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Unified cluster expansion method applied to the configurational thermodynamics of cubic Ti1−xAlxN
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We study the thermodynamics of cubic Ti1−xAlxN using a unified cluster expansion approach for the alloy
problem. The purely configurational part of the alloy Hamiltonian is expanded in terms of concentration-
and volume-dependent effective cluster interactions. By separate expansions of the chemical fixed lattice, and
local lattice relaxation terms of the ordering energies, we demonstrate how the screened generalized perturbation
method can be fruitfully combined with a concentration-dependent Connolly-Williams cluster expansion method.
Utilizing the obtained Hamiltonian in Monte Carlo simulations we access the free energy of Ti1−xAlxN alloys
and construct the isostructural phase diagram. The results show striking similarities with the previously obtained
mean-field results: The metastable c-TiAlN is subject to coherent spinodal decomposition over a larger part of
the concentration range, e.g., from x � 0.33 at 2000 K.
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I. INTRODUCTION

Metastable cubic Ti1−xAlxN solid solutions1–3 are one
of the most widely used classes of hard protective coating
materials.4 The addition of Al to TiN coatings has been shown
to result in better oxidation resistance2 and retained or even
increased hardness at temperatures reached in for cutting
tool applications.5 Al-rich cubic TiAlN films demonstrates
particularly good properties. The age-hardening mechanism
has been shown to be due to a coherent isostructural spinodal
decomposition of the as-deposited cubic Ti1−xAlxN solid so-
lutions into TiN (or Ti-rich TiAlN) and cubic AlN domains.5,6

The existence of an energetic demixing driving force has been
proven theoretically by means of first-principles calculations7,8

and explained to be primarily due to an electronic structure
mismatch effect that is particularly strong for the Al-rich
compositions.8

The isostructural phase diagram, derived theoretically
within the mean-field approximation,8 shows an almost com-
plete miscibility gap between TiN and c-AlN at temperatures
of relevance for cutting tool applications, around 1300 K.
According to these estimates, the composition region dis-
playing spinodal decomposition extends from x = 0.25 to
x = 0.99 at this temperature8 but could be further extended
when subjected to cutting-induced pressure.9,10 However, the
mean-field approximation neglects the effect of short range
order or clustering and is known to overestimate the critical
temperatures.11 The qualitative importance of local clustering
in TiAlN for the isostructural decompositions as well as for the
maximum amount of Al possible to solve in the cubic phase
before appearance of wurtzite AlN during synthesis has been
noted in a number of articles.7,8,12

Here, we investigate the clustering thermodynamics of
cubic TiAlN using an accurate statistical mechanics analysis
beyond the mean-field approximation. In doing so we use
concentration- and volume-dependent effective cluster inter-
actions, which are devised by a here-proposed combination
of two complementary methods: the generalized perturbation
method (GPM)13 and the structure inverse or Connolly-

Williams cluster expansion (CE) method.14 In this way we are
able to provide accurate mapping of the complex interatomic
interactions onto an Ising-type Hamiltonian, which can then
be used in Monte Carlo calculations of the configurational part
of the free energy and its contribution to the isostructural phase
diagram of the system.

II. ALLOY HAMILTONIAN

In a previous investigation of the c-Ti1−xAlxN system, the
electronic structure and, as a consequence, mixing energy of
these alloys were found to exhibit complicated behavior, which
could not be captured by a simple regular solution model. Such
behavior of the system, and the changes of its thermodynamic
properties with concentration, is related to a gradual electronic
structure transition due to bond cutting of the next-to-nearest-
neighbor (metal sublattice nearest-neighbor) Ti-Ti bonds of
t2g character, eventually leading to isolated and localized
states in a semiconducting AlN-rich matrix.8 This is in fact
exactly the case where the concentration-independent (grand
canonical) cluster expansion breaks down: The nature of the
Ti-Ti interaction in the metallic state and in the semiconductor
state differ.

Therefore, the concentration-dependent expansion of the
configurational energy is the only reasonable choice for the
alloy Hamiltonian in TiAlN. In general, such a Hamiltonian is
defined as

Hconf = 1

2

∑
p

V (2)
p (x)

∑
i,j∈p

δciδcj

+ 1

3

∑
t

V
(3)
t (x)

∑
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δciδcj δck

+ 1

4

∑
q

V (4)
q (x)

∑
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δciδcj δckδcl + · · · , (1)

where V (n)
α (x) are the n-site effective cluster interactions for

specific cluster α and the concentration of Al x; and δci =
ci − x are the concentration fluctuation variables defined in
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terms of the occupation numbers ci , which takes on values 1
or 0, if Al or Ti atom occupies site i, respectively.

