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Magnetic and crystal structure of azurite Cu3(CO3)2(OH)2 as determined by neutron diffraction
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Here we present neutron diffraction results on the mineral azurite. We have found that the crystal structure of
azurite can be described in the space group P 21, which is the next symmetric group below P 21/c, as found in
earlier works. This small change in symmetry does not greatly influence the lattice parameters or atomic fractional
coordinates, which are presented here for single-crystal diffraction refinements. The ordered magnetic moment
structure of this material has been determined and is comprised of two inequivalent magnetic moments on copper
sites of magnitude 0.684(14) and 0.264(16)μB . This result is discussed in terms of the anisotropic exchange and
Dzyaloshinskii-Moriya interactions. It is found that the system is likely governed by one-dimensional behavior
despite the long-range-ordered ground state. We also highlight the significance of strain in this material, which
is strongly coupled to the magnetism.

DOI: 10.1103/PhysRevB.83.104401 PACS number(s): 75.25.−j, 75.50.Ee, 61.05.fm, 75.30.Et

I. INTRODUCTION

Low-dimensional quantum spin systems have garnered
much attention of late from both experimentalists and theorists
alike. One such material is azurite, Cu3(CO3)2(OH)2, a
natural mineral which has been proposed as an experimental
realization of the one-dimensional (1D) distorted diamond
chain model. Interest in the magnetic properties of this material
began in the 1950s when an ordered antiferromagnetic (AFM)
ground state was observed below 1.9 K.1,2 From these studies,
a detailed description of the magnetic moment structure
was never revealed. However, it has been speculated that
the low ordering temperature may result from frustration
in the diamond arrangement of spin- 1

2 Cu2+ ions.3 Early
susceptibility measurements indicated that the coupling of
spins within the chain could be described with alternating
dimers and monomers4 (Fig. 1). This was later confirmed
by magnetization measurements, which revealed a distinct
plateau at 1/3 the saturation magnetization, indicating a
polarization of the monomer spins within an applied magnetic
field.5

More recently, interest in azurite has been renewed with
an ongoing debate about the relative strength of the exchange
interactions in this material, as defined in Fig. 1.5–9 The current
consensus is that this system cannot be described in terms of a
simple isotropic-exchange chain Hamiltonian, but rather that
interchain coupling and anisotropic-exchange must also be
taken into account when describing this material. A detailed
understanding of the magnetic structure, as presented here,
may provide further useful material in the construction of an
effective Hamiltonian to describe this system.

To fully describe the magnetism in azurite, a complete
understanding of the structural properties is also necessary. A
definitive set of lattice parameters and atomic positions should
provide an accurate input for exchange coupling calculations.
The crystal structure of azurite was already determined in

the late 1950s by Gattow and Zeeman.10 It was found that
azurite crystallizes in the monoclinic space group P 21/c

(No. 14). This space group was confirmed by the two
independent studies of Zigan et al.11 and Belokoneva et al.12

More recently, evidence of magnetoelastic coupling in
this material has been revealed.13 Confirmed by preliminary
neutron scattering investigations, the structural strain in this
material coincides with the onset of magnetic ordering.14 It is
therefore possible that the structure of this material is apprecia-
bly different below TN compared with the structure published
for room temperature.11 Given the interest in predicting the
magnetic properties of azurite from structural considerations
alone it seems prudent to obtain accurate structural data on
azurite in its magnetically ordered state. Here we present the
results of a neutron diffraction study of azurite at temperatures
above and below TN, revealing further evidence of structural
distortion in addition to the ordered magnetic ground state.

II. EXPERIMENTAL METHODS

The sample used in this study was cut from a large
high-quality crystal of azurite, which was used in previous
studies.7 The sample was roughly cubic in shape (dimen-
sions 3 × 4 × 3 mm3) and mounted on a copper pin which
offered good thermal conductivity. Diffraction measurements
were performed on both the time-of-flight (TOF) instrument
SXD at ISIS in the UK and the four-circle diffractometer
D10 at Institute Laue-Langevin (ILL) in France. Additional
diffraction measurements were also conducted using the E1
triple-axis spectrometer (TAS) at Helmholtz Zentrum Berlin
(HZB), Germany.

The single-crystal diffractometer SXD combines the time-
sorted Laue method with a large array of position-sensitive
detectors to allow access to large volumes of reciprocal space
in one simultaneous measurement. Using this instrument, the
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FIG. 1. (Color online) Diamond chain model showing the relative
exchange interactions. It is now widely believed that J2 is the strongest
interaction in azurite.

sample is illuminated by a white beam of neutrons with a
wavelength range of 0.2 − 10.0 Å. A full data set of Bragg
peak intensities was measured at both 1.5 and 5 K for a
comparison of the structural parameters above and below the
Néel temperature.

