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Proposed Aharonov-Casher interference measurement of non-Abelian vortices
in chiral p-wave superconductors
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We propose a two-path vortex interferometry experiment based on the Aharonov-Casher effect for detecting
the non-Abelian nature of vortices in a chiral p-wave superconductor. The effect is based on observing vortex
interference patterns upon enclosing a finite charge of externally controllable magnitude within the interference
path. We predict that when the interfering vortices enclose an odd number of identical vortices in their path, the
interference pattern disappears only for non-Abelian vortices. When pairing involves two distinct spin species,
we derive the mutual statistics between half quantum and full quantum vortices and show that, remarkably, our
predictions still hold for the situation of a full quantum vortex enclosing a half quantum vortex in its path. We
discuss the experimentally relevant conditions under which these effects can be observed.
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I. INTRODUCTION

It has been long understood theoretically that topology in
two spatial dimensions permits anyonic exchange statistics of
identical particles in addition to the bosonic and fermionic
possibilities.1 Non-Abelian anyons, for which different
exchange operations may not commute, have attracted great
attention, particularly as building blocks of a topologically
protected quantum computer.2 Over the past several years, the
quest for realizing non-Abelian anyons has been focused on the
fractional quantum Hall (FQH) system (e.g., at filling factor
5/2) and the two-dimensional chiral p-wave superconductor
(CpSC).3 Theoretical proposals for detecting non-Abelian
anyons in FQH systems have exploited quantum interference,4

leading to active experimental study. In contrast, analogous
explorations in the latter system have been scarce.5 In this
work, we propose an interferometry experiment for directly
detecting non-Abelian anyons in a CpSC.

In 5/2 FQH proposals, an Aharonov-Bohm interference
pattern is expected when e/4 quasiparticles take two paths
that enclose a region of flux and an even number of e/4
quasiparticles. Their non-Abelian statistics manifest as the
effacing of this pattern when another e/4 quasiparticle is
introduced in this region. Extending this idea to the setting of
a CpSC poses a conceptual challenge. Non-Abelian anyons
in a CpSC are neutral Majorana modes bound to vortex
cores,6 requiring an alternative means of interference. We show
that the key to resolving this issue lies in the lesser known
Aharonov-Casher (AC) effect,7 which is an elegant “dual” to
the Aharonov-Bohm effect in that the roles of charge and flux
are interchanged.8 This is our first central result.

The simplest incarnation of a CpSC, the “one-component
CpSC,” has been recently proposed in the superconducting
state on the surface of a strong topological insulator induced
by proximity to a conventional superconductor,9 where locking
of spin and orbital degrees of freedom effectively ensures
that only a single component participates in the condensate.
The situation is more complex in a “two-component CpSC”
with an unconventional pairing similar to that of superfluid
3He-A (Ref. 10) due to the existence of two distinct spin
components. A prominent solid-state candidate in this class
is the perovskite-structured material Sr2RuO4 (SRO).11 The

presence of both components doubles the number of Majorana
states in the core of a full quantum vortex (FQV) and
renders their exchange statistics trivial. Fortunately, the order
parameter allows for a topologically stable half quantum vortex
(HQV) with a single Majorana bound state. A HQV carries a
quantized flux of h/4e and acts as a vortex in just one spin
component. It has been argued that certain bounded geometries
may favor HQVs energetically.12 Recent experiments have
found strong evidence for the presence of h/4e vortices bound
to the inner radii of mesoscopic SRO rings.13 Inspired by these
experiments, we tailor our proposal to ring geometries and
consider the effects of two spin components. It is likely that,
due to stability conditions, itinerant vortices are FQVs. We
show that, quite remarkably, under some reasonable conditions
much of our proposed interference physics is preserved even
when FQVs go around a HQV stabilized around a mesoscopic
hole. This is our second central result.

The paper is organized as follows. In Sec. II we discuss
our proposed setup. A review of the AC effect is found in
Appendix A. In Sec. III we discuss the Majorana modes in the
two-component CpSC, with explicit calculations of the general
solution and the non-Abelian braiding of a FQV around a HQV.
A detailed discussion of the solutions and their energy splitting
is given in Appendices B and C. In Secs. IV and V we specify
the experimental procedure and discuss the conditions under
which our proposal may serve as a test of the non-Abelian
statistics. Some possible effects of multiple layers in SRO on
our results are discussed in Appendix D.

