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Excitation spectrum of a two-dimensional long-range Bose liquid with supersymmetry
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We have studied the excitation spectrum of the specific two-dimensional model of strongly interacting Bose
particles via mapping of the many-body Schrödinger equation in imaginary time to the classical stochastic
dynamics. In a broad range of coupling strengths α, a roton-like spectrum is found, with the roton gap being
extremely small in natural units. A single quantum phase transition between a strongly correlated superfluid and
a quantum Berezinsky crystal is found.
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I. INTRODUCTION

Usually the system of Bose particles at zero temperature
exists in one of two possible ground states: superfluid or
crystalline. A more exotic option is the “supersolid” ground
state suggested long ago,1 which attracted a lot of attention
recently;2 this is a state which is expected to possess both
superfluid and crystalline order simultaneously. Another
direction of the search for unusual quantum ground states
is related to a search for a “Bose metal,” that is, a bosonic
analog of a Fermi-liquid; see, for example, Refs. 3 and 4.
Such a state would possess neither superfluid nor crystalline
order. The suggestion to search for such a strange quantum
state was made 20 years ago in Ref. 5, in relation to classical
thermodynamics of a three-dimensional vortex liquid in high-
temperature superconductors. This idea was further developed
in Ref. 6 where two different models of a strongly interacting
Bose liquid were considered (note that Refs. 5 and 6 refer to
continuous two-dimensional (2D) Bose liquids without any
lattice, whereas Refs. 3 and 4 consider lattice models). The
arguments were given in Ref. 6 in favor of existence of a
new, unusual ground state which is still a liquid but is not a
superfluid. One of these models refers to 2D bosons interacting
with a 2D dynamic U (1) gauge field, with an effective coupling
constant ∼1. The second model, of Kane, Kivelson, Lee, and
Zhang (KKLZ),7 is purely static, and it has the remarkable
feature that its exact ground-state wave function is represented
in a simple Jastrow form.

It was shown later in Ref. 8 that the KKLZ model
obeys nonrelativistic supersymmetry, which allows to obtain
a number of interesting results analytically. The KKLZ model
contains a coupling constant α such that small values α � 3
definitely lead to a gapful superfluid state, whereas at very
large α � 35 a kind of a “Berezinsky crystal” with power-law
decay of positional correlations is stabilized, according to
Ref. 9. An issue was raised in Ref. 8 about the possible
existence of a third intermediate ground state of the “normal
liquid” type, which could exist in some part of the broad
range 3 � α � 35. Supersymmetry of the KKLZ model
makes it also possible to compute time-dependent quantum
correlation functions via classical Langevin dynamics (the
relation between supersymmetry and Langevin dynamics was
discussed, in particular, in Ref. 10). A similar approach was
proposed by Henley11 for the lattice quantum systems and used
efficiently in Refs. 12 and 13 to explore the excitation spectrum

of quantum dimer models on triangular and square lattices at
the Rokhsar-Kivelson point.14 More recently, the same lines
of ideas were developed in Ref. 15 for quantum spin models.

In the present paper, we report the results of extensive
numerical studies of the dynamic density-density correlation
function in the KKLZ model through a broad range of coupling
strengths 2 < α < 40. The presence of a roton-like branch of
the excitation spectrum is demonstrated, with the ratio of the
roton gap � to the plasma frequency ω0 strongly decreasing
with increase of α. Right before the crystallization transition
at α = αc ≈ 37, this ratio becomes less than 3 × 10−3; still
we could not identify any finite interval of α < αc where
the roton gap would be exactly zero without a Berezinsky
crystal being formed. An effective roton mass m∗ defined
via the spectrum ω(p) = � + (p − p0)2/2m∗ near the roton
minimum is found to be weakly dependent upon α. The
spectral weight S(p,ω) is well approximated by the single
quasiparticle peak at ω < 2�, whereas at higher energies
the quasiparticle spectrum is undefined due to the strongly
decaying nature of the excitations. Our results support the
existence of a superfluid ground state all the way up to the
crystallization transition, but the transition temperature Tc(α)
scales with �(α) and becomes extremely low at α close to αc.