Additional single-crystal diffraction experiments were
carried out on the instrument D10. Using a dilution 3He
cryostat, it was possible to determine structural and magnetic
properties at both 200 mK and 5 K. This ensured that
the magnetic structure of the sample was determined well
below the ordering temperature of 1.87 K. D10 uses a
Cu monochromator selecting the single neutron wavelength
λ = 1.26 Å. A selection of half-integer reflections and reflec-
tions forbidden by the P 21/c space group were also measured
to ensure an accurate evaluation of the higher-order scattering
intensity and structural symmetry, respectively. The presence
of multiple scattering could be excluded by the use of psi
scans. The integration of the Bragg reflections was performed
using two different methods: the SEED program16 and the
RACER program,17 in order to optimize the data quality. The
refinements of the crystal structure were carried out with
the program XTAL 3.4.15 Here, the nuclear scattering lengths
b(H) = −3.7409 fm, b(C) = 6.6484 fm, b(O) = 5.805 fm,
and b(Cu) = 7.718 fm were used.18

For the investigation of the magnetic structure of azurite, we
collected data sets at D10 using the longer neutron wavelength
λ = 2.36 Å. We collected a set of nuclear reflections at 200 mK
in order to determine the overall scale factor from the crystal
structure refinements. With the absorption- and extinction-
corrected magnetic structure factors, we were able to obtain
the magnetic moments of the Cu2+ ions in the magnetically
ordered range. The moments of the Cu atoms were refined
with the program FULLPROF.19 The magnetic form factors of
the Cu2+ ion was taken from Ref. 20.

Finally, to investigate the effects of applied magnetic fields
on the structure of azurite, single-crystal neutron diffraction
was carried out using the E1 triple-axis spectrometer at HZB
(neutron wavelength λ = 2.428 Å). The small azurite single
crystal remained on the copper mount with a horizontal a∗-b∗
scattering plane, such that magnetic fields up to 14 T were

applied perpendicular to b∗ (i.e., perpendicular to the chain
direction). In this geometry the 1/3 magnetization plateau,
where the monomer spins are polarized with the applied field,
ranges from 11 to 30 Tesla.5 A temperature dependence of
these applied-field effects was also conducted for temperatures
up to 5 K. With the aid of a 3He cryostat insert, base
temperatures of T ∼ 0.5 K were attained.

III. RESULTS AND ANALYSIS

A. Time-of-flight diffractometer measurements

The data from SXD have revealed that Bragg peaks of
index type (h0l) with l odd were present in the scattering
profile, despite being forbidden by the P 21/c space group.
This observation clearly indicates the loss of the c glide
plane of P 21/c. Group-subgroup relations between the space
groups showed that Cu3(CO3)2(OH)2 crystallizes either in
the noncentrosymmetric monoclinic space group P 21 (No. 4)
or in the centrosymmetric triclinic space group P 1̄ (No. 2).
For P 1̄ there is no limiting condition on any (hkl), but for
P 21 the type (0k0) is restricted by k being even. Due to
the fact that reflections (0k0) with k being odd could not
be observed in our experiments, it can be concluded that
the correct space group is probably P 21. The same limiting
conditions on these reflections were observed at both 1.5 and
5 K. This confirms the structural origin of these peaks while
indicating that azurite retains this symmetry both above and
below the Néel temperature. The observation of these peaks
with the TOF method is unambiguous—the measured intensity
cannot be attributed to higher-order scattering contamination,
as it might with other diffraction techniques. In contrast, the
“forbidden” reflections were actually also observed in the
room-temperature single-crystal neutron diffraction study of
Zigan et al.11 but were attributed to higher-order-scattering
contamination.

The atomic fractional coordinates were refined from the
SXD data containing approximately 1800 unique structural
reflections at the two measured temperatures of 1.5 and
5 K using the analysis program JANA2006.21 In the analysis
of the structural Bragg peak intensities, information from
data sets collected at different orientations of the crystal
are not merged, resulting in a large data set and complex
wavelength-dependent extinction corrections. This, coupled
with additional wavelength-dependent corrections, typically
gives poorer RF factors for TOF methods when compared to
monochromatic techniques. The RF factor is defined as RF =∑ ||Fo| − |Fc||/

∑ |Fo| where Fo and Fc are the observed and
calculated structure factors, respectively. Refinements using
the P 21/c space group gave a reliability of RF ≈ 0.080 and
compare favorably with the powder refinement, as seen in
Table I. The refinement of the SXD data using the P 21 space
group gave unphysical anisotropic thermal parameters and, as
such, did not give accurate positional parameters.