II. PROPOSED SETUP AND MECHANISM

The geometry that we propose is shown in Fig. 1. An
annulus formed by a mesoscopic CpSC sample is connected
to leads. A supercurrent density, js , is maintained in the
sample between the leads. Within the hole, an island supports
variable charge, Q, whose magnitude is controlled by gating.
An applied magnetic field can induce quantized flux through
the hole. The interferometry is brought about by a conspiracy
of several factors as described in the following.

The supercurrent induces a transverse force on vortices,
which in its simplest Magnus form is proportional to
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FIG. 1. (Color online) Geometry of the proposed setup. A
mesoscopic CpSC ring (yellow; light gray in print) is connected to
leads (gray). A supercurrent density js is maintained in the sample.
Due to the Magnus force, vortices (red) flow from bottom to top and
choose one of two paths (L and R) to circumvent the central hole. A
measurable voltage is induced across the leads by the vortex current
Jv via the Josephson relation. Charge Q on the central island (blue;
dark gray in print) is controlled by gates (not shown). A vortex may
be stabilized at the hole, inducing currents around the hole edges
shown by dashed arrows. The vortex channels (red lines) should be
implemented in a way that allows quantum behavior of vortices over
large enough distances, e.g., by using a Josephson junction array.19,20

js × �V ẑ,14 where �V ≡ h/e∗ is the flux quantum carried
by the vortex and ẑ is the unit vector normal to the super-
conducting plane. In a one-component CpSC, e∗ = 2e. In a
two-component CpSC, e∗ = 2e (4e) for a FQV (HQV). This
force causes vortices that enter from the bottom of the sample
to move toward the top edge. These vortices can circumvent the
central hole of the annulus by one of two paths, with amplitudes
tL and tR and associated partial waves |ψL〉 and |ψR〉 denoting
the internal states of the vortices in the system. In principle,
vortices can be guided around the annulus by etching paths
in the superconductor that would pin vortex trajectories. The
associated vortex current is

Jv ∝ |tL|2 + |tR|2 + 2|tL||tR|Re[eiϕ〈ψL|ψR〉], (1)

with ϕ = arg(t∗LtR). The last term represents the interference
between the two paths. As vortices move across the sample,
they generate a superconducting phase difference normal to
their motion. By the Josephson relation, a voltage drop Vs ∝ Jv

develops along js . A measurement of Vs , or equivalently, of
differential resistance for fixed current, therefore constitutes
an interferometry of the two vortex paths.

As a tuning parameter for the interference pattern, we
propose the contribution to the phase ϕ stemming from the
Aharonov-Casher effect, namely, the geometric phase picked
up by the itinerant vortices upon encircling the charge Q on the
central island. This nonlocal effect entails a magnetic moment
μ moving in a static external electric field E. The adiabatic
transport of such a moment around a closed loop causes it to
accumulate a quantum phase7,15

φAC = 1

h̄c2

∮
μ × E · dl.

A flux line carries a moment density ε0c
2�V along its length.

When it encircles a total charge Q (of any distribution), it
acquires a geometric phase φAC = �V Q/h̄ = 2πQ/e∗ (see
Appendix A for details). It can be shown that the phase
φAC is truly nonlocal in that this form remains unaltered
even in the case of an external charge placed at the center
of a superconducting ring in spite of screening effects.7,16

Consequently, as a function of charge Q, Jv in Eq. (1) and
so the voltage Vs would exhibit oscillations with period e∗.

This picture changes drastically when a flux is applied
through the superconductor so as to nucleate a non-Abelian
vortex on the hole in the center of the sample. Now the
interference term also contains a braiding operation of the
itinerant vortices around this vortex. As discussed in previous
work,5,17 when the itinerant vortices are themselves non-
Abelian, this braiding yields 〈ψL|ψR〉 = 0; the interference
term in Eq. (1) vanishes and Vs becomes independent of Q.
Analogous to the FQH case, we propose the obliteration of
the Aharonov-Casher oscillations as the clear signature of
non-Abelian statistics of vortices.

For a one-component CpSC, a vortex carries a flux h/2e

and a single Majorana mode, and these considerations suffice.
However, a FQV in a two-component CpSC contains two
Majorana modes. One might therefore question whether this
interferometry would work if the itinerant vortices are FQVs.
Furthermore, the coupling between these two modes would
split their energies and combine them into a regular fermion.
We now consider this situation in more detail and show that
there is an experimentally relevant window of parameters for
which our proposed interferometry does still work when FQVs
go around a HQV.

