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Tuning of chaotic surface spin waves in a magnetic-film feedback ring via the ring gain
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This paper reports on experimental data on the controlled tuning of chaotic surface spin waves in a magnetic-film
active feedback ring. The chaotic behavior of these waves arises through three-wave nonlinear interactions. With
a change in the ring gain, two chaotic regimes were observed. One corresponds to the situation where only one
ring eigenmode was excited in the ring, while the other corresponds to the situation where two ring eigenmodes
were excited. The correlation dimension and autocorrelation function (ACF) properties of the chaotic wave in
each regime strongly depend on the level of the ring gain, and this gain dependence differs from one regime to
the other. The shift between the two regimes was not a smooth transition. In particular, one observed a sharp
change in both the correlation dimension and the distance of the side ACF peaks to the main ACF peak.
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I. INTRODUCTION

If one amplifies the output signal from a dissipative
transmission line and then feeds it back to the input of the
transmission line, one forms an active feedback ring system.
Such a ring system represents a driven damped system.
Specifically, the energy loss of the wave that propagates
in the transmission line is compensated by the energy gain
provided by the amplifier. Examples of this type of feedback
ring include electromagnetic transmission line oscillators,1–3

magnetic thin-film feedback rings,4–7 and fiber ring lasers,8–12

among others. These systems have proved to be very useful
for fundamental studies of nonlinear dynamics.

There are two main focus areas in the study of nonlinear
waves in active feedback rings, (i) envelope solitons and
(ii) chaos. Previous experiments have demonstrated envelope
solitons in a wide variety of ring configurations.1,5,7,10,11 There
are two fine balances that are involved in the formation of
these solitons, (i) a balance between the dispersion-induced
self-broadening and the nonlinearity-induced self–narrowing,
and (ii) a balance between the internal energy loss and the
energy gained from external sources. Note that conventional
solitons in conservative systems involve only the first balance,
not the second.13 In this sense, the solitons in active feedback
rings are fundamentally different from conventional solitons
and are called “dissipative solitons.”14 Dissipative solitons
can exist in different forms including, for example, stationary
solitons, pulsating solitons, or exploding solitons.10,14,15

Chaos in active feedback rings has been demonstrated both
experimentally and theoretically. The main focus of previous
experiments has been on the use of different configurations
to demonstrate chaotic excitations through different nonlinear
processes.2–4,6,8,10,11 Theoretical study has been focused on
new models for chaotic excitations in certain ring systems,
the roles of different physical processes in chaotic excitations,
and the transition to chaos through changing various control
parameters, such as the ring gain coefficient.8–12

This paper reports the controlled tuning of chaos complex-
ity by the ring gain for chaotic spin waves in a magnetic
thin-film active feedback ring. With a change in ring gain, two
different chaotic regimes were observed. One corresponds to
the situation where only one ring eigenmode was excited in

the ring, while the other corresponds to the situation where
two ring eigenmodes were excited. It was demonstrated that
one could make use of the ring gain to effectively control both
the chaotic behavior in each regime and the transition between
the two regimes.

The main results are as follows. (i) In the one-eigenmode
regime, as one increases the ring gain, the correlation di-
mension increases roughly linearly, the main peak in the
autocorrelation function (ACF) profile becomes narrower, and
the side peaks in the ACF profile move towards the main
peak and, at the same time, become weaker. (ii) At a certain
ring gain level, one observes a shift from the one-eigenmode
regime to the two-eigenmode regime. This shift is not a smooth
transition. In particular, one observes a jump in both the
correlation dimension and the distance of the side ACF peaks to
the main ACF peak. (iii) In the two-eigenmode regime, with an
increase in ring gain, the correlation dimension still increases,
but at a greater rate, and the ACF side peaks still move towards
the main peak, but at a slower rate. The amplitudes of the side
peaks show a response opposite to that in the one-eigenmode
regime—they increase with ring gain. The change of the
main peak width with gain, however, is similar to that in the
one-eigenmode regime.