The powder data of Cu3(CO3)2(OH)2 were also re-refined
using the space group P 21. A comparison between the
refined lattice parameters from the P 21/c space group as
published earlier14 and the P 21 space group showed that,
despite the change in symmetry group, the lattice parameters
were the same within error. For the P 21 refinement of the
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TABLE I. Positional and thermal parameters of Cu3(CO3)2(OH)2 as obtained from the structure refinements of single-crystal (on both D10
and SXD) and powder data in the monoclinic space groups P 21/c. The isotropic thermal parameters Uis are given in units of 100 Å2. For the
refinement, several thermal parameters were constrained to be equal. In these cases the standard deviation is listed only for one of the equal
parameters.

Powder data at 1.28 K Single-crystal data at 5 K (SXD) Single-crystal data at 200 mK (D10)

Atom Site x y z Uis x y z Uis x y z Uis

Cu1 2a 0 0 0 0.40(4) 0 0 0 0.14(1) 0 0 0 0.12(3)
Cu2 4e 0.2508(6) 0.4967(5) 0.0834(3) 0.40 0.2515(3) 0.4976(1) 0.083 24(9) 0.25(1) 0.2516(2) 0.4977(2) 0.0834(1) 0.12
C 4e 0.3308(6) 0.2994(5) 0.3192(3) 0.63(7) 0.3294(3) 0.2993(2) 0.3180(1) 0.26(2) 0.3303(2) 0.2992(2) 0.3178(1) 0.24(3)
O1 4e 0.0975(7) 0.3972(6) 0.3318(3) 0.60(3) 0.1012(4) 0.3991(2) 0.3310(1) 0.36(2) 0.1016(3) 0.3992(2) 0.3309(2) 0.31(3)
O2 4e 0.0762(7) 0.8126(6) 0.4451(3) 0.60 0.0741(4) 0.8126(2) 0.4450(1) 0.25(2) 0.0743(3) 0.8119(2) 0.4450(2) 0.28(4)
O3 4e 0.4518(6) 0.2098(6) 0.4183(3) 0.60 0.4500(4) 0.2085(2) 0.4176(1) 0.35(2) 0.4503(3) 0.2093(2) 0.4179(2) 0.30(3)
O4 4e 0.4339(6) 0.2949(6) 0.2065(3) 0.60 0.4310(4) 0.2937(1) 0.2068(1) 0.37(2) 0.4317(3) 0.2946(2) 0.2072(2) 0.37(4)
H 4e 0.182(1) 0.800(1) 0.3709(7) 1.75(15) 0.187(1) 0.7996(5) 0.3682(3) 1.72(6) 0.1833(7) 0.7996(6) 0.3686(4) 1.75(7)

powder neutron diffraction data taken at 1.28 K, the lattice
parameters were a = 4.999 95(11) Å, b = 5.822 56(14) Å, and
c = 10.337 23(19) Å with β = 92.2103(17)◦.

Using the TOF technique with SXD, it was also pos-
sible to observe and index the magnetic reflections below
1.8 K, thereby confirming the propagation vector of k =
( 1

2
1
2

1
2 ), as has previously been observed in neutron diffrac-

tion measurements.14 For absolute accuracy in the structure
factors and somewhat more precise atomic parameters, further
diffraction measurements at a continuous source were also
conducted.

B. Crystal structure from the four-circle
diffraction measurements

The crystal structure of Cu3(CO3)2(OH)2 was refined using
the data from D10 collected at both 200 mK and 5 K.
Refinements were carried out initially in the monoclinic space
group P 21/c as done earlier by Zigan et al.11 and Belokoneva
et al.12 The lattice parameters were taken from the powder data
refinement since they were considered to be more accurate.

For the refinement of the crystal structure at 200 mK, a
total number of 1771 (845 unique) reflections were used. The
refinement of the overall scale factor, extinction parameter, and
the positional and isotropic thermal parameters resulted in a
poor residual RF = 0.089 (wRF = 0.110). For the extinction
correction in the structural refinement, the formalism of
Zachariasen (type I) was used.22 The refinable parameter g

in this formalism is related to the mosaic distribution and
assumes a Gaussian distribution of mosaic blocks within the
sample. An absorption coefficient μ = 0.158 mm−1 was also
used for refinements. The refined extinction parameter (g) of
about 1200 rad−1 indicates that extinction is quite strong in
azurite. It could be seen that strong reflections of the series
(h0l) were observed to be systematically weaker than the
calculated values while the intensities of the (0k0) reflections
were calculated to be much stronger than their observations.
This clearly highlights the anisotropy of the extinction.