III. MAJORANA MODES IN A TWO-COMPONENT CPSC

A. General Majorana solutions

The Hamiltonian for the two-component two-dimensional
CpSC is H = ( h �

�† −hT ), where h = ( p2

2m
− μ)I is the single-

particle Hamiltonian (with μ the chemical potential and I the
identity matrix), and

� = i

2
v�ei�/2{∂x − i∂y,(σ · d)σ2}ei�/2 (2)

is the pairing term. Here σ = (σ1,σ2,σ3) are the Pauli matrices,
d defines the direction of pairing in the space spanned by
the spin-triplet states, � is the phase of the order parameter,
and v� is a constant gap velocity. We represent the electronic
operators as a Nambu spinor, �† = (ψ†

↑,ψ
†
↓,ψ↑,ψ↓), where

ψ†
σ creates an electron with spin σ . Expanded in quasiparticle

modes of energy E we have � = ∑
E χEE , where χT

E =
(uE↑,uE↓,vE↑,vE↓) is the wave function of the Bogoliubov
quasiparticle destroyed by E . Particle-hole symmetry dictates
that E = 

†
−E and thus uEσ = v∗

−Eσ . At zero energy, 0 =

†
0 ≡ γ would be a Majorana fermion.

The Hamiltonian respects several more symmetries in the
absence of external fields. It is invariant under a global SU(2)
transformation � = ( S 0

0 S∗ )� ′, d = R−1
S d′, where S ∈ SU(2)

and RS is the corresponding rotation ∈ SO(3). The Hamiltonian
is also invariant under a rotation by angle φ around the
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z axis, compensated by � → � + φ, and a suitable rotation
of d. Finally, there exists a Z2 symmetry under the mapping
d → −d and � → � + π .

It is this last Z2 symmetry that allows the presence of half
quantum vortices. When encircling a HQV, the phase of the
order parameter changes by π . The extra angular momentum
needed to produce a single-valued Cooper-pair wave function
is provided by rotating d to −d. We consider a configura-
tion where d rotates in an “easy” plane normal to a unit
vector n̂, being the maximal symmetry breaking that still
allows a HQV. Applying a magnetic field will explicitly break
the SU(2) symmetry. We focus on the SU(2) symmetric case
so as to freely choose this axis without affecting the result.

As the vector field d in the presence of a FQV does not
contain any winding, the two zero-energy Majorana modes
can be found by locally rotating d to the y axis, for which the
Hamiltonian decouples into spin components; see Eq. (2). The
two Majorana modes are found to be(

γ1

γ2

)
= 1√

2

∑ [
ei�̃/2f Sd

(
ψ↑
ψ↓

)
+ e−i�̃/2f ∗S∗

d

(
ψ

†
↑

ψ
†
↓

)]
,

(3)

where Sd = e−iδσ ·n̂/2 with cos δ = d · ŷ and n̂ = ŷ × d/| sin δ|
the unit normal to the plane of d and ŷ, �̃ is the local phase
of the order parameter in the absence of the vortex, and f (r)
is an exponentially decaying function of the distance from the
vortex, determined by the vortex profile of �.18

For a HQV, when d rotates in a plane we may choose the
y axis at the intersection of the plane of rotation of d and
xy plane, so that n̂ = (sin β,0, cos β). Then the single Majo-
rana mode of the HQV, γ ′, is also given by Eq. (3) in one
of the spin components, with Sd replaced by e−iβσ ·ŷ/2, which
takes n̂ → ẑ. The details of these solutions are presented in
Appendix B.

B. Non-Abelian statistics

Now consider a HQV on the hole in Fig. 1 and a FQV
in the CpSC with a d vector determined by the local d
prescribed by the HQV. The situation relevant to our proposal
is of transporting the FQV around the HQV adiabatically. The
Majorana mode at the HQV experiences a relative change of
phase �̃ by 2π as the FQV encircles it. Therefore, γ ′ → −γ ′.
At the FQV, d rotates by angle π , i.e., δ → δ + π . When β = 0
(n̂||ẑ), Sd → exp(−i π

2 σ3)Sd = −iσ3Sd. Also, �̃ → �̃ + π so
altogether the Majorana modes at the FQV transform as
γ1 → γ1, γ2 → −γ2.

