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Dimerized antiferromagnetic spin- 1
2 ladders are known to exhibit a quantum critical phase transition in the

ground state, the existence or absence of which is dependent on the dimerization pattern of the ladder. The gapped
phases cannot be distinguished by the conventional Landau long-range order parameter. However, they possess
a nonlocal (hidden) string-order parameter, which is nonzero in one phase and vanishes in the other. We use an
exact diagonalization technique to calculate ground-state energies, energy gaps, and string-order parameters of
dimerized two- and three-leg Heisenberg ladders, as well as a critical scaling analysis to yield estimates of the
critical exponents ν and β.
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I. INTRODUCTION

Spin ladders have been the focus of significant theoretical
interest in the past decade or longer. This work has been
grounded by the experimental discovery of several spin-ladder
and spin-Peierls compounds exhibiting various fascinating
phenomena.1 Many of the important features of these materials
have long been understood (For reviews see, e.g., Refs. 1,2).
However, significant discoveries may yet be made as crucial
questions about the underlying nature of these systems
remain.

One of the most peculiar properties of spin ladders is that
the existence of a gap (i.e., mass) depends on the number of
legs. The spin excitations in a m-leg spin ladder are gapped
if m is even, and the system is gapless (quantum critical)
when the number of legs m is odd. The even-m-leg ladders
are interesting examples of spin liquids, which are currently
under enormous scrutiny. The spin liquid has, by definition, a
gap that is not due to long-range order or apparent symmetry
breaking. This is hard to understand in terms of the basic
postulates of the conventional Landau paradigm for phase
transitions.3

The purpose of this study is to explore the question
of the existence of “hidden orders” associated with the
massive quantum phases of dimerized Heisenberg ladders with
antiferromagnetic couplings. It is known that single dimerized
Heisenberg spin- 1

2 chains are gapped, and that when two
chains are coupled into a ladder, the system is gapped even
without dimerization.2 Counterintuitively, the dimerized two-
and three-leg ladders can also be gapless. The critical (gapless)
lines of the dimerized two- and three-leg ladders were first
conjectured in Ref. 4 and have been confirmed by subsequent
numerical and analytical work.5–12 The characterization of the
unconventional quantum phases in such systems in terms of
more exotic types of orders may ultimately help to uncover
novel physics that lies beyond the Landau paradigm.

We present numerical results on finite-size spin- 1
2 systems

with total number of spins (N ) of up to N = 30. These
results are obtained here using an exact diagonalization (ED)
technique based on the Lanczos algorithm.13 The total avail-
able computer memory is the most important factor limiting
the maximum system sizes accessible using this method.
This is because the dimension of the Hamiltonian matrix

grows exponentially fast (as 2N for a spin- 1
2 state). Although

restricted to relatively small system sizes, the ED method is
considered an “unbiased method” useful for calculating almost
any physical quantity. Our implementation of the Lanczos
algorithm uses periodic boundary conditions and includes an
explicit restart step with more than five restarts to mitigate loss
of orthogonality in the Lanczos basis.

II. TWO-LEG LADDER

We begin by presenting the results for a two-legged ladder
with intrinsic dimerization. A similar program is carried out
for the three-leg ladder, detailed in Sec. III. In line with the
previous work,12,14 which used the bond-mean-field theory,15

we have considered the two possible dimerization patterns of
the ladder (staggered and columnar) on an equal footing (see
Fig. 1).

The Hamiltonian of the dimerized spin ladder with m legs
is given by

H =
N∑

n=1

m∑
α=1

Jα(n)Sα(n) · Sα(n + 1)

+ J⊥
N∑

n=1

m−1∑
α=1

Sα(n) · Sα+1(n), (1)

where the dimerization occurs along the chains (α = 1, . . . ,m)
only, with the rung coupling J⊥ taken as constant. All the spin
exchange couplings are antiferromagnetic. The dimerization
patterns are then defined as

Jα(n) = J [1 + (−1)n+αδ] (staggered), (2)

Jα(n) = J [1 + (−1)nδ] (columnar), (3)

with periodic boundary conditions along the chains and open
boundary conditions in the rung directions.

A. Ground-state energies and gaps

We find that the ladders with the columnar dimerization
order always have the lower ground-state energy, and that they
are always gapped. The results for the ground-state energies
of the ladders with N = 24 are shown in Fig. 2 are very close
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(a) (b)

FIG. 1. Dimerized two-leg ladder. Bold, thin, and dashed lines
represent the stronger or weaker chain coupling J (1 ± δ) and rung
coupling J⊥, respectively. Dimerization patterns: (a) staggered;
(b) columnar.

to earlier predictions for these systems from the mean-field
theory.12

Also in agreement with the earlier mean-field predictions,12

our ED calculations confirm that the existence or absence
of the quantum critical phase transition between gapped
phases depends on the dimerization pattern. The columnar
arrangement of the strong and weak couplings on the legs is
never critical, whereas the staggered configuration possesses
a quantum critical point. The characteristic results for the
singlet-triplet gaps are shown in Fig. 3.