The significance of extinction effects in this material was
revealed on measuring the temperature dependence of the
Bragg peak intensities. As discussed in previous work,14

such a large intensity increase below TN cannot be due to
magnetic ordering alone. However, since the intensity change

coincides with the magnetic-ordering transition, it is clear that
the structure and magnetism of azurite are closely coupled. In
Fig. 2, for example, we see a 30% increase in the intensity of
the (120) peak upon cooling the single-crystal sample below
TN and an 80% increase in the intensity of the (040). On the
other hand, no change of intensity was observed for the (008).
In fact, only structural Bragg reflections (hkl) with a large
k component were affected by a strong change of intensity.
Surprisingly, additional yet weak intensity changes were also
observed below 0.5 K on the (h00) peaks, suggesting that there
may also be strain coupled to the a direction. This appears at the
same temperature as an anomaly observed in recent ultrasonic
measurements;23 however, the nature of this anomaly is not
yet known and requires further investigations.

(a) (b)

(c) (d)

FIG. 2. Temperature dependence of the integrated intensity of the
(120), (040), (008), and (300) Bragg peaks of Cu3(CO3)2(OH)2, as
obtained from single-crystal neutron diffraction experiments. Note
that the large increase in intensity at the Néel temperature is only
observed for peaks with a nonzero k index, while peaks with a nonzero
h index also exhibit a change in intensity below 0.5 K. Lines are to
guide the eye.
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In order to improve the refinements, we rejected 123 (58
unique) of the very strong reflections. In Table I it can
be seen that the positional and thermal parameters of the
different atoms could be determined with good accuracy. The
refinement finally resulted in a better residual RF = 0.070
(wRF = 0.069), although the positional parameters obtained
from both refinements showed a good agreement. Furthermore,
the positional parameters of the single-crystal data also show
good agreement with the values obtained from the neutron
powder diffraction data collected at 1.28 K and the single-
crystal data from SXD (Table I). However, despite the fact that
the refinement quality from the single-crystal data was reduced
due to anisotropic extinction, we were able to determine the
positional parameters with much better accuracy than from
the powder diffraction study (Table I). The refinements of the
D10 single-crystal data collected at 5 K resulted in a strongly
enlarged extinction parameter of about 4000 rad−1, which is
clearly also affecting the fit parameters of the SXD data.

It was again found in the D10 experiment that reflections
of the type (h0l) with l being odd had weak yet significant
intensity. The intensity profiles of the reflection (101) at
different temperatures are presented in Fig. 3. Finally, a total
of 60 unique reflections of this type could be collected.
The presence of multiple scattering was checked by the use
of psi scans. Since the reflections of the type (0k0) with
odd k were again not observed; it is likely that the crystal
structure of azurite can be described in the space group
P 21. However, we carried out the structure refinements using
both the monoclinic and triclinic space group P 21 and P 1̄,
respectively. The refinement of the single-crystal data gave
a residual RF = 0.067 (wRF = 0.063). A significantly larger
residual RF = 0.076 (wRF = 0.074) was obtained from the
refinement of 51 parameters using the monoclinic space group
P 1̄. A comparison of observed and calculated structure factors
(in F 2) is shown in Fig. 4. It was interesting to see that the
calculated intensities of the reflections (010), (030), (050), and
(070) [(0k0) with k = odd, forbidden in P 21] were practically
equal to zero. This also indicates that the structure of azurite
still contains the screw axis 21 parallel to b. Therefore, we
can conclude that azurite crystallizes in the monoclinic space

FIG. 3. Intensity profile of the [101] Bragg reflection at tempera-
tures above and below TN. This reflection is forbidden for the P 21/c

space group but allowed for P 21. Lines are to guide the eye.

FIG. 4. Comparison of observed and calculated structure factors
(in F 2) for the P 21 (upper) and P 1̄ (lower) space groups. The
distribution of points around the line F 2

obs = F 2
calc indicates the high

quality of the fits. These data have been corrected for extinction
effects as mentioned in the text.

group P 21. The results of the refinement of the D10 data for
the P 21 symmetry group are summarized in Table II.

The positional parameters of the copper atoms for the two
different space groups P 21/c and P 21 are given in Tables
I and II. In P 21/c the Cu1 atoms are located at the special
Wyckoff position 2a(0,0,0). Therefore, in this space group
the interatomic distances to the next neighboring Cu1′ atoms
in (0, 1

2 , 1
2 ), (0,− 1

2 , 1
2 ), (0, 1

2 ,− 1
2 ), and (0,− 1

2 ,− 1
2 ) are identical

[dCu1-Cu1′ = 5.9321(1) Å ]. In the space group P 21, the Cu1
atoms are located at the general Wyckoff position 2a(x,y,z).
In Table II it can be seen that the x parameter does not show
any change from the ideal position x = 0. On the other hand,
the y and z values show a slight shift from the ideal position
y = 0 and z = 1