In the general case β �= 0, Sd → −i(σ · n̂)Sd. This is where
our specific choice for n̂ pays off: We see that σ · n̂ =
e−iβσ2/2σ3e

iβσ2/2, with eiβσ2/2 being a real-valued rotation, so
that by rotating to a Majorana basis(

γ̄1

γ̄2

)
= ei

β

2 σ2

(
γ1

γ2

)
, (4)

we find that altogether

γ̄1 → γ̄1, γ̄2 → −γ̄2, γ ′ → −γ ′. (5)

Thus, the statistics in the new Majorana basis are the same
as when γ̄2 and γ ′ are braided, while γ̄1 is unaffected. These

are the same operations as those for braiding two HQVs
binding Majoranas γ2 and γ ′.17 Similarly, therefore, we find
〈ψL|ψR〉 = 0.

C. Splitting of zero modes

While the above corresponds to the SU(2) invariant situa-
tion, symmetry-breaking terms such as a Zeeman term or spin-
orbit interactions would split the degeneracy between the two
Majorana modes on the FQV. For two such modes γ1 and γ2,
having wave functions χ1 and χ2, respectively, the associated
coupling term assumes the form H1 = iλγ1γ2. It should be
noted that this term is invariant under the transformation
introduced in Eq. (4), suggesting a larger symmetry in the
low-energy sector. Among the terms of the single-particle
Hamiltonian that contribute to λ, the most relevant is the
Zeeman coupling (see Appendix C for details), hZ = −gμB

B · σ/2, which explicitly breaks the SU(2) symmetry of the
underlying Hamiltonian. In Nambu space, the coupling takes
the form H1 = ( hZ 0

0 −hT
Z

). In the leading perturbation theory we
find 〈χ2|H1|χ2〉 = 〈χ1|H1|χ1〉 = 0, and

λ = −i〈χ2|H1|χ1〉 = −gμBB · d/2. (6)

We see that when B ⊥ d no coupling is generated. This is in
fact an exact result: When d lies in the xy plane, the effect of
the Zeeman term is a relative shift of the chemical potential of
the two Majorana modes. We therefore get different functions
f1,2(r) associated with the two spinors χ1,2, but no shift in en-
ergy. When the Zeeman term dominates the energetics, it will
render d perpendicular to B, so that the two Majorana modes
decouple. However, the combination of spin-orbit interaction
and Zeeman term conspire to split the two Majorana modes.

IV. EXPERIMENT

Piecing together the various components, we arrive at the
following steps. (The parentheses refer to a two-component
CpSC.)

(i) In the absence of an applied field through the hole in
Fig. 1, drive a supercurrent js .

(ii) Vary the charge Q on the island enclosed by the hole.
The differential resistance associated with the current ought
to show AC oscillations as a function of Q due to vortex
interference. The period of oscillation would be 2e (4e for
itinerant HQVs).
(iii) Apply a field through the hole to nucleate a singly

quantized vortex (HQV). The interference pattern should
disappear.

(iv) Increase the field to nucleate a second vortex (FQV).
The interference pattern (for itinerant FQVs) should reappear.

If the interference pattern is detected in (ii) and does not
disappear in step (iii), the vortices either do not possess or
cannot maintain their non-Abelian character over the time of
the experiment. In either case, the vortices would not be useful
for topologically protected braiding operations under these
experimental conditions.

V. DISCUSSION

Our proposal requires several conditions to be met. For
the AC effect, the vortices must be well separated from
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the charge on the island in Fig. 1. So, the dimension L

of the hole must be greater than the magnetic penetration
depth. Our proposal requires the coherent quantum motion of
vortices. There is evidence that vortices can act as quantum
objects.19,21 The biggest obstacle for such motion is dissipation
in the vortex core. However, in the range of energies that we
consider (<minigap) the core dynamics is effectively frozen.
Another impediment lies in overcoming vortex pinning by
impurities. Fortunately, superconductivity in SRO requires
some of the cleanest crystals, evidenced by the observation of
a fairly regular vortex lattice.22 In addition, methods have been
developed using the concept of a flux flow transistor to create
an “easy” channel for the flow of vortices, thus considerably
reducing the critical current for the vortex flow. An alternative
for achieving quantum behavior would be to use vortices in
Josephson junction arrays as in the original experiment.19

