a) DOS of the hole band 2 and of the
electron band 3 (solid lines), displayed along with the bare DOS
(dashed lines). To better resolve the two bands, we used a negative
y axis for the DOS of the band 2. The shaded areas give the number
of carriers nα in each band at T = 0, according to Eqs. (5) and (6).
(b) and (c) Energy dependence of the imaginary and of the real part of
the self-energy for the same bands. Note that �2(ω) is different from
zero in an energy range corresponding to the DOS of the band 3, and
vice versa.
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scale, which allows us to show also that similar effects occur
for both electron- and holelike bands. In panel Fig. 5(b), we
compare the corresponding imaginary parts of the self-energy
�α(ω). It is important to notice here that in the holelike band,
�2(ω) has a finite support that coincides approximately with
the DOS of the electronic band N3(ω). The same occurs for
�3(ω), which is controlled by the support of N2(ω). This
is a direct consequence of the interband character of the
interaction, where the energy support of �α(ω) is determined
by the DOS of the band β to which the band α is coupled. This
situation has drastic effects on the resulting DOS. Indeed, as
shown in Fig. 5(a), the incoherent states induced by �α(ω) are
thus created mainly outside the energy range of the band α,
that is, below the band bottom for the electron dispersions and
above the band top for the hole ones, and they are responsible
for the long tails in the corresponding DOS. It is worth stressing
here that such tails are not due to a strong-coupling effect, but
simply to a predominant interband nature of the interaction.

III. OPTICAL CONDUCTIVITY AND SPECTRAL WEIGHT

In the previous section, we have seen how the Fermi-surface
shrinking generated by a retarded interaction is not directly
reflected in a substantial reduction of the charge-carrier density
nα for the corresponding band, although the total number of
coherent states ñα is strongly affected by that shrinking. As
we shall see in the present section, such different behavior can
be properly detected in the analysis of the optical properties.
In particular, we show that the optical sum rule, which is
directly related to total number of carrier nα in each band, is
almost unaffected by the Fermi-surface shrinking, whereas the
dc conductivity and the spectral weight in the coherent Drude
peak scale with ñα , so that they are strongly reduced by the
Fermi-surface shrinking, with a transfer of spectral weight to
the intraband incoherent processes.

To address this issue, we compute explicitly the optical
conductivity in the presence of the retarded interband in-
teraction. Since for a k-independent self-energy the vertex
corrections vanish, σ (ω) can be computed in the simple-bubble
approximation. We can write thus σ (ω) = ∑

α σα(ω), where

σα(ω) = −2πe2

h̄

∫ ∞

−∞
dz

f (z − μ + ω) − f (z − μ)

ω

×
∫

d2k
(2π )2

v2
k,αAα(εk,α,z + ω)Aα(εk,α,z), (11)

where vk,α = (1/h̄)∂εk,α/∂kx is the quasiparticle velocity, and
the spectral function can be written explicitly as

Aα(ε,ω) = 1

π

�
qp
α (ω)

[ω − ε − χα(ω)]2 + [
�

qp
α (ω)

]2 . (12)

Here we considered also a finite contribution of disorder to the
total quasiparticle scattering rate, �qp

α (ω) ≡ �α(ω) + �0. Since
as T → 0 �α(0) → 0, we choose �0 = 10 meV by estimating
the approximate width of the low-energy optical spectra from
Ref. 12 [see also Eqs. (20) and (21) below]. By converting
the k integration in an energy integration and considering the

parabolic holelike and electroniclike dispersions described in
Eqs. (1) and (2), we obtain for the hole bands (α = 1,2)

σα(ω) = −e2

h̄

∫ ∞

− ∞
dz

f (z − μ + ω) − f (z − μ)

ω

×
∫ Emax

Emin

dε(Emax,α − ε)Aα(ε,z + ω)Aα(ε,z), (13)

while for the electron bands (α = 3,4)

σα(ω) = −e2

h̄

∫ ∞

−∞
dz

f (z − μ + ω) − f (z − μ)

ω

×
∫ Emax

Emin

dε(ε − Emin,α)Aα(ε,z + ω)Aα(ε,z). (14)