To take into account the finite-size effects in the gaps
obtained by ED and use these data to extract the critical
indices near the transition point, we have applied a finite-size
scaling analysis.16 If we denote the critical coupling where
the gap vanishes as J⊥c (the phase diagram of the dimerized
two-leg ladder is shown in Fig. 4) and the reduced coupling
as g ≡ J⊥−J⊥c

J⊥c
, the gap �L(g) in the system of the linear

dimension L can be expressed as

�L(g) = L−1f
(
gL

1
ν

)
, (4)

where f (gL
1
ν ) is a dimensionless scaling function and ν is the

critical index of the correlation length. The unknown scaling
function f is determined by the best collapse of the finite-size
ED data. The fitting gives ν ≈ 0.75 (see Fig. 5).

FIG. 2. (Color online) The ground-state energies for the stag-
gered and columnar two-leg ladder calculated by exact diagonaliza-
tion for N = 28.

FIG. 3. (Color online) The ground-state energy gap for the
staggered and columnar two-leg ladder calculated by exact diago-
nalization for N = 28.

B. String-order parameter

In the absence of the conventional Landau order parameter,
the different gapped phases in the ladder can be distinguished
only by a nonlocal string-order parameter (SOP), which is
nonzero in one phase and vanishes in the other. The SOP
was first introduced in 1989 by den Nijs and Rommelse,17

who related it to the gapped or Haldane phase in the spin-1
Heisenberg chain. In that system there is no local symmetry
breaking, and therefore no local-order parameter can be
identified. However, the SOP detects the hidden Z2 ⊗ Z2

FIG. 4. Two-leg ladder; critical line J⊥c(δ) where the gap of the
staggered phase vanishes. Adapted from Ref. 12, original data from
Ref. 9.
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FIG. 5. (Color online) The collapsed scaling function (left-hand panel) and gap (right-hand panel) for the staggered two-leg ladder with
δ = 0.5, calculated for N = 8 through 28 along with the fit using optimized parameters ν ≈ 0.755 and J⊥c ≈ 1.27.

symmetry breaking18 in the Haldane phase. The SOP notion
was later generalized for two-leg spin ladders as19–25

Oz
odd/even ≡ − lim

|n−m|→∞

〈
Sz

rung/diag(n)

× exp

[
iπ

m−1∑
l=n+1

Sz
rung/diag(l)

]
Sz

rung/diag(m)

〉
, (5)

where Sz
rung(n) ≡ Sz

1(n) + Sz
2(n) and Sz

diag(n) ≡ Sz
1(n) +

Sz
2(n + 1). The even and odd SOPs have been shown to

be mutually exclusive in several numerical and analytical
studies.11,23 Previous numerical studies11,19 have assumed a
staggered dimerization, while here the SOPs were calculated

FIG. 6. (Color online) The odd and even SOPs of the staggered
two-leg ladder with δ = 0.5. The ED data for ladders with number of
spins N = 12 to 28 are shown, along with the critical scaling curves.

for both configurations by the ED method. In agreement with
the previous studies, we find that the SOPs are featureless
for the columnar phase: In the whole phase space
domain (J⊥,δ) the even SOP is nonzero, while the odd
SOP vanishes.

We find for the staggered phase that the even or odd SOP
is nonzero only in the rung-dimer and leg-dimer phases,
respectively, and vanishes at the critical point. The calculated
SOPs are shown in Fig. 6. The SOP vanishes at the critical
point as Oz

� ∝ g2β where β is the critical index of the order
parameter.20,26 Then the SOP in the system of length L scales
as

Oz
L(g) = L− 2β

ν f̃
(
gL

1
ν

)
, (6)

where the scaling function f̃ is determined as for the gap by
the requirement to collapse the numerical data for the systems
of different sizes onto the same curve. From the analysis of the
ED data for δ = 0.5 we obtain a critical index βodd ≈ 0.25 for
the odd string order and βeven ≈ 0.025 for the even string order.
The collapse of the scaling functions is shown for δ = 0.5
in Fig. 7. The same critical scaling analysis was performed
for several values of δ, and these results are tabulated in
Table I.

TABLE I. Critical scaling indices of the two-leg ladder.

