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Critical behavior in the inhomogeneous ferromagnet SrFe0.80Co0.20O3.0
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A detailed muon spin relaxation (μSR) and magnetization study is presented of the paramagnetic-to-
ferromagnetic transition in the compound SrFe0.80Co0.20O3. The critical exponents derived from the static critical
analysis are close to the theoretical predictions for the Heisenberg model in three dimensions. However, a small
drift toward mean-field values is interpreted as arising from the presence of long-range dipolar interactions
between the Fe(IV) centers. The evolution of spin dynamics across the transition determined from the μSR study
is consistent with this interpretation. μSR and magnetization data also provide evidence of an inhomogeneous
magnetic state both above and below T c, placing this system in line with other double-exchange materials such
as manganites and cobaltites where spontaneous electronic and magnetic phase separation appears conspicuous
and explains much of the encountered experimental phenomenology.
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I. INTRODUCTION

It is now widely acknowledged that magnetoelectronic
phase separation at the nanoscale is behind much of the
observed phenomenology in oxide systems such as the CMR
manganites, the cobaltites, or even the high-Tc cuprates.1 In
the manganites, competition between co-existing charged-
ordered and ferromagnetic phases is key to understanding the
low-temperature magnetoresistance found in low-bandwidth
systems. First order in the clean limit, the transition between
the competing phases is smeared by quenched disorder making
it continuous with percolative characteristics. Phase separation
occurs even in the large-bandwidth manganites in the low
hole-density regime and it is responsible for the observed
ferromagnetic insulating behavior in the medium/low doping
regime. In the cobaltites Ln1−xSrxCoO3 magnetoelectronic
separation coexists with spin state transitions that occur
because of the subtle balance between the similar-sized
crystal-field splitting of the 3d orbitals in the Co ion and the
Hund’s rule coupling. The result is a complex x-dependent
phase diagram in which coexistence of ferromagnetic metallic
(FMM) and insulating nonferromagnetic domains has been
corroborated by various experimental techniques on both
sides of the metal-to-insulator transition at xc = 0.18. Wu
and co-workers have suggested that, for x values close to
xc, the system essentially behaves as a natural analog of
the artificial heterostructures displaying negative intergranular
magnetoresistance (GMR).2 This suggests that intrinsic phase
inhomogenity is, as in the manganites (albeit due to a different
origin), responsible for the observed physical behavior of
these materials and, in particular, for their large negative
magnetoresistance.

In comparison with the manganites and cobaltites, the series
SrFe1−xCoxO3−δ (SrFeCo) has received relatively little atten-
tion despite early indications of a complex phase diagram3 and
the report of large negative magnetoresistance for x = 0.10.4

In this system an antiferromagnetic-to-ferromagnetic transi-
tion has been reported as a function of x, with inhomogeneous

behavior suggested for 0.0 < x < 0.20.5 SrFeO3.0 (x = 0) is a
metallic antiferromagnet (TN = 134 K) with a helicoidal spin
structure with propagation vector along 〈111〉.6 The metallicity
in this system is a direct consequence of its particular electronic
ground state, with a negative charge-transfer character (i.e., �
< 0, where � is the p-d band gap;7 the ground state is in fact
dominated by a d5L

¯
configuration, where L

¯
is an oxygen hole8).

As a result, a strong Fe 3d–O 2p hybridization occurs that gives
rise to an extended σ ∗ band of eg parentage in which charge
carriers are holes in mainly oxygen levels. It is commonly
accepted that the helical magnetic structure arises from the
competition between antiferromagnetic exchange coupling be-
tween localized t2g spins and ferromagnetic double-exchange
interactions induced by the delocalized oxygen holes.9 Recent
calculations, however, have challenged this view and shown
that double exchange alone may be sufficient to generate
it.10 At the other end of the series, SrCoO3.0 is also a
charge-transfer material with a negative gap.11 This leads to
a CoIV (d5) intermediate electronic state that is dominated
by a d6L