The Hamiltonian in Eq. (1) takes care only of the
configurational part, so the total alloy Hamiltonian can be
obtained if either the total energy of a random alloy or its
mixing enthalpy (in this case at zero pressure), �Hmix(x) =
Etot(x) − xEtot(x = 0) − (1 − x)Etot(x = 1), are added to the
configurational Hamiltonian. In this work we use the latter for
convenience:

Hall = �Hmix(x) + Hconf . (2)

Equation (2) follows from the fact that the configurational
energy of a random alloy in Eq. (1) is exactly zero, since
in this case 〈δciδcj · · · δck〉 = 〈δci〉〈δcj 〉 · · · 〈δck〉 = 0. Let us
note that in the case of the concentration-independent cluster
expansion, the mixing enthalpy is reexpanded in terms of the
corresponding effective cluster interactions.

The next important point is the separation of the effective
cluster interactions in the Hamiltonian of Eq. (1) into chemical
part, defined as the situation with all atoms sitting on fixed ideal
lattice points in the absence of any local relaxations, and the
additional relaxation part, which takes care of the rest of the
energy, associated with local lattice relaxations specific for a
given atomic configuration:

V (n)
α = V (n)−fix

α + V (n)−rel
α , (3)

where V (n)−fix
α and V (n)−rel

α are the chemical fixed lattice and
relaxation part of n-site interaction V (n)

α , respectively.
With this separation one can gain an important advantage

if there is an efficient way to get the chemical part of the
interactions. This part may exhibit nontrivial behavior and
nonlinear concentration dependence, induced, for instance, by
the electronic structure effect as demonstrated in Ref. 8. On
the other hand, at least in the system studied here, the local
lattice relaxations, although important, show a very smooth
behavior as a function of concentration. In fact, in TiAlN the
latter originates to a large extent from the relaxation of nitrogen
atoms and can be well explained by the independent sublattice
model, given by a simple one-parameter equation.8 In this
work, however, we aim for a more detailed description also of
the relaxation part of the problem.

The effect of thermal expansion as well as vibrational
entropy and electronic excitations are neglected in this work.
We do not believe that thermal expansion has a large
impact on the here calculated properties in the temperature
regions that have any practical relevance. This is so since
in a test calculation, the strongest of our obtained cluster
interactions in Ti0.5Al0.5N decreased with only about 2%
when the lattice parameter was expanded with 2%. This
tested expansion is substantially larger than the experimentally
observed for TiN at 1692 K: 1.3% (with respect to room
temperature).15 Thus, in the present system, the hard ceramic
type bondings makes vibrational effects less important at
the temperatures of relevance, especially with respect to the
very strong configurational energetics, to be shown below.
Of course, for the extreme temperatures needed to close the
isostructural miscibility gap, vibrational effects are large, e.g.,
TiN melts at about 3500 K.16 However, this region is included
only for completeness and to discuss consequences of the

configurational modeling scheme and not to be used for any
direct comparisons with experiments.

III. TOTAL ENERGY CALCULATIONS
AND MIXING ENTHALPIES

The total energy calculations were done using two different
electronic structure methods. First, the electronic structure
and total energies of random c-Ti1−xAlxN alloys have been
calculated by the exact muffin-tin orbitals (EMTO) method
in the coherent potential approximation (CPA).17,18 The CPA
method, however, neglects local lattice relaxation effects
and, therefore, to get the relaxation energy contribution,
we combine it with supercell calculations. In the latter, the
projector augmented wave (PAW)19 method has been used
as implemented in the Vienna ab initio simulation package
(VASP)20,21 to calculate the energies of supercells modeling
the random state. These are created by closely matching the
pair correlation functions on the coordination shells where the
effective cluster interactions are strongest to the values in real
random alloys as described in Ref. 8. This procedure is an
extension of the strategy suggested by Zunger et al.22 in their
design of so-called special quasirandom structures (SQS)22 but
is based on a rigorous condition for the validity of the usage of
a supercell for modeling the random state.23,24 Although we do
not use the originally suggested small special SQS structures in
this work, we use the abbreviation SQS for our randomlike su-
percells in line with the terminology in previous publications.
A comparison between SQS and Connolly-Williams cluster
expansion calculations was recently presented by Ghosh et al.
for, e.g., Al-Ti intermetallics.25