δ Even or odd β ν J⊥c/J

0.25 Even 0.05294 0.758 0.775
0.25 Odd 0.285 0.787 0.759
0.5 Even 0.0251 0.726 1.32
0.5 Odd 0.215 0.698 1.21
0.75 Even 0.0687 0.764 1.62
0.75 Odd 0.235 0.648 1.64
1.0 Even 0.0124 0.7306 2.08
1.0 Odd 0.227 0.7013 1.98
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FIG. 7. (Color online) The left-hand (right-hand) panel shows the fitted scaling function for the odd (even) SOP of the staggered two-leg
ladder with δ = 0.5. The data collapse for the optimized scaling parameters ν = 0.7, J⊥c = 1.21, and βodd = 0.25 (ν = 0.74, J⊥c = 1.32, and
βeven = 0.025).

III. THREE-LEG LADDER

Similar to the two-legged case the dimerized three-leg
ladder occurs in two distinct configurations, the staggered
and columnar patterns (see Fig. 8). The Hamiltonian of the
intrinsically dimerized three-leg ladder is given by Eq. (1)
with m = 3 and like the two-legged ladder the staggered or
columnar patterns are given by the coupling Jα(n) defined by
Eqs. (2) and (3), respectively.

A. Ground-state energies and gaps

The ground-state energies were calculated by the ED
method for the three-legged ladder with N = 24 total number
of spins. The columnar pattern was found to have the
consistently lower energies throughout the parameter space, in
agreement with the previous results from the bond-mean-field
theory.12 The ED results for the energy gaps, given in Fig. 9
for N = 24, show that the columnar configuration is always
gapped, and the staggered pattern approaches gaplessness at a
critical value of rung coupling J⊥c. Similar to the two-legged
case, the appearance of criticality in the three-legged ladder
depends on the dimerization pattern. The phase diagram of the
staggered ladder is given in Fig. 10. The ground states of these
ladders have been found to be well described by short-range

(b)(a)

FIG. 8. Dimerized three-leg ladder. Bold, thin, and dashed lines
represent the stronger or weaker chain coupling J (1 ± δ) and rung
coupling J⊥, respectively. Dimerization patterns: (a) staggered;
(b) columnar.

valence bond solid (VBS) states. A particular VBS state is
denoted according to the number of valence bonds formed
with contiguous states; i.e., (m,n)-VBS with m + n = 3S. A
transition from a (1,2)-(VBS) phase to a (2,1)-VBS phase is
understood to occur on crossing the phase boundary.11 The
finite-size data for the energy gap was used to extract the
critical indices near the transition point. This was done using
a critical scaling analysis similar to that used to study the
two-legged case, with the critical scaling relation given by
Eq. (4). Data for ladders with N = 12 to 30 were used. The
scaling exponents on each side of the critical point, denoted as
region (1,2) (g < 0) and region (2,1) (g > 0), were found to
be different, with separate values ν(1,2) and ν(2,1). Collapse of
the scaling function for δ = 0.5 (see Figs. 11 and 12) yields
ν(1,2) ≈ 0.863, ν(2,1) ≈ 0.385 and J⊥c ≈ 1.08. For δ = 1, the

FIG. 9. (Color online) Energy gaps for the staggered and
columnar three-leg ladder dimerization patterns calculated by the
exact diagonalization for N = 24.
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FIG. 10. Three-leg ladder; critical line J⊥c(δ) where the gap of
the staggered phase vanishes. Adapted from Ref. 12, original data
from Ref. 11.

fitting gives ν(1,2) ≈ 0.789, ν(2,1) ≈ 0.363, and J⊥c ≈ 1.65.
As opposed to the known behavior for large values of rung
coupling J⊥ of the gap of the two-legged ladder, which
increases as � ∝ J⊥, the gap of the three-legged ladder quickly
saturates in both dimerization patterns (see Fig. 13). This fact
limits the width of the critical region where the finite-size
scaling analysis is valid.

B. String-order parameter

The generalized SOP for three-leg ladders is given
by Eq. (5), where Sz

rung(n) ≡ Sz
1(n) + Sz

2(n) + Sz
3(n) and

Sz
diag(n) ≡ Sz

1(n) + Sz
2(n + 1) + Sz

3(n + 2). The SOPs were
calculated for N = 24 for both the staggered and columnar
configurations. Results for smaller systems (N = 12–18) give
unreliable results due to the very small number of rungs in
the sum. For this reason, a critical scaling analysis cannot

FIG. 12. (Color online) The collapsed scaling functions for the
staggered three-leg ladder with δ = 0.5 in region (1,2) (left-hand
panel) and region (2,1) (right-hand panel), calculated for N = 12
through 30 with optimized parameters ν(1,2) ≈ 0.863, ν(2,1) ≈ 0.385,
and J⊥c ≈ 1.08.