¯
(t42ge2

gL
¯

configuration. The system is metallic and
ferromagnetic (Tc = 280 K).5,11

Co substitution in SrFeO3.0 appears to enhance the delo-
calization of the eg electrons of Fe parentage in a broadened
σ ∗ band.5 However, how this increased itineracy causes the
observed strengthening of ferromagnetic interactions along the
series is not yet completely understood. As indicated by Abbate
and co-workers,12 double exchange—-although behind the
magnetic behavior of the x = 010,13 and possibly the x = 1.0
compositions11—may not provide the right mechanism for
ferromagnetism in this family due to the large difference in the
potential felt by the eg electrons at the Fe and Co sites. Instead,
these authors propose a picture of half metallic ferromagnetism
in which Co doping induces a gap at the Fermi level in the
majority eg band thus turning the system ferromagnetic. In
any case, previous experimental studies of the magnetism of
SrFe1−xCoxO3−δ outline a phase diagram divided into two
well-defined regions: a Fe-rich one for x � 0.20 and a second,
Co-rich region for x > 0.20.5,14 The limiting composition,
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x = 0.20, is taken to mark the onset of long-range (LRO)
ferromagnetism in the series.

Competing ferro- and antiferromagnetic interactions are
claimed to generate inhomogeneous magnetic behavior in
the Fe-rich region.5,14 Yet, despite the potential interest
this competition might have in light of the findings in
manganites and cobaltites, no serious attempt has been
made to fully characterize this part of the phase diagram.
We have thus embarked on a project whose aim is to map
the different magnetic phases present in the low-x part of the
SrFe1−xCoxO3.0 series by means of magnetization and muon
spin relaxation (μSR) studies of the phase transitions that
occur at different compositions. Here we present results on the
composition SrFe0.80Co0.20O3.0 that show that despite the onset
of LRO ferromagnetism at Tc = 241 K, the system remains
magnetically inhomogeneous even in the ordered state.

II. EXPERIMENTAL DETAILS AND METHODS

Polycrystalline samples of SrFe0.8Co0.2O3−δ (δ � 0.15)
were synthesized by the standard ceramic method. Stoi-
chiometric amounts of SrCO3, Fe2O3, and Co(NO3)2·6H2O
were first preheated at 700◦C and then fired at 1200◦C
in air for approximately 40 h. The resulting black powder
was then repelletized and annealed under oxygen pressure
(PO2 ∼ 600–700 atm) at 300–350◦C, which resulted in the
fully stoichiometric material SrFe0.8Co0.2O3.0. The quality and
phase purity of the samples was determined by high-resolution
neutron diffraction using the HRPD diffractometer at ISIS
(RAL, UK). Ac susceptibility was measured on a Lakeshore
susceptometer while dc measurements were performed with
a Quantum Design superconducting quantum interference
device magnetometer. The internal field hi used for the analysis
of the critical behavior was corrected for demagnetization;
i.e., hi = Happl − DM , where D is the demagnetization factor,
calculated from M vs H measurements in the low-field limit
in the ordered state.

Finally, zero-field (ZF) μSR measurements were performed
at the SμS facility at PSI (Switzerland) and the ISIS Muon
Facility. In a μSR experiment (for a review of the technique
see, for example, Ref. 15), almost 100% polarized positive
muons are implanted in the samples where, after a short
thermalization (<10−10 s), they start precessing about the
local magnetic fields. In their decay (with decay constant
τ = 2.2 × 10−6 s) a positron is emitted preferentially in
the direction of the muon spin direction at the instant of
decay. The time histograms of positron counts, NF(t) and
NB(t) collected in detectors placed in the forward (F) and
backward (B) positions relative to the initial muon polarization
thus measure the time evolution of the muon polarization.
The muon spin relaxation function (or asymmetry) A(t) is
given by

A(t) = NB(t) − αNF (t)

NB(t) + αNF (t)
= a0Pz(t) + abk, (1)

where abk is the contribution from muons stopped outside the
sample and α is an instrumental parameter that accounts for
the forward/backward detector efficiency. Pz(t) describes the
muon depolarization inside the specimen and thus provides
information on the time evolution of the internal fields. From

comparison with what is found in other oxide systems,16

we assume the muons to be located close to (at about
1 Å) the oxygen atom in the cubic structure over most of
the temperature range under study. Hopping might occur at
the highest temperatures but, still, the muon spin relaxation
will be largely dominated by the fluctuations of the large iron
moments.