4 (in P 21) or z = 0 (in P 21/c) of about 3-4σ . In
the lower symmetric space group P 21, one finds two different
interatomic distances. The distances between Cu1 in (0,0,0)
and the Cu1′ atoms in (0, 1

2 , 1
2 ), and (0,− 1

2 , 1
2 ) are the same

[d1 = 5.913(4) Å ]. But along the opposite z direction, the
distance to the Cu1′ atoms in (0, 1

2 ,− 1
2 ) and (0,− 1

2 ,− 1
2 ) is

d2 = 5.952(4) Å where d1 and d2 are plotted in the bc plane
in Fig. 6. In fact, our study shows that the shift from the
ideal position is relatively weak. However, it is interesting to
note that the lower symmetric setting allows a dimerization
of monomer Cu1 sites. On the other hand, the Cu2 atoms (in
P 21/c) are located in the general Wyckoff position 4e(x,y,z),
while in the lower symmetric space group P 21 this position
splits into two different positions Cu21 and Cu22, but both
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TABLE II. Positional and thermal parameters of Cu3(CO3)2(OH)2

as obtained from the structure refinements of single-crystal data taken
at 200 mK using the monoclinic space group P 21. For the refinement,
several thermal parameters, Uis (given in 100 Å2) were constrained
to be equal. In these cases, the standard deviation is listed only for
one of the equal parameters.

Atom Site x y z Uis

Cu1 2a 0.0000(5) 0.0015(6) 0.2511(3) 0.13(4)
Cu21 2a 0.2514(4) 0.4985(5) 0.3336(2) 0.16(3)
Cu22 2a 0.7488(4) 0.5027(5) 0.1668(3) 0.16
C11 2a 0.3306(5) 0.3012(5) 0.5685(3) 0.21(3)
C12 2a 0.6691(5) 0.7026(5) 0.9334(3) 0.21
O11 2a 0.0997(5) 0.3921(5) 0.5815(4) 0.27(3)
O12 2a 0.8954(5) 0.5949(5) 0.9198(4) 0.27
O21 2a 0.0762(5) 0.8100(5) 0.6957(4) 0.33(4)
O22 2a 0.9269(6) 0.1853(5) 0.8065(4) 0.33
O31 2a 0.4518(5) 0.2068(6) 0.6700(4) 0.33(3)
O32 2a 0.5518(5) 0.7891(6) 0.8341(4) 0.33
O41 2a 0.4366(5) 0.2915(5) 0.4564(4) 0.34(3)
O42 2a 0.5732(5) 0.7037(5) 0.0411(4) 0.34
H11 2a 0.1768(12) 0.8088(11) 0.6129(7) 1.60(7)
H12 2a 0.8117(12) 0.2113(23) 0.8754(7) 1.60(7)

at the general position 2a(x,y,z). In Tables I and II it can be
seen that the Cu2 atoms in the two representations show good
agreement with respect to their standard deviations. Please note
that one finds the relation z′(Cu2) = z(Cu21 or Cu22) − 1

4 for
the two different representations.

C. High magnetic field measurements

Further insight into the magnetic and structural interdepen-
dence can be taken from the field dependence of the intensity
of the (120) structural Bragg peak. For this, measurements
were conducted using the E1 spectrometer at HZB. The left
panel of Fig. 5 displays the integrated intensity of the (120)
nuclear Bragg reflection as a function of field while the right
panel shows the temperature dependence. The intensity has
been normalized either to the peak intensity at 14 T or at

FIG. 5. Field (left) and temperature (right) dependence of
the normalized integrated intensity of the (120) Bragg peak of
Cu3(CO3)2(OH)2 near the plateau field range from single-crystal
neutron diffraction. Lines are to guide the eye.

2 K, since no further intensity changes were observed well
within the plateau phase and above the ordering temperature,
respectively. At temperatures approaching TN, the field at
which the intensity becomes invariant is reduced.

The atomic fractional coordinates were not observed to
change significantly within the accuracy of these neutron scat-
tering experiments. However, field- and temperature-induced
changes in the lattice parameters have been observed in more
accurate studies.13,14 These slight changes may facilitate the
formation of the mosaic blocks within the crystal which in
turn become misaligned on a macroscopic scale increasing the
mosaicity of the sample.