II. THE MODEL AND METHOD

We study the KKLZ model of 2D interacting Bose particles
characterized by the exact ground-state wave function of
Jastrow form

�0(r1, . . . ,rN ) = const
∏
j>k

|rj − rk|2αe−παn
∑

i r2
i . (1)

Here n is the particle density and α is a parameter. Many-body
probability density P0(r1, . . . ,rN ) = |�0(r1, . . . ,rN )|2 can be
considered as a Gibbs measure for a classical 2D liquid with
potential energy

V {ri} = −4αT
∑
j>k

ln |rj − rk| + 2παT n
∑

i

r2
i (2)

and temperature T . the quantum Hamiltonian of the KKLZ
model is defined as

Ĥ =
∑

j

∑
μ=x,y

q̂
†
j,μq̂j,μ, q̂j,μ ≡ ih̄

∂

∂rj,μ

+ i

2

∂V

∂rj,μ

, (3)
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where we put T = h̄ and 2m = 1. Langevin dynamics leading
to the Gibbs distribution P0(r1, . . . ,rN ) is defined as

drj,μ

dt
= −∂V {ri}

∂rj,μ

+ ξj,μ(t), (4)

where ξj,μ(t)ξk,ν(t ′) = 2T δjkδμνδ(t − t ′). Our goal is to
compute the dynamic density-density correlation function
S(k,t) = 1

V 〈nk(t)n−k(0)〉 (V is the system’s volume) in the
ground state (GS) of the Hamiltonian (3). In terms of spectral
expansion it is given by S(k,t) = ∑

i |〈GS|nk|k,i〉|2e−iωk,i t ,
where i denotes all quantum numbers except the momentum
k. The equivalence 8,10,11,15 of quantum and classical dynamics
for the theories like the one defined by Eq. (3) allows us to
use classical simulation of the Langevin dynamics defined
in Eq. (4) to compute S(k,t) in the imaginary-time domain:
S(k, − iτ ) = S(k,τ ), where

S(k,τ ) =
∫ ∏

j

drj (0)drj (τ ) (5)

×P (rj (0),0,rj (τ ),τ )
1

V
∑
i,j

eikri (τ )e−ikrj (0), (6)

where P (rj (0),0,rj (τ ),τ ) is the two-time N -particle joint
distribution function for the stochastic diffusion process
defined by Eq. (4). For the derivation of Eq. (6), see
Appendix A.

We begin with the application of our computational method
to the simpler case of the Calogero-Sutherland model (CSM) 16

defined on a one-dimensional circle of length L. The CSM
ground-state wave function is ψ0 = ∏

i<j sinλ(πxij /L), where
λ > 1/2, and arbitrary otherwise. The corresponding classical
potential energy is VCSM = −λ

∑
i<j ln sin2 (πxij /L). We

simulate the CSM model with N = 200 particles via Langevin
dynamics to compute its dynamic structure factor S(k,τ ) and
compare with exact results available.17 According to Ref. 17,
CSM spectral density S(k,ω) = ∑

i |〈GS|Ak|k,i〉|2δ(ωi − ω)
is nonzero in a finite region ω ∈ [E−(k),E+(k)] only, where
E− = vs(k − k2

k0
),E+ = vs(k + k2

λk0
), and vs = πλ n

m
and k0 =

2πn. In Fig. 1 we plot results of numerical simulation for
λ = 2 together with theoretical low bound curve. In our
computation, the lower bound of the spectrum was deter-
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FIG. 1. Computed (CSM) lower bound of the spectrum Emin(k)
for λ = 2 (circles) and results for simple spectral average ωfm(k)
(triangles). Lines represent the exact theoretical lower bound E−(k)
(solid line), static structure factor S(k) (dashed), and vs slope (dotted).

mined as the extrapolation Emin(k) = limt→∞ d lnS(k,t)/dt ;
another spectral characteristic is its simple average ωfm(k) =∫ ∞

0 ωS(ω,k)dω = d lnS(k,t)/dt |t→0. The agreement be-
tween data for Emin(k) and theoretical spectral boundary
E−(K) is remarkable. It proves the capability of our method
to capture gapless excitations with large wave vectors k ∼ k0,
which are invisible in the “first moment” approximation ωfm.
Note that for small k � k0, data for Emin(k) and ωfm(k)
coincide, as they should for a spectral density nearly saturated
by single-particle excitations.