III. RESULTS

A. Static critical behaviour

Figure 1 shows the temperature dependence of the dc
and ac susceptibility for SrFe0.8Co0.2O3.0. As expected from
previous reports on this system, the dc susceptibility shows a
sharp increase at about 250 K signaling the paramagnetic-
ferromagnetic (PM-FM) transition. This rise, however, is
followed by a strong divergence of the zero-field-cooled (ZFC)
and field-cooled (FC) curves, which has been interpreted in
similar oxides systems as evidence of the absence for LRO
and the presence, instead, of large but finite ferromagnetic
clusters.17 The real part of the ac susceptibility χ ′ shows no
singular behavior at Tc = 237(1) K (obtained from the Kouvel-
Fisher analysis, see below), but a maximum (the Hopkinson
peak,18 noncritical) is observed at slightly lower temperature
(�228 K). Below this point, it decreases monotonically down
to 2 K. The ZFC dc data, on the other hand, show a shoulder at
about 100 K followed, on cooling, by a rapid decrease in the
susceptibility.

The inverse dc susceptibility is displayed in Fig. 2 up
to roughly 2 Tc. Its behavior is Curie-Weiss-like at high
temperatures but departs from it below ∼400 K. Similar
behavior has been observed in the cobaltites, in which (as it
will be argued for the present case) ferromagnetically ordered
clusters form at temperatures significantly higher than Tc.19

As for those materials, the deviation from the CW prediction

FIG. 1. (Color online) Zero-field-cooled (•) and field-cooled (◦)
dc-susceptibility data for SrFe0.8Co0.2O3.0 in happl = 100 Oe. Solid
line: temperature dependence of the real part of χac (h = 1 Oe). Open
squares: Kouvel-Fisher ( ∂ lnχ−1

∂T
)−1 vs T plot for determination of γ .
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FIG. 2. (Color online) Temperature dependence of the inverse dc
susceptibility for an applied field of 1 T showing the departure from
Curie-Weiss behavior below ∼400 K. Inset: Characteristic isothermal
magnetization curves at various temperatures. The sigmoidal shape
of the 300-K data suggests the presence of FM clusters above Tc.

is upward (i.e., lower susceptibility) thus distinguishing the
inhomogeneity in the present case from a true Griffiths phase,20

for which the deviation in the 1/χ vs T plot should be
downward. The ferromagnetic character of these clusters
is also hinted from the sigmoidal shape of the isothermal
magnetization curve at 300 K plotted in the inset of Fig. 2.

In order to analyze in detail the nature of the ordering
transition, isothermal magnetization curves were collected
for various temperatures above and below Tc (several char-
acteristic curves are plotted in the inset of Fig. 2). The
continuous character of the transition was first confirmed by
using the so-called Banerjee criterion,21 which establishes
that, in a h/m vs h2 Arrott plot, the slope of the linear part
of the magnetization isotherms is positive if the transition is
continuous and negative if first order. The slope was found to
be positive in the present case (not shown).

For a continuous PM-FM phase transition, the various
quantities of interest (magnetization, susceptibility, specific
heat, etc.) show near the critical point a power-law dependence
on the two relevant scaling fields, t ≡ (T − Tc/T ) and h ≡
hi/kbTc. The transition is thus characterized by a set of
exponents defined as follows:

MS(T ) = m0(−t)β, t < 0, h = 0,

χ−1
0 (T ) = (h0/m0)tγ , t > 0, h = 0,

M(T ) = Dh1/δ, t = 0

where m0, (h0/M0), and D are the critical amplitudes and
β, γ, and δ are the critical exponents for the spontaneous
magnetization Ms , initial susceptibility χ0, and critical mag-
netization, respectively. A number of equalities relating the
different exponents limits to 2 the number of them that are
independent.

FIG. 3. Scaled magnetization of SrFe0.8Co0.2O3.0. The plot shows
the collapse of the data onto two curves, one above and one below Tc

as expected for a well-defined continuous phase transition.

The conventional analysis of the critical behavior is based
on the static scaling hypothesis,22 according to which the
equation of state in the critical regime is given by

m(h,t) = |t |βF±(h/|t |βδ), (2)

where F± (F+ for T > Tc and F− for T < Tc) is an unspecified
scaling function. The above equation leads to the mentioned
power-law dependence of the magnetic parameters. Also, it
implies that, for the right choice of critical exponents, M/tβ

data near the critical point plotted as a function of h/tβδ

should collapse onto two curves, for T above and below Tc,
respectively.