D. Magnetic structure

The magnetic order of the Cu2+ ions sets in at the Néel
temperature TN = 1.87 K. Previous diffraction experiments
showed that the magnetic cell of azurite could be described
with the propagation vector k = ( 1

2
1
2

1
2 ).14 In order to determine

the magnetic structure of the Cu sites we performed a symme-
try analysis for the space groups P 21/c and P 21. This allowed
us to deduce the possible spin configurations compatible with
the symmetry of the crystal structure according to the irre-
ducible representations (ireps) �ν , as described elsewhere.24

In a magnetic structure, the magnetic moment μ of an atom j

at the lattice point Rn in the unit cell is characterized by the
propagation vector k, where the moment is given by the Fourier
series μnj = ∑

k Skj e
−2πik·Rn . The Fourier series Skj are linear

combinations of the basis functions of the ireps obtained from
the symmetry analysis. In the monoclinic space group P 21/c,
the two different copper atoms are located (within the unit
cell) at the Wyckoff position 2a[Cu11(0,0,0), Cu12(0, 1

2 , 1
2 )]

and 4e[Cu21(x,y,z), Cu22(1 − x,y + 1
2 ,z), Cu23(1 − x,1 −

y,1 − z), and Cu24(x, − y + 1
2 ,z + 1

2 )], with x = 0.2513(3),
y = 0.4976(2), and z = 0.0834(2). There are four symmetry
operators in P 21/c leading to four one-dimensional complex
irreducible representations; namely, �1, �2, �3, and �4. Since
the propagation vector is k = ( 1

2
1
2

1
2 ), then k and −k are

equivalent such that the Fourier series Skj should be real. The
induced representation of the 2a site can be decomposed as
�2a = 3�1 + 3�3. The Fourier coefficients for the 2a site are
then a linear combination of the irreducible representation �1

and its complex conjugate �3 [i.e., (1 + i)�1 + (1 − i)�3],
leading to the following magnetic configuration with real
Fourier components: Sk11 = (u,v,w) for the atom Cu11 and
Sk12 = (u,−v,w) for the atom Cu12. The induced represen-
tation of the 4e site can be written as �4e = 3�1 + 3�2 +
3�3 + 3�4. In a similar way, we obtain the Fourier coefficients
for the 4e. In the lower symmetric space group P 21, Cu1
does not change its multiplicity and it is located at the
position 2a[Cu11(x,y,z) and Cu12(1 − x,y + 1

2 ,1 − z)] with
x = 0.0000(3), y = 0.0015(6), and z = 0.2511(3). For the
atoms Cu11 and Cu12, the Fourier components are found
to be the same for both space groups P 21 and P 21/c. Due
to the fact that the center of symmetry is lost in P 21, the
four Cu2 atoms split in two different sites; both in the same
Wyckoff position 2a as also found for Cu1. Within the unit
cell the Cu2 atoms are located at: Cu21(x,y,z) and Cu22(1 −
x,y + 1

2 ,1 − z) with x = 0.2514(4), y = 0.4985(5), and
z = 0.3336(2); Cu23(x,y,z) and Cu24(1 − x,y − 1

2 ,1 − z)
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with x = 0.7488(4), y = 0.5027(5), and z = 0.1668(3). The
only difference between the different setting is that the
components u,v,w of the subsets (Cu21, Cu22) and (Cu23,
Cu24) must not necessarily be the same. However, our crystal-
structure refinements showed that the positional parameters
are only slightly changed in the lower symmetric space group
P 21. Therefore, the values of u,v,w were constrained to be
equal for all the four Cu2 atoms. Furthermore, it is interesting
to see that coefficients for the atoms Cu12, Cu22, and Cu24
are purely imaginary. Then a phase factor of 1

4 (in fractions
of 2π ) between the atoms of one subset has to be taken into
account.

For the refinements of the magnetic structure we used
a total number of 40 independent magnetic reflections.
It could be shown that the coupling between the Cu
atoms of the monomers (Cu11 and Cu12) is compat-
ible with spin arrangement of irep �1: Sk11 = (u,v,w)
and Sk12 = (u,−v,w). The moments are coupled paral-
lel in the monoclinic ac plane, and antiparallel along
the b axis. For subsets of the Cu2 site we found the
spin configurations Sk21 = (u,v,w), Sk22 = (u,v,w), Sk23 =
(−u,−v,−w), and Sk24 = (−u,−v,−w). The spin coupling
between Cu21 and Cu22, as well as the spin coupling between
Cu23 and Cu24, along the monoclinic b axis are compatible
with the symmetry analysis.

The refined magnetic structure resulted in a residual
RF = 0.069. Figure 6 shows the refined magnetic structure

FIG. 6. (Color online) Magnetic structure of azurite, shown in
the b-c, a-c, and a-b planes (left to right). The monomer sites, with a
moment size of 0.684μB , are represented by the blue (dark) spheres,
while the dimer sites (0.264μB ) are represented by the red (light). The
monomer spins on alternate a-b planes are aligned perpendicularly.
The lengths d1 and d2 have been determined for the P 21 space group
in Sec. C.