The resulting optical conductivity σ (ω) at low temperature
is shown in Fig. 6 for the same coupling value V = 0.46 eV
used in Ref. 15 to reproduce the Fermi-surface shrinking
measured by de Haas–van Alphen experiments in LaFePO.
Also shown in the same plot is the integrated optical spectral
weight W (ω) = ∫ ω

0 dω′σ (ω′) as a function of the cutoff
frequency. When the integration frequency goes to infinity, the
total spectral weight is given by the optical sum rule, which for
a parabolic-band approximation such as the one we are using
here simply reduces to10,11

W =
∫ ∞

0
dωσ (ω) = πe2

2

∑
α

nα

mα

. (15)

This asymptotic value is marked in Fig. 6 by a solid arrow,
along with the sum-rule value W0 in the absence of the coupling
to spin fluctuations. As we can see, the discrepancy between
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FIG. 6. (Color online) Left axis: Frequency dependence of the
optical conductivity at T = 5 K as obtained from (13) and (14) (solid
line), and low-energy Drude-like peak as obtained from Eq. (21)
(dashed line). The small discrepancy for the dc values stems from the
use of the approximate formulas (19) and (18) in the Drude term. To
permit a simpler comparison with the experiments, we divided the
two-dimensional results by the interlayer distance d = 8.5 Å. Right
axis: integrated spectral weight W (ω), compared to the integral of
the Drude part only, WD(ω). The arrows mark the bare value W0, the
asymptotic value W (15) in the interacting case, and the value W̃

corresponding to the reduced Fermi surfaces.
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W and W0 turns out to be of order of 5%, pointing out that
the effect of the Fermi-surface shrinking induced by the many-
body interaction is quite small in the total sum rule. However,
by direct inspection of Fig. 6, one can also see that even at
frequencies ω ∼ 3000 cm−1, corresponding to about 20ω0,
the collected spectral weight W (ω) still differs by about 20%
from its asymptotic limit (15), and it is near instead to the
spectral weight corresponding to a rigid-band shift, that is,
W̃ = πe2 ∑

α ñα/2mα . Such a lack of saturation of W (ω) over
frequency scales much larger than the typical boson energy ω0

is unusual for single-band systems,23,24 and indicates that for
the multiband case discussed here a large spectral contribution
is allocated at relatively high energies.

To enlighten this issue and its relation to the Fermi-surface
shrinking, let us first evaluate the dc conductivity in the
zero-temperature limit, where we can write in Eqs. (13) and
(14) limω→0[f (z − μ + ω) − f (z − μ)]/ω ≈ −δ(z − μ). By
performing the remaining integration over ε analytically, we
thus get

σ dc
α = e2

2π2h̄

{
1 + |Emin,α| − χα(0)

�
qp
α (0)

[
arctan

Emax,α + χα(0)

�
qp
α (0)

+ arctan
|Emin,α| − χα(0)

�
qp
α (0)

]}
(16)

for the electrons and

σ dc
α = e2

2π2h̄

{
1 + Emax,α + χα(0)

�
qp
α (0)

[
arctan

|Emin,α| − χα(0)

�
qp
α (0)

+ arctan
Emax,α + χα(0)

�
qp
α (0)

]}
(17)

for the holes. For T → 0 the only source of damping is due
to disorder, so that �qp(0) reduces to impurity scattering �0.
Since �0 is usually much smaller than the distance of the band
edge from the Fermi level [including also the shift χ (0)], the
above expressions simplify considerably. Indeed, using the
expressions (8), (9), and (10), we obtain for the hole bands
(α = 1,2)

σα
dc = e2

2πh̄�qp(0)
[Emax,α + χα(0)] = ñαe2τtr,α

m∗
α

, (18)

and for the electron bands (α = 3,4)

σα
dc = e2

2πh̄�qp(0)
[|Emin,α| − χα(0)] = ñαe2τtr,α

m∗
α

, (19)

where we introduced the effective mass m∗
α = (1 + λα)mα and

the transport scattering time

τ−1
tr,α = 2�

qp
α (0)

h̄(1 + λα)
. (20)

As is evident from Eqs. (18) and (19), even though the total
carrier numbers nα are almost unaffected by the shrinking of
the Fermi areas (see Fig. 3), the dc conductivity is instead
controlled by the coherent carrier density ñα . More generally,
one can generalize this result to finite frequency to get an
approximate expression of the coherent Drude peak σD(ω) in
the presence of the many-body interaction as