Isothermal magnetization curves about the transition are
thus presented in Fig. 3 in a log-log plot of the scaled variables
M/tβ and hi/tβδ in the range −6.2 × 10−2 � t � 5.8 × 10−2.
The plot was obtained by an iteration method starting with
three-dimensional (3D) Heisenberg exponents and an initial
value of Tc estimated from the ac-susceptibility data using
the Kouvel-Fisher method.23 β and δ were then allowed to
vary until the best scaling was obtained. In order to check
that the analysis was performed within the asymptotic critical
regime (ACR),24 we carried out the standard procedure of
progressively reducing the t range. Had the original fitting
included points beyond the ACR, the quality of the scaling
would decrease as we reduce the temperature range keeping the
exponents fixed since these would in fact be effective average
values. We found, however, that no significant distortions
of the scaling occurred when the range was reduced to
−8.3 × 10−3 < t < 4.1 × 10−3. The derived exponents and
Tc are listed in Table I (scaling I results).

A second, alternative form of the scaling equation was used
in order to determine β and γ independently. Based on the
Widom equality, γ = β(δ − 1), the equation m′2 = ±a± +
b±(h′/m′) (where m′ ≡ M/tβ and h′ ≡ hi/tβ+γ ) implies that
the M-H isotherms in the critical regime should fall onto
two universal curves in a plot of m′2 vs h′/m through a proper
choice of Tc, β, and γ . This scaling plot yields the values of the
critical amplitudes m0 and h0/m0 directly from the intercept of
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TABLE I. Derived critical exponents for SrFe0.8Co0.2O3.0.

Method T c (K) β γ δ

dχ/dT 250(10)
Kouvel-Fisher 239(1) 1.82
Scaling I 241(1) 0.39(2) (1.33)a 4.40(2)
Scaling IIb 241(1) 0.39(1) 1.36(2) (4.49)
Modified Arrott ∼242 0.41(3) 1.40(15) (4.41)
3D Heisenbergc 0.3689(3) 1.3960(9) 4.783(3)
Mean field 0.50 1.0 3.0

aValues in brackets were obtained from the other exponents using the
Widom equality.
bBest experimental estimates of the critical exponents.
cReference 28.

the two curves with the m′2 and h′2/m2 axes, respectively. The
result of the analysis is plotted in Fig. 4. The derived values
of the exponents are listed in Table I (as scaling II) and those
of the amplitudes in Table II. The latter are given as the ratios
m0/Ms(0) and μ(0)h0/kBTc, where Ms(0) and μ(0) are the
0-K saturation magnetization and saturated magnetic moment,
which were estimated from the magnetization isotherm at 5 K.

Further estimates of the values of the β and γ exponents
were obtained from yet a third different type of scaling plots,
the so-called modified Arrott plots25 (not shown).

B. Spin dynamics: μSR results

Figure 5(a) shows the thermal evolution of the muon de-
polarization rate λ(T) derived from the fit of the experimental
depolarization curves collected in ISIS in a small longitudinal
field of 15 G (which quenches the depolarization due to nuclear
dipoles) to a power exponential

A(t) = a0 exp[−(λt)s] + bk, (3)

where a0 is the initial asymmetry at t = 0. The exponent s (note
that we have avoided the commonly used β in order to avoid
confusion with the magnetization critical exponent) measures
the spread in relaxation times (see below). As expected

FIG. 4. m′2 vs h′/m′ scaling plot for SrFe0.8Co0.2O3.0 (m′ =
M/tβ and h′ = hi/tβ+γ ).

TABLE II. Experimental values and theoretical predictions of the
reduced critical amplitudes.

m0/Ms(0) μ0h0/kBTc

Experimental 1.38 0.32
3D Heisenberg 1.37 1.58
Mean field 1.73 1.73

from the susceptibility results, λ(T ) rises as T →T +
c signaling

the slowing down of spin fluctuations as the transition is
approached. Its evolution is, however, somewhat anomalous
in that λ(T ) does not peak at Tc as one would expect for
“standard” critical behavior, but at lower temperature. The
reason for this apparently “anomalous” behavior can be linked
to the values derived for the static critical exponents and will
be discussed in the following section.