These results show rich complexity for chaotic spin waves
in magnetic-film feedback rings. Such complexity has not been
demonstrated in previous works.4,6,16–20 It is also important to
emphasize that the chaos in those previous works involved the
excitation of many ring eigenmodes. In contrast, the chaos in
this work involved the excitation of only one or two eigen-
modes. In addition, it is also important to highlight that this
work demonstrates a new tunable microwave chaotic oscillator.
Oscillators where the features of chaos can be tuned easily
are critically needed by high-resolution chaotic radars,21,22

radars for complex target detection,23,24 and microwave chaotic
communications.25

II. EXPERIMENT

The experimental arrangement is shown in Fig. 1. The
feedback ring consisted of a magnetic yttrium iron garnet
(YIG) thin-film strip and two microstrip line transducers
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FIG. 1. Schematic of experimental setup.

placed over the YIG strip to excite and detect spin waves.
The output signal from the detection transducer was fed back
to the excitation transducer through a broadband microwave
amplifier and a tunable microwave attenuator. The YIG strip
was magnetized to saturation by a static magnetic field which
was in the plane of the YIG film strip and perpendicular to
the length of the strip. This film-field configuration supports
the propagation of surface spin waves along the film strip.26,27

The magnetic field was set to be relatively low so that the
three-wave parametric interactions between the surface and
backward volume spin waves were allowed.28 It was these
three-wave processes that drove the excitation of chaos in
the ring. The ring signal was sampled through a directional
coupler, with feeds to a spectrum analyzer for frequency
analysis and a broadband fast oscilloscope for temporal signal
measurements.

For the data presented below, the YIG strip was 5.0 μm
thick, 1.3 mm wide, and 22.2 mm long. It was cut from a larger
single-crystal YIG film grown on a gadolinium gallium garnet
substrate by liquid phase epitaxy. The YIG film had unpinned
surface spins. The magnetic field was 85 Oe. The microstrip
line transducers were 50-μm-wide and 2-mm-long elements.
The transducer separation was held at about 4.4 mm. The
microwave amplifier was tunable through a dc bias voltage. It
had a maximum output power of 3 W and a linear response
over a frequency range of 0.4–3.0 GHz. These characteristics
ensured that the nonlinear response of the feedback ring was
determined by the YIG film only.

III. RESULTS AND DISCUSSION

The feedback ring can have a number of resonance
eigenmodes that exhibit low decay rates.7 The frequencies
of these eigenmodes can be determined by the phase condition
k(ω)l + φe = 2πn, where k is the spin-wave wave number,
ω is the spin-wave frequency, l is the transducer separation,
φe is the phase shift introduced by the electronic circuits, and
n is an integer. At a low ring gain G, all of the eigenmodes
experience an overall net loss and there is no spontaneous
signal in the ring. If the ring gain is increased to a certain
threshold level, here taken as G = 0, the eigenmode with the
lowest decay rate will start to self-generate in the ring and
one will obtain a continuous-wave response at this eigenmode
frequency. A further increase in gain leads to the excitation
of sideband modes and the broadening of the power spectrum
through three-wave processes as well as the generation of a
second ring eigenmode, as reported below.
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FIG. 2. (Color online) Power-frequency spectra for ring signals
obtained at different ring gain G, as indicated.

Figure 2 shows representative power-frequency spectra for
ring signals obtained at different ring gains, as indicated. As
shown in graph (a), the spectrum obtained for a ring gain
slightly higher than zero consists of a single peak. This peak
corresponds to the ring eigenmode with the lowest decay rate.
When the gain was increased to 0.30 dB, as shown in graph
(b), the initial mode became stronger and several side modes
were generated. These side modes were not ring eigenmodes.
Rather, they were new modes excited through the three-wave
processes. As discussed below, other ring eigenmodes were
indeed far away from the frequency range shown in Fig. 1. As
the gain was increased further, one observed the excitation of
more side modes, as shown in graph (c), and then an increase
in the frequency spacing of the modes and a frequency halving
(period doubling) effect, as shown in graph (d). Note that, in
(d), the new peaks showing the frequency halving are identified
by vertical arrows. A further increase in ring gain leads to the
washout of the modes and the realization of chaotic spectra,
as shown in graphs (e) and (f).

As the gain was increased to 1.63 dB, for which the
spectrum is shown in Fig. 1(f), a new peak appeared at a
frequency which was about 30 MHz lower than the frequency
of the first eigenmode discussed above. This new mode is a
ring eigenmode. Figure 3 shows the spectra for this second
eigenmode. As shown in graph (a), this mode is very weak at
G = 1.63 dB. With an increase in G, one sees the enhancement
of this mode as shown in graph (b), the excitation of new side
modes as shown in graph (c), and then the washout of the
modes as shown in graph (d). Note that, for the gain levels
discussed here, the entire spectrum consists of both the first
and second ring eigenmodes. Figure 3 shows only a portion of
the entire spectrum near the second eigenmode. The portion
for the first ring eigenmode is similar to the one shown in
Fig. 2(f) and is not shown in Fig. 3.