σD
α (ω) = ñαe2τtr,α

m∗
α

1

1 + (ωτtr,α)2
. (21)

The coherent Drude peak described in Eq. (21) is also shown
in Fig. 6, along with its integrated spectral weight WD on the
right-side scale. The comparison with W (ω) shows that WD(ω)
saturates quite rapidly to its asymptotic value πe2ñ/2m∗, while
W (ω) steadily increases in this range of energies, showing
that all the remaining spectral weight needed to recover the
value (15) must originate from incoherent processes at higher
frequencies. Note that this result has to be contrasted with the
standard infinite-band case, where the real part of the self-
energy vanishes and the spectral-weight distribution is only
due to the mass renormalization, so that the coherent Drude
part WD ∝ nα/m∗

α [see Fig. 1(a)].11 On the contrary, here
the many-body interaction gives rise to an additional Fermi-
surface shrinking, which is reflected in a further reduction of
the coherent spectral weight W̃ ∝ ñα/m∗

α [see Fig. 1(c)].

IV. TEMPERATURE DEPENDENCE

In the previous section, we have seen that the many-
body interband interaction plays a nontrivial role on the
spectral properties of systems with strongly particle-hole
asymmetric bands, and in particular in pnictides. This is
pointed out, for instance, in the coherent contribution to
the optical conductivity described in Eq. (21). In infinite
bandwidth systems, assuming the bosonic spectrum B(�)
to be weakly temperature-dependent, the main temperature
dependence of the optical conductivity in Eq. (21) is through
the parameter τtr,α(T ) [or equivalently �

qp
α (T )], whereas ñ = n

is temperature-independent. This scenario has to be contrasted
with the case of a multiband system with strong particle-hole
asymmetry, where the real part of the self-energy χα(0), which
gives rise to the Fermi-surface shrinking, is itself temperature-
dependent and it is reflected in a coherent charge concentration
ña which acquires a finite temperature dependence. Such a case
will be analyzed in Sec. IV A, whereas in Sec. IV B we consider
the additional effects due to a temperature-dependent bosonic
spectrum, as suggested by a number of experiments in pnic-
tides. In this case, the dimensionless electron-boson coupling
λα and the low-energy mass renormalization m∗

α/mα = 1 + λα

acquire their own temperature dependence, which can compete
with the previously discussed effects. As we shall see, transport
and optical properties can present quite different temperature
behaviors in the two cases.

A. Temperature-independent bosonic spectrum

We consider first the case in which the bosonic spectrum is
not itself temperature-dependent. In this case, the formalism is
the same as we discussed so far, and we should only account
for the temperature evolution of the self-energy. In Fig. 7, we
show as an example the temperature dependence of the real and
imaginary parts of the self-energy at zero frequency for band 2.
As we can see, the absolute value of both quantities increases
as the temperature increases, due to the thermal excitations of
the bosonic mode. To get some analytical insight into these
results, one can employ the first-order expansion for the self-
energy, computed using the noninteracting Green’s function
in Eq. (4). The corresponding expression for χα(0,T = 0) has
been derived in Ref. 15 in the case of an Einstein bosonic
spectrum, B(�) = (ωE/2)δ(� − ωE). By performing the same
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FIG. 7. (Color online) Left axis: temperature dependence of the
real and imaginary part of the self-energy at zero frequency for band
2. Right axis: temperature dependence of the coherent carrier density
ñ2 obtained from the Fermi surface area according Eq. (10).

calculation at finite T , one can see that the most relevant
temperature corrections are related to the thermal excitation
of the boson:

χE
α (0,T ) ≈ −ωE

2

∑
β

λαβ ln

∣∣∣∣Emax,β − μ

Emin,β − μ

∣∣∣∣
×

[
1 + 2ωE

Ec,β

b(ωE/T )

]
, (22)

where Ec,β = min(Emax,β ,Emin,β) is the nearest band edge,
and b(x) = 1/[exp(x/T ) − 1] is the Bose function. In the case
of a spin-fluctuation spectrum, the direct comparison with the
results in Fig. 7 shows that a similar expression holds, provided
the identification of the characteristic energy scale ωE ≈ 2ω0.
The imaginary part of the self-energy at zero frequency can
also be computed exactly in the same approximation for
temperatures T � Ec:

�E
α (0,T ) ≈ −πT

∑
β

λαβ. (23)

An analytical result can be derived for �α(0,T ) also for the
spin-fluctuation spectrum, and we obtain

�α(0,T ) ≈ −2T arctan
T

ω0

∑
β

λαβ, (24)

which is in good agreement with the results of Fig. 7.
For what concerns the optical spectrum, the thermal

excitation of the bosonic mode has then two consequences:
(i) a further reduction of the Fermi surface areas, encoded in
the decrease of ñα(T ) with temperature, as shown in Fig. 7;
and (ii) a progressive broadening of the optical-conductivity
features, due to the increase of �α(T ). While the latter effect
is customary also in the single-band infinite-bandwidth case,
the former is particular to multiband systems with interband-
dominating interactions, and leads to an unusual temperature
dependence of the partial optical sum rule W (ωc). Indeed, as
we have seen in Sec. III, since the Fermi-surface shrinking
gives rise to a transfer of spectral weight from the low-energy
Drude peak ∝ ñ to the incoherent structure extending up to
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FIG. 8. (Color online) Optical conductivity for three represen-
tative temperatures T = 10, 100, and 200 K using a temperature-
independent bosonic spectrum B(�) and an impurity scattering
rate �0 = 10 meV. Inset: temperature dependence of the integrated
spectral weight W (ωc) with ωc = 3000 cm−1.

high energies, a finite temperature dependence of ñ reflects
directly in a sizable temperature-dependent depletion of W (ωc)
when a finite cutoff ωc is employed.

In Fig. 8, we show the evolution of the optical conductivity
for three different temperatures, using again the multiband
scattering matrix λαβ and the bosonic spectrum estimated in
Ref. 15 to reproduce the Fermi-surface shrinking of LaFePO
at T ≈ 10 K. Here we assume the all these parameters are
temperature-independent and we also use a constant impurity
scattering rate �0 = 10 meV. The corresponding variation of
the spectral weight W (ωc) as a function of the temperature is
reported in the inset, showing an overall reduction of about
10%. Note that such a variation is an order of magnitude
larger than the one expected in a single-band system for
the same coupling value, even when the presence of a finite
bandwidth24,25 and a finite cutoff26,27 are taken into account.
Quite remarkably, this temperature variation is as large as
the one observed in cuprate superconductors, where it has
been interpreted as a consequence of strong correlations.10,11,23

In our case, however, this effect comes primarily from the
temperature dependence of the coherent carriers number,
which is relatively large even when the coupling to the bosonic
mode is not particularly strong.

B. Temperature-dependent bosonic spectrum

As we have seen in Sec. III, the low-energy part of the
optical spectrum resembles a renormalized Drude model,
with an inverse scattering time τ−1

tr proportional to the
imaginary part of the self-energy. As a consequence, if the
boson spectrum is constant in temperature, the broadening
of the optical conductivity as the temperature increases is
directly proportional to the increase of �α(0), as shown, for
instance, in the case of Fig. 8. With this choice, however,
we get an optical width of the Drude-like low-frequency
part at room temperature of about 600 cm−1, much larger
than the scattering rate τ−1

tr � 320 cm−1 that can be fitted
from the available experimental data at T = 300 K.12 This
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observation suggests thus that the increase of �α(0) with
temperature is smaller than predicted by Eq. (23). To account
for this discrepancy, we investigate here the possibility that
the bosonic spectrum is itself temperature-dependent, as has
been suggested also by a recent analysis of optical spectra in
122 compounds.28 In particular, in Ref. 28 it has been shown
that the bosonic spectrum extracted from optics hardens as
T increases, while its total spectral weight, encoded in the
dimensionless couplings λαβ , decreases. This trend is also
consistent with direct measurements of the spin-fluctuations
spectrum by means of neutron scattering in 122 compounds.29

Following Ref. 29, we model such behavior by assuming a
temperature-dependent bosonic spectrum of the form

B(�) = h(T )

π

ω̄0ω

ω2 + ω̄2
0

, (25)

where

h(T ) = Tθ

T + Tθ

(26)

and

ω̄0(T ) = ω0

h(T )
. (27)