III. THE ROTON GAP AND TRANSITION
TO THE QUASI-CRYSTAL

Now we turn to our major subject: the search for low-
energy roton modes in the KKLZ model defined by the
Hamiltonian (3). An example of the excitation spectrum in
the strong coupling region, α = 20, is shown in Fig. 2, here
and below N = 256. We plot here the data for Emin(k) for
the wave vectors k in the vicinity of k0 = 2π

√
n, where static

structure factor S(k,t = 0) has a peak. The inset to Fig. 2 shows
an estimate of Emin(k) in a broad range of k via best fit of
S(k,τ ) to the single exponent Ae−E1τ . This fitting procedure
is slowly converging to the true result, so discrepancies are
hard to estimate and therefore not shown. But it still provides
a qualitative picture of the excitations in the whole k range.
We see that low-k plasma oscillations decay, and their energies
can be much lower than exactly known ωfm(k → 0) = ω0. In
the main panel of Fig. 2 we show Emin(k) in the narrow region
around k0, obtained via a more accurate fitting procedure,
described in Appendix B.

A roton minimum in Emin(k) is clearly visible at k = k0;
below we denote the roton gap as � = Emin(k0). For α = 20
the magnitude of the roton gap � is found to be very
small, about 1% in comparison with the plasma frequency
ω0 = 4πα n

m
, which sets a natural energy scale in the problem.

In particular, ω0 is the frequency of the uniform density
oscillations in the KKLZ model, see Ref. 8 for details.
Thus, our first qualitative observation is that in the strong-
coupling region the excitation spectrum shows a very deep
roton minimum. As follows from the general arguments,18

a well-defined excitation spectrum may not exist in the k

region where quasiparticle decay is allowed by conservation
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FIG. 2. Quasiparticle energy near the roton minimum for α = 20
obtained by the fit of S(k,τ ); the inset shows a rough estimate (see
main text for explanation) for E(k) in the whole k range.
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FIG. 3. Roton gap � as function of α, logarithmic scale.

laws. For the roton-like spectrum with a deep minimum, the
“no-decay” condition is fulfilled at energies E < 2� only: at
higher excitation energy, the decay into two rotons is allowed
with a high rate. Well-defined roton excitations may exist in the
momentum range p− < k < p+ around the minimal point k0.
According to Ref. 18, the excitation energy E(k) is expected to
approach the end points p± nonanalytically, with a zero slope:

E(k → p±) = 2� − ae−b/|k−p±|, (7)

where p± are called spectrum terminating points, and a and
b are some positive constants. Equation (7) results18 from
an exact summation of the most singular diagrams for the
momenta k ≈ p±. Our data presented in Fig. 2 (main panel)
are in good qualitative agreement with this prediction. Indeed,
we see here two inflection points which are necessary for the
E(k) curve to approach the end points with zero slope; these
spectrum end points are situated at (p−,p+) ≈ (0.8,1.2)k0.
Unfortunately, high-precision computation of Emin(k) close to
the end points was found to be very difficult due to increasing
data scattering.

Similar analysis of the relaxation data for different values
of the coupling constant α yields the dependence of the gap
magnitude � on α, as presented in Fig. 3 in logarithmic scale.
Increase of α leads to a very sharp (nearly exponential in the
range 10 < α < 35) decrease of the gap magnitude �. The
same data for the region of large α � 20 are presented in
Fig. 4 in linear scale. These results are consistent with linear
vanishing of the gap at α ≈ 37–38, slightly above the point
of the crystallization transition αold = 35 found in Ref. 9 for
a classical 2D Coulomb gas. However, the values of � in this
range contain large relative errors which makes it difficult to
determine unambiguously where �(α) vanishes. To approach
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FIG. 4. Ratio of the roton gap to plasma frequency in the large-α
range.
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FIG. 5. (Color online) Inverse logarithmic derivative of S(k0,τ )
for α = 35 (blue dots), 37 (red boxes), and 40 (black bars) as measured
directly in the simulation.