The data in the time domain conform to the responses
described above. Figure 4 shows representative time-domain
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FIG. 3. (Color online) Power-frequency spectra for ring signals
obtained at different ring gain G, as indicated.

signals—the envelopes of the signals in a power vs. time
format. Graph (a) shows a train of pulses that is almost
periodic. This signal corresponds to the almost uniform
frequency comb shown in Fig. 2(c). Note that the period of
this signal is two orders of magnitude longer than the ring
round-trip time. The data in graph (b) for G = 1.03 dB show
a train of pulses whose period doubles that shown in graph
(a). This period doubling agrees with the frequency halving
shown in Fig. 2(d) for the same gain level. At G = 1.63 dB, as
shown in graph (c), one sees chaotic behavior in both the pulse
amplitude and the pulse separation. This behavior corresponds
to the chaotic spectrum shown in Fig. 2(f). The signal shown in
graph (d) is also chaotic, just like the one shown in graph (c). If
one increases the time scale by a factor of 10, however, one can
see fast oscillations in the signal envelope. Such oscillations
result from the beating of the two eigenmodes.

The frequency- and time-domain data presented above
clearly show the development of chaotic spin waves in
the feedback ring. These data, however, provide no direct
information on the complexity of the chaotic signals. In order
to obtain an insight into the chaos complexity, the correlation
dimensions and autocorrelation functions of the obtained
chaotic signals were computed.

Correlation dimension is the mostly widely used fractal
dimension for chaos characterization.29,30 The computation
of the correlation dimensions involves four main steps.
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FIG. 4. (Color online) Time-domain signals obtained at different
ring gain G, as indicated.

(i) Construction of an m-dimensional attractor from the time-
domain data V (ti) through the method of time delays with
a fixed delay window. The coordinates of the attractor were
constructed as follows:

Xi = {V (ti), V (ti + τ ),V (ti + 2τ ), . . . ,V [ti + (m − 1)τ ]},
(1)

where τ is the time delay and m is the embedding dimension.
The time delay τ varies with the embedding dimension m
according to τ = τw/ (m − 1), where τw is the fixed time delay
window. For the calculation in this work, the delay window τw

was determined by the use of a correlation integral approach31

and was around 2.5 μs. (ii) Calculation of the fraction of the
pairs of points on the attractor whose sup-norm separation is
no greater than a probing distance r. This fraction is called
the correlation sum C. (iii) Calculation of the correlation sum
C for many different probing distances r. This allows for the
plotting of log10(C) vs. log10(r), and the resultant plot is called
the correlation plot. (iv) Determination of the slope of the
correlation plot. The correlation sum C scales with the probing
distance r according to a power law of the form

C(r) ∝ rD, (2)

where the exponent D is the so-called correlation dimension.
For this reason, the slope of the log10(C) vs. log10(r) plot is the
correlation dimension D. When one increases the embedding
dimension of an attractor, the correlation dimension increases
initially and then reaches a limit when the embedding space is
large enough for the attractor to untangle itself. This limiting
correlation dimension is the fractal dimension of the chaotic
signal V (ti).

Figure 5 shows representative data on the correlation
dimensions. Graphs (a), (b), and (c) show a three-dimensional
attractor, correlation plots for embedding dimension m = 2–35,
and the D vs. m response, respectively, for the signal obtained
at G = 1.31 dB. Graph (d) shows the dimension as a function
of ring gain. The circles show the data, and the lines show the
linear fits.
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FIG. 5. (Color online) Chaotic characterization of ring signals.
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The attractor in graph (a) is smooth and has a visible
structure. The correlation plots in graph (b) all show a linear
regime, and the slopes of the plots in these regimes yield the
correlation dimension data shown in graph (c). The response in
graph (c) shows rather clearly saturation behavior and indicates
a fractal dimension of about 2.45. These results clearly indicate
the chaotic nature of the measured signal.