(a)

(b) (c)

FIG. 5. (Color online) Thermal evolution of the dynamical muon
depolarization rate λ(T ) (a, � symbols), initial asymmetry a0 (b) and
β exponent (c) derived from the analysis of the ISIS data. In (a) ◦
represent the λ(T ) derived from the fit of the PSI data to Eq. (4). The
solid line represents the fit of the ISIS data above Tc to a power law
with the critical temperature as a free parameter. Inset: Fit of the ISIS
data to the same power law with fixed Tc = 241 K from the scaling
analysis above. It yields a dynamical exponent w = 1.37(3).
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The evolution with T of a0 and and s is shown [Figs. 5(b)
and 5(c), respectively]. The drop in a0 observed on cooling
through the transition is a consequence of the limited frequency
resolution of the ISIS pulsed beam. For a ferromagnetic system
in polycrystalline or multidomain form, below Tc, the internal
static field is so strong that 2/3 of the initial asymmetry is lost
due to the precession about the two transverse components of
the field, leaving a value a0 = 1/3, arising from the longitu-
dinal field component. The observed drop in a0 thus reflects
the development of static internal fields (i.e., ferromagnetic
ordering) on cooling. What is interesting, however, is that
this drop begins at temperatures significantly higher than
Tc (at about 270 K). In fact, at Tc, almost 1/3 of the total
asymmetry has been already lost. This is consistent with the
susceptibility data in Fig. 2 and indicates an inhomogeneous
nature of the paramagnetic regime above Tc with slowly
fluctuating or even static ferromagnetically ordered regions
(clusters), responsible for the decrease in a0, coexisting with
a rapidly fluctuating nonordered matrix. The relative weight
of each component changes with temperature. The thermal
dependence of s also shows evidence of this inhomogeneity.
In the fast fluctuating regime, λ ∝ γ 2

ν �2τc (where � is the
width of the internal field distribution sensed by the muon,
γν = 135.5 MHzT−1 is the muon gyromagnetic ratio and τc is
the average spin-spin correlation time). That is, λ(T ) reflects
the T evolution of the average correlation time. Thus for a
system of uncorrelated, rapidly fluctuating spins characterized
by a single τc, the depolarization is single exponential, i.e.,
s = 1. Deviation from this behavior λ(T ) (s < 1) is usually
taken as evidence of a (broad) distribution of correlation
times. In the present case, the spread in τc and subsequent
drop in s (starting at temperature well above Tc) is consistent
with the development of an inhomogeneous distribution of
internal fields due to the phase separation mentioned above.
In other words, the drop in β reflects the formation of the
ferromagnetic clusters already in the paramagnetic regime and
the evolution into a inhomogeneous ordered state below the
transition (characterized by s = 0.5).

In order to study the nature of the ordered phase below
Tc, data were collected at PSI, a continuous source. A
preliminary analysis of these data was published elsewhere.26

In this case, the increased resolution allowed us to resolve
the high-frequency precession signals anticipated for the
case of long-range magnetic ordering (Fig. 6). The char-
acteristic oscillations of an ordered magnet are, however,
heavily damped for this material and essentially gone for t >

0.1 μs, indicating, again, a large spread in internal fields at
the muon site and therefore an inhomogeneous ground state
also below Tc. The situation is analogous to that reported
for La0.67Ca0.33MnO3.27 As for that system, the data are well
described by a function

A(t) = a1 exp(−σ t)cos(ωμt + φ) + a2 exp[−(λt)s] + bk,

(4)

where the first term, missing in the ISIS data, accounts
for the damped oscillations arising from the transverse field
components (σ is the inhomogeneous linewidth arising from
the spread of internal fields and ωμ is the muon precessing
frequency) and the second for the spin-lattice relaxation of

FIG. 6. (Color online) PSI time-dependent asymmetry for
SrFe0.8Co0.2O3.0 at several temperatures. The solid lines are the best
fits of the experimental data to Eq. (4).

the longitudinal component, as before. Figure 7 shows the
temperature dependence of the derived precessing frequency
ωμ. The quasilinear increase on cooling is unusual and distinct
from the expected behavior for a well-behaved ferromagnet
(i.e., ωμ ∝ tβ ; with β the magnetization critical exponent).
We do not have an explanation for this behavior at the moment
but it is probably related to the glassy dynamics observed for
the system.

FIG. 7. muon spin precession frequency for SrFe0.8Co0.2O3.0

derived from the fit of the PSI data to a damped oscillation added
to a exponentially relaxing component [Eq. (4)].
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Finally, it is worth noting that a resolvable oscillating
component (accounting for a smaller fraction of the total
asymmetry than at temperatures below Tc where it is the
majority one) is observed in the depolarization curve at 250 K,
above the ordering temperature, further confirming the picture
that emerges from the analysis of the ISIS data above of
ferromagnetically ordered regions (clusters) segregated from
the paramagnetic background at T > Tc.