the problem of location of the quantum critical point from
another perspective, below we compare long-time asymptotics
of the dynamic structure factor S(k0,τ ) in the liquid and
crystalline phases. The crystalline phase of the KKLZ model
is very specific. This is a densely packed triangular lattice, but
instead of the usual transverse phonons with ω ∼ q, it supports
phonons with parabolic dispersion, ω(q) ∼ q2. This comes
from the fact that the shear modulus of this lattice vanishes
itself in the long-wavelength limit, μ(q) ∝ q2, see Ref. 8; here
the wave vector q = p − Gi , where Gi is one of principal
inverse lattice vectors. The presence of soft shear modes leads
to a specific long tail in the time decay of the angle-averaged
structure factor S(k0,τ ) = ∫

dϕ

2π
S(k0 cos ϕ,k0 sin ϕ,τ ), which

can be measured by Langevin dynamics:

−dlnS(k0,τ )

dτ
= 1

2τ
− f (τ ), τ � m∗

k2
0

, (8)

where f (τ ) > 0 decays exponentially with τ and m∗ is the
effective mass (to be discussed later). Now we define a function
y(τ ) = −[2dlnS(k0,τ )/dτ ]−1 and note that according to
Eq. (8) it should never cross the line y = τ . On the other hand,
in the liquid phase with a nonzero gap �, the function y(τ )
approaches 1/2� at τ → ∞, so its crossing with the straight
line y = τ occurs definitely. In Fig. 5 we present simulation
results for the function y(τ ) at α = 35, 37, and 40. According
to the criterion formulated above, the critical value αc is also
found in the range 37 < αc < 38. The data summarized in
Figs. 4 and 5 support the conclusion that the liquid state with
a small roton gap � transforms into a crystalline state via the
single phase transition where � vanishes.

IV. SUPERFLUID DENSITY AND BKT TRANSITION

Coming back to the discussion of the the gapful liquid phase
at α < αc, we note that low-lying excitations with k ≈ k0

are characterized, apart from the gap value �, by the value
of the effective mass m∗ = [d2E(k)/dk2|k0 ]−1. Measurement
of the S(k,τ ) decay in the vicinity of k0 allows us to
determine m∗ in a broad range of α, as shown in Fig. 6. The
results shown in Figs. 4 and 6 yield the parameters of the
low-lying excitation spectrum ε(k) = � + (k−k0)2

2m∗ . Allowing
us to determine the temperature of the superfluid-to-normal
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FIG. 6. Quasiparticle mass m∗ weakly depends on α even at the
transition point.

transition Tc(α). Within the Landau-type mean-field theory
Tc is defined as the temperature where superfluid density
ns = n − nn vanishes. Neglecting quasiparticles interaction,
we find the equation for the critical temperature Tc:

n = − 1

2m

∫
∂fB(ε,Tc)

∂ε
k2 d2k

(2π )2
, (9)

where fB(ε,T ) is the Bose distribution function. Evaluation of
the integral (9) leads to the result Tc(α) ≈ 0.3�(α) valid in the
range 10 � α < αc. Note that corrections to Tc due to vortex
depairing (the Berezinsky-Kosterlitz-Thouless mechanism)
are very weak, due to the smallness of the roton gap � in
comparison with the plasma frequency ω0.

In conclusion, we have computed the excitation spectrum
of a 2D Bose liquid with long-range interaction in a strong-
coupling regime. A broad range of coupling strengths α < αc

is found where the gapful superfluid state is stable at T = 0
in spite of a very small value of the roton gap �. Our data
suggest a single quantum phase transition from such a strongly
correlated superfluid into a quantum crystal phase at αc ≈ 37–
38. At smaller α, the superfluid state is stable up to the critical
temperature Tc ≈ 0.3�(α), which is orders of magnitude lower
than a naive estimate T0 ∼ h̄2n/m would give.
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APPENDIX A: MAPPING FROM QUANTUM MECHANICS
TO CLASSICAL STOCHASTIC EVOLUTION