The data in Fig. 5(d) show four things. (i) Through a change
in ring gain, one can tune the dimension in a wide range
from 2 to 8. (ii) There are two different regimes, one for
G ≈ 1.1–1.7 dB and the other for G ≈ 1.7–2.5 dB. Since the
second ring eigenmode was excited at G ≈ 1.7 dB, as shown
in Fig. 3, one can easily see that the first regime corresponds to
the situation where only one ring eigenmode was excited in the
ring, and the second regime corresponds to the two-eigenmode
situation. (iii) In both regimes, the dimension increases roughly
linearly with gain, but the rate of the dimension change with
gain is greater in the second regime. (iv) When one moves
from the first regime to the second, there is a sharp jump in
correlation dimension of about 1.

Figure 6 shows the autocorrelation function (ACF) data
obtained with the following equation:

ACF(τ ) =
∑

i [V (ti) − V̄ ][V (ti + τ ) − V̄ ]
∑

i [V (ti) − V̄ ]2
, (3)

where V̄ is the mean value of V (ti) and τ is the delay time.
Graph (a) show the ACF vs. delay time profiles for signals

obtained at different ring gains. Graph (b) shows the same data
in a longer time scale. In both graphs, the vertical axes give the
ring gain, and “red” and “dark blue” represent maximum and
minimum ACF values, respectively. Graph (c) shows the full
width at half maximum (FWHM) of the main ACF peak at τ =
0 as a function of gain. The FWHM values were determined in
different ways for the ACF profiles in the two regimes. In the
one-eigenmode regime, the FWHM was determined simply by
finding the time where the ACF profile first crossed 0.5. In the
two-eigenmode regime, the FWHM value was determined by
fitting a parabola to the section of the ACF profile between
τ = 0 μs and τ = 0.3 μs and finding the point at which this
parabola crossed half its value at τ = 0 μs. Graphs (d) and
(e) show the positions and amplitudes, respectively, of the first
and second side ACF peaks as a function of gain.

Several results are evident in Fig. 6. (i) The data show
two regimes, a one-eigenmode regime and a two-eigenmode
regime, just as the correlation data showed in Fig. 5(d).
(ii) When one moves from the first regime to the second,
fast oscillations appear on the main peak, as shown in graph
(a). Indeed, such oscillations are also on the side peaks, but
this is not shown clearly in graph (b). This oscillation response
corresponds to the appearance of the fast oscillations shown
in Fig. 4(d). (iii) With an increase in gain, the main peak
becomes narrower, as shown in graphs (a) and (c). (iv) The side
peaks move toward the main peak as one increases the gain, as
shown in graphs (b) and (d). This change is more pronounced
in the transition but is less pronounced in the two-eigenmode
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FIG. 6. (Color online) Graph (a) shows the autocorrelation function (ACF) profiles for signals obtained at different ring gains. Graph (b)
shows the same data in a longer time scale. Graph (c) shows the full width at half maximum (FWHM) of the main peak as a function of gain.
Graphs (c) and (d) show the positions and amplitudes, respectively, for the first and second ACF side peaks as a function of gain.
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regime. (v) In the one-eigenmode regime, the amplitudes of
the side peaks decrease with gain, as shown in graph (e). In
the two-eigenmode regime, however, the amplitudes increase
slightly with gain. These results demonstrate that one can
easily tune the ACF properties through the ring gain. Note
that the ACF properties of chaotic signals are important from
a practical point of view. High-resolution chaotic radars, for
example, demand chaotic signals with very sharp main ACF
peaks and very weak side ACF peaks.

IV. SUMMARY

The data presented above clearly show that there are rich
layers of complexity in chaotic spin waves in magnetic-film
feedback rings. The results have important implications on
chaotic dynamics in other feedback ring systems, such as
electromagnetic transmission line oscillators and fiber ring
lasers. In particular, one can expect similar behavior in
feedback systems where sideband modes can be excited near
the ring eigenmodes. The data also show that the complexity of
the chaotic spin waves can be tuned easily by the ring gain. This
easy tuning of the chaos complexity is of critical importance

for radar applications. The radar for complex target detection,
for example, relies on the tuning of features of chaotic signals
to maximize the cross correlation of a transmitted signal
with the reflection from one target and minimize the cross
correlation of the transmitted signal with the reflection from
another target.23,24 Future study on the controlled tuning of
chaos complexity in feedback rings through other parameters is
of both fundamental and practical interest. Future work on the
theoretical interpretation of the presented results is also of great
interest. Several previous works have made use of the complex
Ginzburg-Landau equation (CGLE) to explain the chaotic
behavior in nonlinear optical rings.10,11 This CGLE model,
however, does not take into account the three-wave nonlinear
processes that are responsible for the chaotic excitations in this
work.
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