IV. DISCUSSION

A. Effect of disorder on the transition

The above analysis confirms the onset of long-range
ferromagnetism below a well-defined continuous PM-FM
transition at ∼241 K since it is only in this case that the scaling
hypothesis is satisfied and the magnetic isotherms collapse, as
in Figs. 2 and 3, and the critical exponents comply to the
constrains imposed by the different scaling relations (note
that Figs. 2 and 3 are only equivalent because of the Widom
equality). The derived exponents, listed in Table I, are close to
those of the 3D Heisenberg model with short-range exchange
interactions,28 as predicted for double-exchange systems29 and
thus in line with what is experimentally observed in many
double-exchange manganites (Ref. 30, and references therein)
and cobaltites (Ref. 31).

However, the first thing one notices in Table I is the large
discrepancy that exists between the values of γ calculated
using the KF (1.82) and scaling analysis (1.36). This can
be interpreted as arising from the presence of disorder.
As indicated, without adding further “correction-to-scaling”
terms to the expressions above, the true critical exponents
can only be obtained from data within the asymptotic critical
regime. Outside of this the analysis yields average effective
values that differ from the predictions for the different
universalities. In the case of γ , in the ACR, both ordered
and disordered ferromagnets behave alike, but for t > t0 (t0
being the reduced crossover temperature that marks the end of
the ACR) their behavior diverges: Whereas ordered magnets
show a monotonic decrease from the temperature-independent
ACR value toward the mean-field value of 1 as the system is
heated into the paramagnetic regime, for disordered magnets,
the effective γ goes first through a maximum (larger than
the ACR value) at tmax = 0.1–0.5 and finally decreases to
1.32,33 In order to check that this is indeed what happens for
SrFe0.8Co0.2O3.0, we have analyzed the power dependence of
the linear ac susceptibility [χ−1 = (h0/M0)tγ ] for different
t ranges. If the fitting range is reduced to the one used in
the scaling analysis above (t < 0.06), the value obtained is
γ = 1.39, in good agreement with the result of scaling. If, on
the other hand, the range is extended to that used in the KF
analysis (0.055 < t < 0.12) the resulting exponent (γ = 1.82)
is similar to the one obtained with that method.

Clearly, the use of a wider t fitting range beyond the
ACR yields a higher effective exponent, which, as indicated,
constitutes further confirmation of a disordered magnetic
state presence. The origin of this disorder can be tentatively
explained by considering the evolution of the magnetic ground
state with x along the SrFe1−xCoxO3.0 family. Circular dichro-
ism studies by Okamoto and co-workers34 have confirmed

what was already suggested by previous magnetization studies,
especially that of Kawasaki;5 that is, that the ferromagnetic
polarization of the Fe magnetic moments increases with
doping, induced by the interaction with the doped Co moments.
This destroys the antiferromagnetic helical structure in the
first place and then gives rise to a spin-glass and re-entrant
spin-glass behavior for x = 0.10 and 0.15, respectively.35 In
the latter, the magnetism can be tentatively explained in terms
of the presence of large ferromagnetic clusters in a glassy
matrix. For x = 0.20, the results above show that FM LRO
exits bellow a well-defined continuous transition Tc, meaning
that at Tc, the spin-correlation length diverges. However, this
does not preclude the existence of nonpercolating clusters of
different magnetic nature embedded within the percolating
ferromagnetic matrix. In fact, the susceptibility and μSR data
above are indicative of the “preformation” of ferromagnet-
ically ordered clusters at temperatures above the onset of
true LRO.1,19 As Tc is approached, these clusters grow in
size and percolation occurs for some of them, not all. The
result is that only a fraction of the total number of spins
participate in the transition. Evidence of this can be extracted
from the comparison of the derived value of μ(0)h0/kBTc

with the prediction for a 3D Heisenberg system (Table II). The
experimental value is significantly smaller than the predicted
one. If h0 is taken to be an effective exchange field and μ0 is the
average effective moment involved in the PM-FM transition,
at Tc, the effective exchange energy μeff h0 is expected to equal
the thermal energy kbTc, which is not the case in the present
case unless μeff adopts a value of 8.5μB , much higher than
μ(0) = 2.69μB required for the ratio μ(0)h0/kBTc to take the
Heisenberg value of 1.58. As argued by Kaul,36 the reason
for this discrepancy is that, as suggested above, only a fraction
c = μeff/μ(0) of the spins takes part in the transition, c = 32%
for SrFe0.8Co0.2O3.0.