be performed for an estimate of β until much larger system
sizes (N = 30–36) are reached. Similar to the two-legged case,
the columnar pattern was found to possess even string order
throughout the parameter space, with no critical features. The
staggered phase of the ladder possesses even string order
associated with the (1,2)-VBS phase for 0 < δ < δc, which
vanishes upon entering the (2,1)-VBS phase, accompanied by
emerging odd string order. Representative results for the SOP
in the staggered ladder are given in Fig. 14. However, we note
that a residual odd string order persists in the (1,2)-VBS region
of the parameter space. We believe this effect is due to the very
small size of the system and should disappear if larger system
sizes are assessed.

FIG. 11. (Color online) Three-leg ladder; gap saturation for strong rung couplings J⊥.
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FIG. 13. (Color online) The ED data for the ground-state energy
gap with δ = 0.5 for number of spins N = 12 to 30, along with the
fit using optimized parameters ν(1,2) = 0.863 in region (1,2), ν(2,1) =
0.385 in region (2,1), and J⊥c = 1.08.

IV. CONCLUSIONS

We analyze the dimerized antiferromagnetic spin- 1
2 two-

and three-leg ladders. In agreement with the earlier mean-
field predictions,12 the present ED results demonstrate that the
columnar phases have lower ground-state energies than the
staggered phases. Thus, if no mechanism for locking into a
particular dimerization pattern is provided, a dimerized ladder
would order in the columnar phase. In this paper we analyze
the two possible dimerization patterns on the same footing,
as intrinsic given properties of the ladders without providing
specific mechanisms responsible for a particular dimerization.

The existence or absence of the quantum critical point is
dependent on the dimerization pattern. The gapped phases,
which cannot be distinguished by the conventional Landau
long-range order parameter, have been characterized using
the nonlocal SOPs, which are nonzero in one phase and
vanish in the other. Here, for the first time, we systematically
identify and numerically calculate all SOPs for the both
critical (staggered) and noncritical (columnar) phases in the
two-dimensional space of the model’s couplings (δ,J⊥/J ).
In addition we analyze the critical parameters near quantum
criticality.

For both two- and three-leg ladders the columnar pattern
was found to be always gapped and to possess the nonzero
even SOP, which is essentially featureless. The finite-size ED
data suggest that the odd SOP vanishes in the limit N → ∞
in the columnar phase for both types of ladders considered.

The finite-size data for the energy gap were used to extract
the critical indices in the vicinity of the line of quantum phase
transition in the staggered case. The scaling behavior of the
three-leg ladder was found to be different on each side of
the critical point. These results give for δ = 0.5 values of
ν(1,2) ≈ 0.863 and ν(2,1) ≈ 0.385.

From the critical scaling analysis of the ED data for
the ladder with two legs we find the critical indices of the

FIG. 14. (Color online) The odd and even string-order parameters
of the staggered two-leg ladder with J⊥/J = 0.25 and 0.75 as
functions of dimerization δ. The ED data for ladders with N = 24
total number of spins is shown.

correlation length ν ≈ 0.755, of the odd order parameter
βodd ≈ 0.2 and of the even order parameter of βeven ≈ 0.02.
The rest of the critical indices can be determined by the scaling
relations.

Most likely, the smallness of βeven and large difference
between βeven and βodd are due to stronger finite-size artifacts
in Oz

even. The nonmonotonous behavior of Oz
even, clearly seen

in Fig. 6, also makes the finite-size scaling analysis less
reliable.

According to the predictions of Refs. 4,5 and 8 the critical
behavior of the two-leg ladder along the critical line J⊥c(δ)
is the same as near the integrable point (J⊥/J = 2,δ = 1).27

Since along the line δ = 1 the ladder (1) reduces to a dimerized
Heisenberg chain, the above assumption implies a critical
behavior with ν = 2/3 and β = 1/12 modified by multiplica-
tive logarithmic corrections due to the marginally irrelevant
term in the effective Hamiltonian. Our values ν ≈ 0.75 and
β ≈ 0.2 (including the case δ = 1) are comparable with
these predictions, especially taking into account (i) natural
limitations on the precision for the critical indices due to
the small system sizes, which can be reached by ED, and
(ii) fitting the critical indices without logarithmic correc-
tions, which exaggerates their values (see, e.g., Refs. 28,29).
The critical behavior of the ladders in the vicinity of (or
along) the critical lines clearly warrants a detailed ana-
lytical study. We plan to address this issue in our future
work.
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