Some conditions must be met for any statistical interaction
to be observed. First, the system must maintain adiabaticity.
Therefore, the rate for the motion of the vortices must be
smaller than the smallest energy gap in the problem. This
is the minigap that separates the Majorana zero mode in the
vortex core and the next midgap state, h̄v�/L. So, the velocity
of itinerant vortices must satisfy v � v�. This is the most
important condition for a one-component CpSC. Second, the
Majorana modes must remain coherent during the braiding
operations. In a two-component CpSC, the splitting λ of the
two Majorana modes on the FQV results in decoherence. So,
in order to be sensitive to the braiding of Majorana modes in
the presence of a HQV the braiding operation must run over a
time shorter than πh̄/λ; therefore λL/(πh̄) < v � v�.

We now estimate the applicable range of parameters in
SRO, where m ∼ 10 electron masses, h̄v� ∼ 10−3 eV Å and
g ≈ 2.5.11 The vortex velocity is related through the Josephson
relation to the voltage drop Vs across the superconductor: A
vortex crossing the sample changes the superconducting phase
by 2π . So, the voltage sensitivity Vs when Nv vortices move
across the sample is given by Vs/Nv ≈ πh̄v/(eL) � 10−7 V
for L ≈ 1 μm. The conditions for adiabaticity and coherence
of FQV Majorana modes yield B · d � 16 G, which needs
only to be satisfied locally over a coherence length at the FQV.
In fact, the orientation of the d vector is still an unresolved
issue; while a large enough Zeeman field along the z axis
ought to overcome spin-orbit interaction to render d ⊥ B,13,23

recent studies show that this orthogonality might even be the
natural configuration in SRO.24 Additionally, the temperature
must be smaller than the minigap not to excite other vortex core
states that may lead to decoherence, i.e., T < h̄v�/L ∼ 1 mK.
Other constraints on temperature might be imposed by the
coherence condition discussed above. We believe that these
conditions, while stringent, could still be realized in SRO.

Another issue in SRO is the existence of multiple layers. It
is possible that this renders the exchange statistics of HQVs
Abelian. (The non-Abelian nature of excitations in SRO has
also recently been questioned in other ways.25) Our proposal
can be used to see if this is indeed the case. Multiple layers may
also result in decoherence. The interlayer tunneling amplitude
of Majorana fermions, t , depends on microscopic parameters.
(This is different from the tunneling amplitude of Cooper
pairs.) Consequently, in the absence of experimental studies,
it is not clear whether the limit of one independent Majorana

mode per layer would hold or, in fact, whether the Majorana
modes would completely hybridize to form a chiral low-energy
Majorana channel along the c axis. If tunneling is present but
small, the extra energy scale would introduce a decoherence
time ∼ h̄/t for our experiment. A more detailed discussion of
the effects of multiple layers can be found in Appendix D.

VI. CONCLUSION

The proposal advocated in this work presents a smoking-
gun signature of non-Abelian statistics of vortices in a super-
conductor. Our proposal hinges on vortex interferometry based
on the Aharonov-Casher effect; a systematic experimental
study of this effect in chiral p-wave superconductors would
in itself be an important advancement. We have argued that
under reasonable conditions in a two-component chiral p-wave
superconductor, not only half quantum vortices but also full
quantum vortices encircling a stationary half quantum vortex
would exhibit non-Abelian statistics due to the Majorana
modes in the vortex core. Our predicted signature of such
statistics is the clear suppression of the Aharonov-Casher
interference pattern in our proposed set of experiments.
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APPENDIX A: THE AHARONOV-CASHER PHASE

The Aharonov-Casher (AC) effect is closely related to
the more well known Aharonov-Bohm (AB) effect. They
are essentially the same effect, viewed from two relatively
different reference frames and are both special cases of the
more general Berry’s phase.

In the AB effect the quantum mechanical wave function of
a charged particle acquires a geometric Berry’s phase,

φAB = Q

h̄

∮
A · dl, (A1)

where A is the vector potential and dl the element of the path of
the particle. For a charge Q circling a region of flux � = h/e∗,
we have φAB = 2πQ/e∗. This is nonzero even if the flux is
completely confined to an area that has no overlap with the
particle’s trajectory.