Finally, it is important to notice that, despite the inhomo-
geneous nature of the magnetic system and the fact that only
a portion of the spins form the matrix that percolates at Tc,
the derived critical exponents listed in Table I still provide
an accurate description of the transition. According to the
so-called Harris criterion, quenched disorder is irrelevant in
the ACR in systems for which α, the specific-heat critical
exponent, is negative.37,38 In the absence of a direct measure-
ment, we can estimate α from the values of the other exponents
via the scaling equality α = 2(1 − β) − γ , which results in
α = −0.14 for the present system. Hence having established
that the values listed in Table I (scaling I) are true ACR
exponents, they are unaffected by the disorder and thus are the
same we would obtain for the corresponding homogeneous
system.

B. Heisenberg to mean-field drift due to long-range
dipolar interactions

As noted above, the derived values are essentially those
of a 3D system of Heisenberg spins. However, a closer look
reveals a slight but definitive deviation toward the mean-field
predictions in the three exponents. The size of the deviation
makes it arguable whether it represents a true drift or simply
a random oscillation about the Heisenberg values. However,
the fact that the change occurs in the right direction for the
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three exponents leads us to believe that the deviation is not
random but represents a definite tendency toward mean-field
behavior. In this sense, it is worth comparing the current
values with those reported by Seeger for Ni [β = 0.395(10),
γ = 1.345(10), and δ = 4.35(6)], with a well-established drift
from 3D Heisenberg (3DH) behavior toward mean field due to
long-range interactions involving the itinerant electrons.32 In a
homogeneous magnet, for a given symmetry, the universality
class of the transition is determined by the range of the
interactions J(r). A renormalization-group study by Fisher
and co-workers showed that J (r) = 1/rd+σ where d is the
dimensionality of the system and σ is a measure of the range
of the exchange interaction.39 A 3D system of isotropic spins
complies with the Heisenberg model only if σ > 2.0, i.e.,
if J (r) decreases with distance faster than r−5. Mean-field
exponents are obtained for J(r) ∝ r−n with n � 4.5. In the
intermediate range, i.e., for J(r) ∝ r−3−σ with 3/2 � σ � 2.0,
the system belongs to a different class with exponents that take
intermediate values depending on σ . σ must be close to 2 in
the present system (σ = 1.91 for Ni, with a similar magnitude
for the deviation from 3DH behavior32).

In principle, the intermediate range of the interac-
tions, and thus the deviation from pure 3DH character, in
SrFe0.8Co0.2O3.0 could be ascribed to the long-range nature
of the double-exchange coupling. However, Monte Carlo
simulations by Motome and Furukawa29 suggest that the long-
range part of the magnetic interactions in the double-exchange
models are renormalized to the point of being irrelevant and
so the systems should behave as short ranged. The result is
supported by the large number of manganite compositions
that are found experimentally to display 3DH character.30

Alternatively, the crossover toward mean-field exponents
could result from the presence of isotropic long-range dipolar
interactions (IDL). Renormalization-group calculations show
that isotropic 3DH criticality is unstable against IDL pertur-
bations and a crossover from 3DH to IDL critical behavior
occurs at a certain value tco of the reduced temperature
that depends on the strength of the dipolar interactions.32,40

According to these calculations, the values of the new
exponents characterizing the IDL regime are only slightly
different from the corresponding Heisenberg values and shifted
toward mean field. The theory also predicts that the effective
γ ∗ exponent should go through a minimum as a result of the
crossover. This appears to be in contradiction to our results,
which show that γ ∗ increases as we move away from Tc

due to the presence of disorder. In fact, the reason for this
apparent disagreement is the temperature range in which the
exponent is calculated, as it is only for t < tco that the system
is governed by dipolar interactions and the new regime sets
in. tco can be estimated as tco ≈ g

1/φd

d , where gd is a measure
of the dipolar interactions and φd is the crossover exponent.41

φd ≈ γH = 1.39,32,41 whereas gd can be calculated40,41, as
gd ≈ 0.87

Tc

θ ·p2

V
, where θ is a constant that depends on S, the

total spin number and which, following Ref. 41, we take to
be 0.80 for S ∼ 2 in the current system; p = 4.899μB (for
S = 2) is the calculated magnetic moment and V = 56.76
Å

3
is the unit-cell volume. This results in gd ≈ 1.2 × 10−4

and tco ≈ 1.3 × 10−3. γ ∗ = 1.89 was calculated in a range
0.055 � t � 0.12, i.e., away from the IDL regime and thus

shows the expected behavior of a short-range system in the
presence of disorder. The t range used in the calculation of
the exponents by the different scaling methods (t � 3 × 10−3)
is, on the other hand, close to the estimated crossover to IDL
behavior and so their values reflect the effect of the new regime.