TABLE III. Table of the magnetic spin components of the
monomer [Cu(1)] and dimer [Cu(2)] spins at the atomic fractional
coordinate positions of Cu(1) and Cu(2).

Site Spin Component (μB ) Full Moment (μB )

Cu(1)x 0.42(2)
Cu(1)y 0.36(3)
Cu(1)z 0.42(3) 0.684(14)
Cu(2)x 0.036(17)
Cu(2)y 0.243(15)
Cu(2)z 0.099(16) 0.264(16)

where the blue (dark) spins represent the Cu(1) sites, which
we commonly refer to as the monomer sites, and the red (light)
spins represent the Cu(2) sites, which form dimerized pairs.
Along the chain direction, the monomer spins are collinear
and oriented in the ac plane with a slight canting along the
b direction. The monomer spins lie with an easy axis at an angle
of 55 ± 3◦ from the c axes, which corresponds within error to
the value of 52◦ found from magnetisation measurements.4

The magnetic moment on the monomer sites is
0.684(14)μB , while the moment on the dimer sites is
0.264(16)μB . The relative x, y, and z components of each site
are shown in Table III. A moment of 0.684μB is consistent
with magnetic moments found in other cuprate systems where
the reduction from the 1μB expected for a Cu2+ ion can
be attributed to zero-point spin fluctuations and/or covalency
effects.25,26 Note that the size of the moment on the dimers
determined in this study, while significantly reduced from the
monomer value, is somewhat larger than the moment found
for azurite in its plateau phase from NMR.27 This reduction
may be caused by mean-field effects. In the plateau phase, the
monomers form a ferromagnetic chain, which may influence
the overall moment at the dimer sites. In low fields, when the
monomers are coupled antiferromagnetically, the mean-field
effects are somewhat different.

All magnetic Bragg peaks showed an increase in intensity
below the ordering temperature, as expected for a second-order
phase transition. Since the influence of extinction is roughly
proportional to the intensity of the Bragg peaks, the effect of
the anisotropic extinction on the overall magnetic refinement
result is minimal.

IV. DISCUSSION

A. Extinction

Due to the close coupling between the extinction and the
onset of magnetic order, it is likely that the magnetoelastic
coupling is mediated by the diamond chain units, which
propagate along the crystallographic b axis parallel to (0k0).
As a magnetic field is applied perpendicular to the b axis,
the AFM correlations between monomer spins give way to
ferromagnetic correlations, which in turn allow the lattice to
return to a state with fewer mosaic block discontinuities and
therefore increased extinction effects. At temperatures closer
to TN, the magnetic interactions are weaker and thus a lower
applied field is required to reduce the spread of mosaic blocks.
This may explain why we see a reduction in intensity of the
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FIG. 7. Indirect measure of the phase diagram as inferred from
the field and temperature dependence of the integrated intensity of
the (120) peak (from Fig. 5). Line is to guide the eye. Ovals and
arrows represent the Cu dimer pairs and the relative orientation of the
Cu monomers, respectively.

nuclear (120) Bragg peak in applied fields, as seen in Fig. 7.
Thus, the change in intensity with applied field, whilst being
an extinction effect, highlights the phase boundary of the AFM
state in azurite. It is also worthwhile to note that the intensity of
the (120) Bragg peak in the plateau phase is the same as in the
paramagnetic, low-field phase, indicating that the mosaicity in
both phases is the same.

B. Magnetism

For a reduced moment of 0.264μB we can consider that the
Cu(2) sites (represented by the red spins in Fig. 6) are coupled
primarily into spin singlet states with their nearest-neighboring
Cu(2) spin in the diamond unit. The observation of a finite
spin polarization implies that the singlet state is subject to
some perturbative effect, which induces the non-negligible
spin moment. Assuming the interchain coupling is negligible
in comparison with the intrachain coupling, the staggered field
of the neighboring monomer spin sites may be responsible for
this perturbation.

Considering at first only Heisenberg exchange couplings,
the expectation values of the spin moment on the dimer atoms
in the staggered field of the neighboring monomer sites can be
calculated from the Hamiltonian

H = J2 �S1 · �S2 + (J1 − J3)
〈
Sz

m

〉
Sz

1 − (J1 − J3)
〈
Sz

m

〉
Sz

2, (1)

where the ordered moment on the monomer sites defines the
z axis and is of magnitude 〈S〉. For all nonzero 〈S〉, a staggered
moment on sites S1 and S2 is established for the ground
state collinear with the monomer spins. Whilst the ratio of
(J1 − J3)/J2 = 1/2.8 implied by the relative ordered moments
on dimer and monomer spins is in rather good agreement
with the exchange couplings determined by Rule et al.,7 the
noncollinearity requires the introduction of other exchange
terms.