In the AC effect, a moving flux line acquires a Berry’s
phase as it circles a region of electric charge. This is the
same AB phase as above but in the reference frame where
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the charge is stationary. Using the Lorentz transformation of
electromagnetism, the simplest form of the AC phase is7

φAC = 1

h̄c2

∮
μ × E · dl, (A2)

when a particle carrying a magnetic moment μ closes a loop
in an electric field E.

Let us explicitly show that this is the same as the AB phase
for any shape of flux line and is irrespective of the charge
distribution, as long as the flux is confined. It was originally
shown in Ref. 7 that for a point charge Q at r0 and a moment
μ at r

E × μ = Qc2Aμ, (A3)

where Aμ is the vector potential of the moment at r0, the
position of the charge. A flux line is a collection of infinitesimal
magnetic moments dμ along its length (with a linear density
dμ = ε0c

2�ds, where ds is an element of length of the flux
line). Using Eq. (A3) in Eq. (A2) we find quite generally

φAC = Q

h̄

∫
ds

∮
(dAμ/ds) · (−dl) (A4)

= Q

h̄

∫
d� (A5)

= 2πQ/e∗. (A6)

We used the fact that
∮

dAμ · (−dl) is nothing but the flux,
d�, due to the moment dμ as seen by the charge if it were
to go around in an inverted loop, but in the same direction as
the flux line. The integration over the flux line then gives the
total flux carried by the flux line, since the flux is confined
completely inside the loop. This result does not depend on the
distance between the flux line and point charge. So, it simply
generalizes to any geometric charge distribution as long as flux
is confined and has no overlap with the charge distribution.

APPENDIX B: MAJORANA MODES OF HQV AND FQV

1. Full quantum vortex

Let us take the d vector to be constant, pointing at some
arbitrary direction. We perform a SU(2) transformation

� = U� ′, U =
(

S 0

0 S∗

)
. (B1)

This maps d → d′ = RSd, where RS is the SO(3) rotation
corresponding to S, since

S†(σ · d)σ2S
∗ = S†(σ · d)Sσ2 = σ · (RSd) σ2. (B2)

We choose S to be a rotation that takes d to the y axis,

S = e−i δ
2 (σ ·n̂), (B3)

where the unit vector n̂ is orthogonal to the plane of d and ŷ and
δ = cos−1(d · ŷ). After this rotation, d → d′ = (0,1,0). The
resulting Hamiltonian is now diagonal in spin indices,

H ′

=
((

p2

2m
− μ

)
I iv�eiθ/2(∂x − i∂y)eiθ/2I

iv�e−iθ/2(∂x + i∂y)e−iθ/2I −(
p2

2m
− μ

)
I

)
,

(B4)

x̂

ŷ

ẑ

α

β

γ

N̂

X̂

ŶẐ

FIG. 2. (Color online) The Euler angles and the plane of rotation
of d for the HQV.

so that it decouples into the two spin components, and we
get two independent zero-energy states (see next section for
details). Here, for simplicity we also assumed a vanishing
small vortex core so that v� is constant everywhere but at the
origin. Using the well-known result for a HQV, we can write
the two zero-energy solutions for H ′,

χ ′
1 = 1√

2

(
f v↑
f ∗v↑

)
, χ ′

2 = 1√
2

(
f v↓
f ∗v↓

)
, (B5)

where v↑ = (1,0)T , v↓ = (0,1)T , and

f (r) = e−iπ/4e−mv�r

{
J0(κr), μ > 1

2mv2
�,

I0(κr), μ < 1
2mv2

�,
(B6)

with κ ≡
√

2m|μ − 1
2mv2

�|. Rotating back to the original
basis, the Majorana modes are given by Eq. (5) in the
manuscript.