The standard Fokker-Planck equation corresponding to the
Langevin dynamics, Eq. (4), is

Ṗ (r1, . . . ,rN,t) =
∑

j

∂

∂rj

(
T

∂

∂rj

+ ∂V

∂rj

)

×P (r1, . . . ,rN,t) = ŴP . (A1)

The equilibrium solution of Eq. (A1) is given by P0 = e−V/T .
One can check that after the change of variables P =
�0(r1, . . . ,rN )�(r1, . . . ,rN,t), Eq. (A1) assumes the form
of imaginary-time Schrödinger equation �̇ = Ĥ�, where

Hamiltonian H is constructed from the potential V as shown in
Eq. (3). For the following, we denote a position in coordinate
space (r1, . . . ,rN ) ≡ ϕ and will not use the specific form of
Ĥ . The correspondence of classical and quantum correlation
functions that we prove below is valid for any symmetric
H = HT for which the ground state �0(ϕ) is known exactly.
The symmetry condition H = HT leads to H ∗ = H , which
enables us to choose real wave functions, so P (ϕ,t) is always
real.

Quantum states form a full system of orthogonal functions:

H → {�λ(ϕ),λ}, (A2)

1̂ =
∑

λ

�λ(ϕ)�λ(ϕ′) = δ(ϕ − ϕ′). (A3)

Consider the quantum correlation function

Cq(t) = 〈�0|Ae−iH tB|�0〉. (A4)

Inserting into the Eq. (A4) the decomposition of the unity
operator (A3), we obtain

Cq(t) =
∑

λ

〈�0|A|λ〉e−iλt 〈λ|B|�0〉

=
∫

dϕdϕ′ ∑
λ

�0(ϕ)�λ(ϕ)A(ϕ)

×�0(ϕ′)�λ(ϕ′)B(ϕ′)e−iλt , (A5)

where A and B are diagonal operators (i.e., functions of coordi-
nates ϕ only). The derivation of the quantum-classical mapping
begins with replacing variables P (ϕ,t) = �0(ϕ′)�(ϕ′,t). The
operator governing the classical stochastic evolution is W =
−�0(ϕ)Ĥ 1

�0(ϕ) . It is easy to see that Pλ(ϕ) = �0(ϕ′)�λ(ϕ′)
are the eigenfunctions for this operator, yet this system of
eigenfunctions is neither normalized nor orthogonal since the
operator W is a non-Hermitian one. Combining the identity
H = HT and the definition of W , we obtain P0W

T = WP0,
which is the detailed balance condition.

Rewriting Eq. (A5) formally in classical notation, we find

Cq(t) =
∫

dϕdϕ′ ∑
λ

Pλ(ϕ)A(ϕ)Pλ(ϕ′)B(ϕ′)e−iλt . (A6)

Now we need to evaluate the classical correlation function. We
have the equation for probability density P (ϕ)

Ṗ = WP, (A7)

and the system is in the equilibrium state P (t) = P0. The
two-time correlation function C(τ ) [as given by the right-hand
side of Eq. (6)] is defined via stochastic process two-time
probability P (ϕ,0,ϕ′,τ ) as

C(τ ) =
∫

dϕdϕ′P (ϕ,0,ϕ′,τ )A(ϕ)B(ϕ′), (A8)

where P (ϕ,0,ϕ′,τ ) = P (ϕ)pτ
ϕ→ϕ′ according to the definition

of a conditional probability pτ
ϕ→ϕ′ that the system will be in

configuration ϕ′ at time τ , given that it was in configuration
ϕ at time τ = 0. Substituting this expression for P (ϕ,0,ϕ′,τ )
into Eq. (A8) we find

C(τ ) =
∫

dϕdϕ′P0(ϕ)A(ϕ)pτ
ϕ→ϕ′B(ϕ′). (A9)
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To evaluate pτ
ϕ→ϕ′ = (eWτ )ϕ′δ(ϕ′ − ϕ), we need to know

the decomposition of the δ function into eigenmodes. It is
convenient to use “quantum” basis (since the classical operator
W is non-Hermitian):