A likely scenario involves Dzyaloshinskii-Moriya (DM)
interactions, which strongly influence the noncentrosymmetric
J1 and J3 exchange interactions, as outlined in Fig. 8.
Taking the extra exchange terms of the type �D1 · (�Sm1 × �S1 +

FIG. 8. (Color online) Dzyaloshinskii-Moriya (DM) interactions
on the diamond-shape units where the vertical direction corresponds
to the b axis. We define the notation 
 and ⊗ to represent antiparallel
vectors since the actual orientation of the DM vector is not known.

�Sm2 × �S2) + �D3 · (�Sm2 × �S1 + �Sm1 × �S2) and using the fact
that �Sm1 = −�Sm2 = (0,0,〈Sm〉), then the Hamiltonian becomes

H = J2 �S1 · �S2 + (
D

y

1 − D
y

3

)〈
Sz

m

〉(
Sx

1 − Sx
2

)

− (
Dx

1 − Dx
3

)〈
Sz

m

〉(
S

y

1 − S
y

2

) + (J1 − J3)
〈
Sz

m

〉(
Sz

1 − Sz
2

)
.

This then causes a titling of the dimer spins compared to the
monomer z direction along the new effective staggered field
(Dy

1 − D
y

3 ,Dx
1 − Dx

3 ,J1 − J3)〈Sz
m〉 direction. The significant

tilting observed would imply that the DM interactions are of
order (J1 − J3), namely, a few K.

A further consequence of including DM interactions is that
the effective Hamiltonian of the monomer spins loses full
rotational symmetry and results in an XXZ-type Hamiltonian
with planar character [the easy plane being perpendicular
to (D1 − D3)]. To explain the spin-flop-type behavior ob-
served in azurite,28 other terms resulting in an easy axis
are needed, either from the symmetry lowering to P 21,
interchain coupling, or further anisotropies. The application of
noncommuting magnetic fields to such low-dimensional XYZ

antiferromagnets, where Jx �= Jy �= Jz, have been observed to
cause remarkable behavior in the vicinity of quantum critical
points,29,30 and azurite may well provide an important new
system in this line. Here, for example, the quantum phase
transition into the plateau phase could take on a transverse Ising
character.29 We defer further discussion of the full derivation
of the Hamiltonian to a future paper on the dynamics in azurite.

The question remains as to what extent the diamond chains
in azurite can be considered to be modeled reasonably as a one-
dimensional system. The Mermin-Wagner theorem indicates
that truly one-dimensional systems cannot enter a long-
ranged-ordered state due to quantum fluctuations;31 however,
experimentally, materials such as azurite which display
quasi-1D characteristics clearly enter a three-dimensional (3D)
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Néel state. The significance of quantum fluctuations in a given
system may be established from the ratio of the Curie-Weiss
temperature to the Néel temperature. It has been found from
susceptibility measurements that, for azurite, this value is
roughly −�CW/TN ≈ 5, implying that quantum fluctuations
should play a significant role for all temperatures below
�CW.32

Furthermore, the relative strengths of inter- and intra-
chain couplings may be inferred from the ordered magnetic
moment for comparatively weakly coupled chains.33,34 The
effective one-dimensional-chain model provides a reasonable
description of the system with coupling Jmono = 0.87 meV,
determined previously from inelastic neutron scattering.7

Taking the measured moment of m0 = 0.684μB , then an
effective tetragonal interchain coupling of |J⊥| = 0.097 meV
would be required to account for the ordering strength. It
should be noted that Ising anisotropies would serve to increase
the ordered moment for the same interchain coupling.

V. CONCLUSION

In summary, we have observed that azurite belongs to the
lower symmetry space group P 21. We have revealed the signif-
icance of magnetoelastic strain in this material as observed by

field- and temperature-dependent extinction effects. Also pre-
sented here is the ground-state magnetic structure of azurite,
which confirms that the diamond chain arrangement of mag-
netic Cu2+ sites in this material can, to some extent, be con-
sidered as an alternating arrangement of dimer and monomer
entities. The ordered magnetic structure may also indicate
the presence of competing interactions between the chains
in this material and the significance of anisotropic exchange.
Comparison of the magnitude of the ordered magnetic moment
with existing theories of coupled quantum spin chains implies
that the interchain coupling is weak in this material and that the
system may thus be considered one dimensional. The magni-
tude and orientation of the magnetic moments in azurite points
to additional anisotropy terms in the Hamiltonian. Additional
diffraction studies will be required to determine the ordered
magnetic state of this intriguing material in its plateau phase.
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