2. Half quantum vortices

Let us now consider a d vector that rotates by π in a tilted
plane of rotation, as shown in Fig. 2. We use the standard
notation of Euler angles, taking d to be along the X̂ axis,
which sets it to be

d(r) = (cos α cos γ − cos β sin α sin γ, cos γ sin α

+ cos α cos β sin γ, sin β sin γ ). (B7)

By choosing γ (r) = θ/2, in the polar coordinates r = (r,θ ),
the d vector rotates by π as we go around the origin,

d(r,θ ) =
(

cos α cos
θ

2
− cos β sin α sin

θ

2
, cos

θ

2
sin α

+ cos α cos β sin
θ

2
, sin β sin

θ

2

)
. (B8)

The rotation

S = e−i
β

2 σ ·N̂ (B9)

takes d → d′ = RSd in the xy plane. So,

eiθ/2(σ · d′)σ2 =
(

ie−iα 0

0 −ieiαeiθ

)
. (B10)
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Therefore, there is a vortex only in the spin-down component.
Then, the zero energy solution is

χ ′
1 = 0, χ ′

2 = 1√
2

(
f v↑
f ∗v↑

)
, (B11)

with an associated Majorana mode γ ′. If we take the y axis
to be at the intersection of the plane of rotation of d and the
xy plane, then N̂ ≡ ŷ, and γ ′ is found from Eq. (5) in the paper
in the spin-down component with Sd replaced by S = e−iβσy/2.

APPENDIX C: THE SPLITTING OF MAJORANA
MODES IN THE FQV

Due to the presence of two spin components, two Majorana
modes are present on a FQV. While these Majorana modes are
protected against many types of local perturbations, they will
split by the presence of perturbations that break spin rotation
symmetry. These include the Zeeman splitting, hZ = μ̃σ · B,
and spin-orbit interactions, hSO = λso · (σ × p). Here, μ̃ =
−gμB.

We first consider the case that there are no external fields
and no spin-orbit interactions. When the d vector is directed
along the y axis, the BdG Hamiltonian decouples into the two
spin components. One can then solve independently the BdG
equation in each spin component, and then rotate back to the
d direction using a rotation S,

χ1 = U

(
f v↑
f ∗v↑

)
, χ2 = U

(
f v↓
f ∗v↓

)
, (C1)

where U is given by Eqs. (B1) and (B3). We now add the terms
HZ and HSO. The key point is the transformation properties of
these objects under rotations.

Starting from HZ, we have

HZ =
(

μ̃σ · B 0

0 −μ̃(σ · B)T

)

→
(

μ̃S†σ · BS 0

0 −μ̃(S†σ · BS)T

)
. (C2)

Since S†σ · BS = σ · RSB, B transforms as a vector. We can
therefore take d to lie along the y axis and B in an arbitrary
direction. We then get

λ = −i〈χ1|HZ|χ2〉 = μ̃By = μ̃B · d. (C3)

The spin-orbit term when λso||ẑ was considered in Ref. 26
and found not to lift the degeneracy of the two Majorana
modes. Here we show that, to the leading order in perturbation
theory, this is true for general λso and any direction of d. Using
our solution in Eq. (C1) we have

HSO =
(

λso · (σ × p) 0

0 −λso · (σ × p)T

)

→
(

S†λso · (σ × p)S 0

0 −[S†λso · (σ × p)S]T

)
. (C4)

Since S†λso · (σ × p)S = σ · RS(p × λso), we can find the
splitting in the basis where d is along the y axis by rotating
p and λso by an angle δ around n̂. Therefore, in general the
overlap 〈χ1|HSO|χ2〉 will contain terms involving components

of the integral
∫

(f ∗pf )dr. Noting that f and f ∗ differ by a
constant phase, we find

∫
(f ∗pf )dr ∝ ∫

(∂r|f |2)dr = 0 since
f vanishes at infinity. We conclude

〈χ1|HSO|χ2〉 = 0. (C5)

APPENDIX D: EFFECTS OF MULTIPLE
LAYERS IN Sr2RuO4

1. Non-Abelian statistics in the absence of interlayer tunneling

Sr2RuO4 is a layered material, and when a HQV is threaded
through the system it goes through multiple layers. In the
absence of tunneling between the layers, there will be one
Majorana mode per layer bound to the vortex. Here we show
that even in this limit the physics does not decouple into layers
but in fact results in an even-odd effect in the number of
layers.

We denote the layer index by � = 1, . . . ,N . We start with a
HQV going around a second HQV. For this case, the Majorana
modes on each of the layers for the two vortices acquire a
minus sign. This is generated by the following transformation
on the zero-energy Hilbert space:

U ′
( 1

2 , 1
2 ) =

N∏
�=1

γ�γ
′
�. (D1)

To explore the effect of this transformation on the interference
term, we should understand whether such transformations
for different itinerant vortices will commute,4 i.e., whether
[U ′,U ′′] = 0. It is easy to see that for N even they commute,
while for N odd they do not commute, giving rise to the
obliteration of the AC oscillations only in the latter case.