δ(ϕ′ − ϕ) =
∑

λ

�λ(ϕ)�λ(ϕ′) =
∑

λ Pλ(ϕ)Pλ(ϕ′)
P0(ϕ)

. (A10)

Now we can contract this δ function with eWτ (remember that
eigenvalues are −λ) to obtain

pτ
ϕ→ϕ′ = (eWτ )ϕ′δ(ϕ′ − ϕ) =

∑
λ Pλ(ϕ)Pλ(ϕ′)e−λτ

P0(ϕ)
. (A11)

For the classical correlation function, we obtain

C(τ ) =
∫

dϕdϕ′P0(ϕ)A(ϕ)

∑
λ Pλ(ϕ)Pλ(ϕ′)e−λτ

P0(ϕ)
B(ϕ′)

=
∑

λ

Pλ(ϕ)A(ϕ)Pλ(ϕ′)B(ϕ′)e−λτ . (A12)

Comparing Eqs. (A12) and (A6) we find the relation wanted:

Cq(t) = C(it). (A13)

APPENDIX B: DETAILS OF DATA ANALYSIS

For a rotonic spectrum with gap �, the quasiparticle
continuum begins at ω > 2�. It can be seen by considering
two rotons with minimal energy (k1,2 = k0) and arbitrary angle
between k1 and k2. Total energy is 2�, and total momentum
can be set arbitrarily in the region K < 2k0. Rotons are the
only detected excitations below the continuum:

S(ω,k) = Aδ(ω − E(k)) + Scon(ω,k), (B1)

Scon(ω < 2�) = 0, (B2)

E(k) ≈ � + (k − k0)2

2m∗ at k → k0. (B3)

In the region k ∈ [p−,p+] we assume the main contribution to
come from a quasiparticle, i.e., in Eq. (B1)

A �
∫

Scon(ω,k) dω, (B4)

so that the exact shape of Scon(ω) does not matter. For
data fitting we use rectangular spectral density Scon(ω) = B,

2� < ω < ωmax, so for each value of k there are four fitting
parameters: A,E(k),B,ωmax, apart from the value of � =
E(k0) that is the same for all k. We minimize the mean-square
deviation

∑
i[Sfit(ti) − Ssim(ti)]2 to find E(k) plotted on Fig. 2.

We also check the condition (B4) and find that it is violated
in the close vicinity of terminating points, thus the statistical
error of determining E(k) grows there.

To collect the data presented in Fig. 3, we do not need to use
the k regions near the terminating points k ≈ p−,p+, so we
can use inequality (B4) and estimate E(k) just as dlnS/dt |t=to ,
where to is sufficiently long to lead to additional exponential
damping of the continuum modes. Note that inaccuracy in
determination of lnS (and its derivative) grows exponentially
with to, since 1/S ∼ eE(k)to . Therefore the finite simulation
time determines how long is the optimal interval to we can
use. The derivative dlnS/dt can be accessed with the use
of a Monte Carlo estimator (subtracting the S values for
consequent configurations), or by drawing a line through the
sequence of points lnS(ti),ti ∈ [to − δT /2,to + δT /2]. These
approaches yield similar results, but the latter is more insightful
when one tries to assign error bars σE(k) to the results for E(k).
These errors contain a standard N-point slope measurement

error σNE =
√

12
N

σ lnS
δT

and the systematical overestimating of
E(k) due to the continuum modes. The second source of errors
is related to the fact that lnS(ti) is not exactly a linear function
of time. Assuming that the derivative dlnS/dt changes by δE

in the interval δT , we can estimate possible systematic errors as
σcE = δEe−(2�−E)δT /2/(1 − e−(2�−E)δT ). The denominator
of this expression diverges while k approach terminating
points, which reminds us of the range of applicability of
the method we used. Surprisingly, the data analysis using
N-point treatment of lnS(t) and neglecting systematic shift
σcE can be performed in the whole range of k ∈ (p−,p+).
This method catches nonanalytic behavior of E(k) near the
spectrum terminating points, as well as vanishing of the roton
gap � while α approaches αc. In both these cases, error
bars σNE grow considerably, indicating the approach to a
transition.
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