This crossover from a short-range Hesisenberg critical be-
havior to a dipolar-dominated regime characterized by a slight
drift toward mean-field exponents can be further corroborated
by the analysis of the critical spin dynamics obtained from the
μSR data. As indicated, λ ∝ γ 2

ν �2τc. The increase in λ(T )
observed on cooling thus results from the critical slowing down
of spin fluctuations as T → T +

c , that is, from the divergence of
the correlation time as the transition is approached. In that case,
λ(T ) can be described by a power law λ(T ) = λ0t

−w, where
w is the critical exponent for the correlation time according to
the theory of dynamic critical phenomena.42 However, Fig. 4
shows that, for SrFe0.8Co0.2O3.0, λ(T ) continues to rise below
the transition and only peaks at T well below Tc, i.e., it
appears as if τc was nondivergent at Tc. A similar behavior
was observed in Nd0.5Sr0.5MnO3 by Krishnamurthy et al.,43

who also evoked the role of long-range dipolar interactions
to explain it. Dipolar interactions induce q anisotropy in the
otherwise isotropic susceptibility suppressing the divergence
at Tc of the susceptibility due to longitudinal fluctuations
while leaving the transverse one virtually unaffected.40,43,44

The result is that the average correlation time does indeed
become nondivergent at Tc. The rise in λ(T ) is thus less steep
than expected for a pure isotropic exchange critical behavior.
The exponent w was thus estimated from a log-log plot of the
depolarization rate vs reduced temperature but keeping Tc fixed
to the value determined from the static scaling analysis above
(241 K) (inset of Fig 5). The obtained value, w = 1.37(3)
is slightly higher than the theoretical prediction for 3DH
ferromagnet (1.023),43 and agrees well with that reported for
Gd [1.39(3)],45 with a well-established Heisenberg-to-dipolar
crossover.46 Following Suter’s approach,47 we have further
checked the validity of this interpretation calculating the
effective generalized dynamical exponent z from the derived
value of w. w is related to other critical exponents by the
expression48

w = ν(z + 2 − d − η), (5)

where ν and η are the exponents that describe the divergence of
the correlation length and the spin-spin correlation function,
respectively,22 and d = 3 is the system dimensionality. η =
0.034 for a three-dimensional ferromagnet.48 Without direct
measurements of ξ (T ), ν can be eliminated from the equation
via the scaling relation z = 2 + α/ν and α can been obtained
from the other static exponents (α = 2 − 2β − γ = −0.14).
This yields a value of z ≈ 1.91, which compares well with the
prediction for a dipolar ferromagnet (1.98),42 and the values
reported for Nd0.5Sr0.5MnO3 [2.00(12)] (Ref. 43) and Gd
[1.8(1)],45 with similar crossover behaviors. In contrast, it lies
significantly lower than the Heisenberg prediction (z = 5/2).48

It is worth noting here that the value of the z exponent reflects
that it is dipolar interactions and not electron delocalization
that produces the observed deviation from Heisenberg critical
behavior. A priori, both could act as the perturbation to
short-range exchange interactions that causes the crossover.
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However, it has been shown that for delocalized electrons, z

remains equal to 5/2 for all values of t,49 thus excluding this
mechanism as the origin of the observed behavior.

V. CONCLUSIONS

The analysis of the critical behavior in SrFe0.8Co0.2O3.0

shows that, like most double-exchange manganites and
cobaltites away from multicritical points, it behaves as ex-
pected for a system of Heisenberg spins coupled by short-range
interactions. The dipolar interactions between the Fe(IV)
centers introduce, however, a perturbation to this picture and
dominate the critical behavior as t → 0 producing a slight
change of the critical exponents away from the Heisenberg
predictions.

Our study of the transition shows as well that the
system is magnetically inhomogeneous at all temperatures.
Ferromagnetically ordered clusters separate from the para-

magnetic background at a temperature well above Tc in a
situation analogous to that found in manganites and cobaltites.
The size of these clusters increases as T → T +

c and, at the
transition, percolation occurs for some of them. Only a fraction
of the spins participate in the infinite percolating cluster.
The μSR data below the transition are also interpreted in
terms of spatial inhomogeneity of the spin-spin correlations
times.
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