Internal coordinates and volume were relaxed for each of
the SQS structures while we neglected the shape relaxation,
which should be absent in a real random alloy due to the preser-
vation of the B1 symmetry on average. In addition, 100 ordered
structures for the concentrations x = 0.25,0.375,0.5,0.625,
and 0.75 are considered for the cluster expansion of the lattice
relaxation energies. The ordered structures have between 4 and
16 metal atoms and are constructed by multiplying the unit cell
in the [001], [011], [111], and [211] directions, assuring that
they all have unique combinations of the pair correlation func-
tions at the first two coordination shells. Their energies have
been calculated using the PAW method, allowing for relaxation
of all internal coordinates and shape, while their volumes were
kept fixed at the equilibrium volume of the corresponding SQS.
All calculations have been done using the generalized gradient
approximation (GGA)26 for electronic exchange-correlation
effects within the density functional framework. The details of
the calculations are the same as in Ref. 8.

Thus, the mixing enthalpies, at zero pressure, of the random
alloys, �Hmix(x) in Eq. (2), were calculated using the EMTO-
CPA method for its fixed lattice part and the PAW-SQS method
for the relaxation part, the latter decreasing the positive mixing
enthalpies of the alloys with about one-third.8 Note that it was
shown that the two methods gave very similar results for fixed
lattice calculations.8

The mixing enthalpies (at zero pressure) of the SQS
structures as well as obtained with the CPA method combined
with an interpolation of the SQS lattice relaxation energies are
discussed in Sec. IV C.
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IV. EFFECTIVE CLUSTER INTERACTIONS

A. Effective fixed-lattice chemical interactions

The effective fixed-lattice chemical interactions were ob-
tained by the screened GPM.27–29 The starting point of this
method is the electronic structure of a random alloy at a given
concentration and external conditions. The latter is usually
obtained in the CPA, which provides the effective medium
in order to calculate the energy response of the system to
a particular effective perturbation by the proper expansion
of the one-electron energy term.11,13 This part is calculated
within the EMTO method but using the slightly smaller lattice
parameters from the PAW calculations for consistency with the
derivation of the relaxation part of the interactions. The effect
on the interactions of this small lattice parameter difference,
which is less then 1%, is, however, almost negligible. In the
case of DFT formulation one then has to add an additional
electrostatic contribution following the force theorem.27–29

The latter contributes only to the effective pair interactions and
is determined in supercell calculations, allowing the evaluation
of the screening density in the corresponding random alloy. In
this work this screened electrostatic contribution was obtained
in very large randomlike supercell calculations by the locally
self-consistent Green’s function (LSGF) method.23,30

The screened GPM was used to calculate (i) the effective
pair interactions up to the 30th coordination shell, (ii) all
the three-site interactions in which the sides correspond up
to the fifth coordination shell, and (iii) all the four-site
interactions with the edges up to the fourth coordination
shell. In addition, we also calculated one specific, more
distant, four-site interaction, which is known to give quite
large contributions to the configurational energetics due to
its specific geometry. It is the interaction for the four-site
cluster along the line of the [110] direction. The strongest
of the multisite interactions are shown in the lower panels of
Fig. 1 where the interaction index is given by the coordination
shell numbers of the sides of the corresponding cluster. In
the case of the four-site interactions, the order of the indexes
are important, so we make the following choice: the first four
indexes are the coordination shells of the sides of a closed loop
through all four sites, and the last two are the coordination
shells of the remaining sides of the cluster.

It is clear that the most important effective chemical
interactions of the fixed lattice are the nearest- and next-to-
nearest-neighbor pair interactions. They are negative, favoring
clustering, and show a strong nonlinear decrease with Al
concentration. The three-site and four-site interactions are
all rather weak for concentrations up to about x � 0.60.
However, they increase sharply for higher Al content. This
is a signature of the gradual electronic transition where Ti
3d states with t2g symmetry, in the absence of Ti nearest (metal
site) neighbors, becomes isolated in a semiconducting AlN
matrix, as discussed above. It is also the reason why it would
be dangerous to expand the configurational energy of c-TiAlN
using concentration-independent interaction potentials.

There are two major approximations behind the screened
GPM method: the CPA and the atomic sphere approximation
(ASA). The CPA neglects the local environment effects in
the electronic structure of a random alloy. The ASA errors
come in different ways, but the most significant one is related

FIG. 1. (Color online) The strongest of the chemical fixed lattice
effective two-, three-, and four-site interactions as a function of Al
content obtained by the GPM method together with the tuned pair
interaction at the first coordination shell.

to the screened Coulomb interactions, which are defined
in the specific geometry of the atomic spheres. Both these
approximations most strongly affect the interactions at the
first few coordination shells.