We chose the value of Tθ = 150 K to reproduce the ex-
perimental value of the Drude peak in the optical data of
LaFePO at T = 300 K.12 The evolution of the spectrum
B(�) for three representative temperatures T = 0, 100, and
300 K and the corresponding temperature dependence of
the coupling constant are shown in Figs. 9(a) and 9(b),
respectively. Focusing for simplicity once again on band 2,
we plot in panel (c) the resulting real and imaginary parts
of the self-energy, χ2(0) and �2(0). As one can see, for this
choice of parameters the reduction of λ2(T ) is strong enough
to result in a decrease of |χ2(0)| with the temperature and
in a smaller increase of �2(0). As a consequence, also the
temperature evolution of the optical conductivity, shown in

0 50 100 150 200 250 300
T(K)

0

5

10

15

20

25

30

Σ(
ω

=
0,

T
) 

(m
eV

)

0 20 40 60 80
ω (mev)

0

0.05

0.1

0.15

0.2

B
(ω

)

T=0 K
T=100 K
T=300 K

0 100 200 300
T(K)

0.11

0.115

0.12

0.125

0.13

n 2

0 100 200 300
T (K)

0.4

0.6

0.8

1

λ α(T
)/

λ α(T
=

0)(a)

~

|χ2(0)|

Γ2(0)

n2
~

(b)

(c)

FIG. 9. (Color online) (a) Temperature evolution of the bosonic
spectrum according to Eqs. (25)—(27). (b) Temperature evolution of
the dimensionless coupling constant in each band. (c) Corresponding
temperature dependence of χ2(0) and �2(0) (left axis) and of ñα (right
axis) in band 2 using the temperature-dependent bosonic spectrum
B(�) of panel (a).
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FIG. 10. (Color online) Optical conductivity for three representa-
tive temperatures using the temperature-dependent bosonic spectrum
B(�) shown in Fig. 9(a). Here we used a constant impurity scattering
rate �0 = 10 meV. Inset: temperature dependence of the integrated
spectral weight W (ωc) with ωc = 3000 cm−1.

Fig. 10, is markedly different than before. In particular, the
reduction of |χα(0)| with the temperature is reflected now
in an increase of ñα(T ) [see Fig. 9(c)]. The spectral weight
moves thus progressively toward the low-energy coherent part
of the spectrum, leading also to an effective increase of the
spectral weight W (ωc) integrated in a fixed frequency window,
in sharp contrast to what is expected in ordinary single-band
(interacting and noninteracting) systems.10,11,23

V. COMPARISON WITH THE EXPERIMENTS

Even though a detailed comparison with the experimental
optical spectra is beyond the scope of the present paper, we
would like to comment on the possible consequences of our
findings for the physics of pnictides. A first issue concerns
the role of the cutoff in the estimate of both the absolute
value of the spectral weight and its temperature dependence.
From the experimental point of view, a finite cutoff ωc is
always employed in the estimate of the sum rule to avoid
inclusion of interband transitions, so that Wexp ∼ W (ωc). In
pnictides, the choice of ωc is dictated by the observed threshold
to interband transitions, which usually occurs around ωc =
2000–3000 cm−1. This is indeed the case in Ref. 12, where
the experimental estimate Wexp for LaFePO includes only
processes up to a cutoff frequency of ωc = 3000 cm−1. As we
have shown in Fig. 6, the calculated spectral weight collected
up to this same cutoff is about 20% of its asymptotic value W ,
which is instead almost unchanged (within ∼5%) from the bare
value W0. While comparing with the experiments, we must
recall that our starting model has renormalized DFT bands,
so that W0 = 0.5WDFT. As a consequence, after inclusion of
the low-energy spin fluctuations, we estimate overall W (ωc) �
0.4WDFT, that is, the main source of spectral-weight reduction
still comes from correlation effects. We observe, however,
that for the range of parameters used here, W (ωc) is very
near to the spectral weight W̃ that one would obtain from a
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rigid-band shift. The reason is that, as we have seen in Sec. II,
the incoherent part of each spectral function extends up to
energy scales of the order of the bandwidth of the coupled
band, that is, over energy scales much larger than the typical
boson energy ω0. As a consequence, even though there is
no theoretical sum rule relating W (ωc) to W̃ , on the energy
scales considered in the experiments this could be a good
approximation for it. Note, however, that the situation could
be slightly different in the 122 compounds, where the most
populated band is also the less coupled to spin fluctuations,18

making it difficult to predict a priori in a precise quantitative
way the relevance of the shrinking on the absolute value of the
optical sum rule with respect to DFT.