In the case that a FQV goes around a HQV, we denote by γ ′
1

and γ ′
2 the Majorana modes on the FQV, and by γ2 the modes

on the HQV. The transformation U ′ associated with the FQV
encircling the HQV is given by

U ′
( 1

2 ,1) =
N∏

�=1

γ2,�γ
′
2,�, (D2)

which takes γ ′
1,� → γ ′

1,�, but γ2,� → −γ2,� and γ ′
2,� → −γ ′

2,�,
being the same transformation (per layer) as in the main text.
As the transformations (D1) and (D2) are the same, the results
are the same: The obliteration of the AC oscillations will only
occur for N odd.

Finally, for a FQV encircling a FQV, the associated
transformation is

U ′
(1,1) =

N∏
�=1

γ1,�γ2,�γ
′
1,�γ

′
2,�. (D3)

By relabeling the Majorana modes, the case of N layers here is
analogous to 2N layers for a HQV encircling a second HQV.
Therefore, no effect on the interference pattern is expected in
this case.

To conclude, when either a HQV or a FQV encircles a
HQV, we predict an even-odd effect in the number of layers:
Non-Abelian statistics will be present only in the case of an odd
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number of layers. In contrast, when a FQV encircles another
FQV, the braiding statistics is Abelian.

2. Effects of interlayer tunneling on the Majorana modes

Interlayer tunneling can be introduced between the
Majorana states on a vortex (where we consider a HQV for
simplicity). We note that the tunneling of Majorana modes is
a different physical phenomenon from that of Cooper pairs.
For instance, when the sample has phase coherence along the
z direction (i.e., in the absence of interlayer supercurrents)
and contains a single chiral domain, the Majorana tunneling
amplitude is exactly zero, even though Cooper pairs are free to
move in all directions. This can be understood in two ways.27

First, since the z direction only appears in the kinetic
energy, the momentum pz along the z axis is a good quantum
number. For a given pz the chemical potential is shifted
as μ → μ − p2

z/2m. So, there is a degenerate flat band of
zero-energy Majorana states in the weak pairing regime,
μ − p2

z/2m > 0.26 Equivalently, from the solution to the
Majorana modes above, we can see that the overlap amplitude
of two Majoranas on adjacent layers is proportional to
sin(�φ/2), where �φ is the phase difference between the two
layers. Phase coherence means �φ = 0 and therefore all the
tunneling amplitudes vanish.

This degeneracy is only protected by the additional
symmetry in this idealized example and is lifted by phase
fluctuations and other symmetry-breaking factors. But this
example illustrates that the interlayer Majorana tunneling is
subtle and quite different from Cooper pair tunneling.

Let us now examine the spectrum of Majorana modes when
there is a finite interlayer Majorana tunneling. The tunneling

term acquires the general form

H = i

N−1∑
�=1

t�γ�γ�+1. (D4)

We look for eigenstates of the form † = ∑N
�=1 u�γ�, sat-

isfying [H,†] = E†. When N is odd there is always a
zero-energy solution to this equation, as is clear by the
particle-hole symmetry of the Hamiltonian. By writing the
zero-energy eigenvector of the Hamiltonian as (u1, . . . ,uN )T ,
it is easy to see that u2n = 0 (n ∈ N) and

u2n+1 = u2n−1(t2n−1/t2n) = u1

n∏
n′=1

(t2n′−1/t2n′ ), (D5)

where u1 is chosen by the requirement of normalization of
the eigenvector. When all tunneling terms are nonzero, the
Majorana fermion is spread through the odd numbered layers,
avoiding the energy cost associated with nearest neighbors.
When the number of layers is even, there are two such choices
for states that then further hybridize and move away from zero
energy. As we argued before, for an even number of layers we
do not expect non-Abelian statistics to play a role in the AC
interference.

When the number of layers is odd, a second quantity that
becomes of interest to us is the width of the resulting band, W .
This width is set by the matrix elements ti , with W ∝ maxi ti .
At zero temperature, the width of the band is of negligible
consequence for a proper choice of the Majorana fermion
operator. At finite temperatures, decoherence results due to
the finite band, with a typical time scale that goes to infinity
as W → 0 or T → 0.
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