A more direct effect of the Fermi-surface shrinking on
the optical data is instead the temperature dependence of the
sum rule. Indeed, as we discussed in the previous section,
the temperature dependence of W (ωc) is strongly affected by
the temperature evolution of the coherent charge density ñα ,
which in turn is an indirect probe of the temperature evolution
of the spin-fluctuation spectrum. Quite interestingly, recent
optical measurements in both carrier-doped30,31 and isovalent-
substituted32 122 compounds show that Wexp increases with
increasing temperature, in contrast to any ordinary behavior
in a single-band system.10,11,23 Within our scenario, this
suggests that the coupling to the spin fluctuations is actually
temperature-dependent, leading to an increase of ñα as the
temperature increases, see Fig. 9(c), and to a progressive
population of the low-energy optical spectrum, see Fig. 10. It
is worth noting that our approach completely neglects the role
of optical (q = 0) interband transitions, which are presumably
less relevant than the single-band transitions in the range of
frequencies considered here. However, a detailed analysis of
the role of these interband transitions and of their possible
relevance in the experiments is at the moment an open question
that deserves further theoretical investigation.

A third outcome of our results is related to the possible
observation of these anomalous temperature behaviors in
the dc transport properties. Indeed, from the approximate
expressions (18) and (19) for the dc conductivity, it is clear that
as the temperature increases, both ñα(T ) and �a(T ) contribute
to the temperature dependence of the dc conductivity. In
other words, for a multiband system with dominant interband
interactions, one cannot simply attribute the T dependence
of the resistivity to scattering processes, since also the
density of coherent carriers can have a nontrivial temperature
dependence. This observation could shed new light also
on the comparative analysis of dc and Hall conductivities
carried out in Refs. 33 and 34, where part of the anomalous
behavior reported there could be accounted for by relaxing
the assumption of a constant density of carriers with the
temperature.

VI. CONCLUSIONS

In this paper, we analyzed systematically the behavior of
the optical-conductivity sum rule in a multiband system with
dominant interband interactions, as is the case in pnictide
superconductors. Due to the strong particle-hole asymmetry
of these systems, the coupling to a collective mode leads
to a many-body induced band shift and to a corresponding
shrinking of the Fermi surface areas. In this context, we have
shown, however, that the number of particles in each band does
not scale with the Fermi areas, but it is almost unchanged.
Such behavior has been explained in terms of a transfer of the
spectral weight from the coherent states related to the reduced
Fermi areas to the unoccupied part of the noninteracting bands.
As we have discussed in the present paper, the effects of such
redistribution of spectral weight on the optical spectrum are
quite different from what is expected in single-band systems.
In particular, we have shown that only a fraction ∼ñ/m∗ of the
total weight ∼n/m is collected in the coherent low-energy part
of the spectrum, while the rest is recovered as higher-energy
incoherent processes. As a consequence, the unavoidable use
of a finite cutoff ωc in the experimental determination of the
optical sum rule is expected to have a much stronger effect than
in the single-band case. There are two main consequences.
(i) Wexp usually underestimates the theoretical sum-rule value
W in a percentage that cannot be established a priori, since
it depends on the parameter values. In the case of LaFePO
discussed here, Wexp turns out to be about 20% smaller than
W . As a consequence, if one assumes that W is already
strongly reduced (∼50%) by correlations,8,9 the many-body
effect due to spin fluctuations is a small fraction (∼10%)
of the DFT value WDFT. (ii) The temperature evolution of
the optical sum rule turns out to be an indirect measurement
of the temperature evolution of the Fermi-surface areas. For
instance, a temperature dependence of the spin-fluctuation
spectrum could suggest that the ω-integrated spectral weight
W (ωc) could increase with temperature, in sharp contrast
to the case of interacting single-band systems, as, for
example, cuprate superconductors. All these findings pose
strong constraints on the analysis of optical data in Fe-based
materials, showing once more that the peculiar semimetal
and multiband character of these systems forces us to revise
standard paradigms appropriate for single-band correlated
materials.
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