In this work, we use the fixed-lattice results from the
calculated mixing energies of the ordered structures to
tune the GPM interactions. This is done by assuming that
the long-range pair interactions and the multisite interactions
are well described by the GPM and then cluster expand the
remaining part of the ordering energies corresponding to the
short-ranged pair clusters using the concentration-dependent
CE method. An equivalent viewpoint is that the errors of the
GPM is cluster expanded.

In our case it turns out that it is enough to tune only one
pair interaction at the first coordination shell to obtain good
agreement between the ordering energies from the cluster
expansion and direct total-energy calculations. It is interesting
to note that the tuning results in an almost concentration-
independent scaling of the GPM nearest-neighbor interaction
by a factor of 1.26–1.28. This tuned-GPM interaction is
shown with large circles in the top panel of Fig. 1. If we
allow for simultaneous tuning also of the next-to-nearest-
neighbor pair interactions, we obtain for this shell almost
the original GPM value (scaling factor of ≈1), clearly
indicating the validity of our assumption about the short-
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FIG. 2. (Color online) The error in the GPM and tuned-GPM
descriptions of the fixed lattice part of the ordering energies of the 20
structures considered for Ti0.5Al0.5N. The average magnitude of the
errors are 16.9 meV/f.u. using the GPM and 7.5 meV/f.u. using the
tuned GPM.

range nature of the GPM inaccuracies. Of course, for other
systems, the tuning procedure could possibly be extended to
a few more shells for the obtaining of excellent fixed-lattice
interactions.

Figure 2 shows the magnitude of the difference between the
fixed-lattice ordering energies obtained with the direct PAW
calculations, on the one hand, and the pure screened GPM and
tuned screened GPM interactions, respectively, on the other.
This difference can be expressed as

�Es−fix = Es−fix − ESQS−fix

−
∑
f

V
(n)−fix
f

[
ξ

(n)−s
f − ξ

(n)−SQS
f

]
, (4)

where ξ
(n)−s
f = 〈δciδck . . . δck〉f are the correlation functions

for figure f for the alloy having structure s.
Given the large total spread in ordering energies, which is

more than 250 meV/f.u. for the structures with x = 0.5 consid-
ered here, the pure GPM potentials perform reasonably well.
But by using the tuning scheme, the accuracy becomes very
good. The average absolute value of the difference is reduced
from 16.9 meV/f.u. for the pure GPM to 7.5 meV/f.u. using
the tuned GPM. We note that a certain part of the remaining
small error after the tuning comes from a constant shift in
ordering energies. Such a small constant shift does not neces-
sarily influence the description of energy differences between
configurations treated in a statistical mechanics simulations.

B. Cluster expansion of the lattice relaxation energy

The relaxation term of the effective interactions were
obtained by the concentration dependent Connolly-Williams
CE method for the relaxation part of the energies of the
ordered structures. The relaxation energy is defined for each
structure as the energy difference between the situation where
all atoms are sitting on ideal lattice points and when they
have been allowed to relax to their equilibrium (eq) positions:
Es−rel = Es−eq − Es−fix.

To obtain the V (n)−rel
α (x) we use a least-squares method to

minimize the sum of the squares of the difference between the
relaxation part of the ordering energies obtained with the Ising
Hamiltonian and direct DFT calculations:

�Es−rel = Es−rel − ESQS−rel

−
∑
f

V
(n)−rel
f

[
ξ

(n)−s
f − ξ

(n)−SQS
f

]
. (5)

Of course, also our cluster expansion faces the standard
obstacles of the structure inversion method. However, we have
a much easier job as compared to the conventional cluster
expansion since we have separated out the complex chemical
fixed-lattice term and only expand a part of the total ordering
energies. Furthermore, judging from the shape of the relaxation
energies of the SQS structures in Ref. 8, this part shows no sign
of peculiar concentration dependence. Instead, it was shown
that the local lattice relaxations in TiAlN is primarily due to re-
laxation of nitrogen atoms positioned between metal atoms of
differing chemical type, an effect mostly depending on the pair
correlation function on the second metal coordination shell.8 In
comparison, lattice mismatch gives a quite small contribution
to the relaxation energies since pure TiN (aPAW = 4.255 Å)
and c-AlN (aPAW = 4.07 Å) are rather close in lattice spacing.

For all considered concentrations, we have tested different
cluster bases with up to 12 terms, including pair interactions
up to the 15:th coordination shell, as well as short-ranged (up
to the first and second coordination shells) three- and four-site
interactions. Our conclusion is that the expansion based on
the six pair interactions at the 1st, 2nd, 4th, 6th, 8th, and
10th shells gives a very good description of the relaxation
energies for all concentrations. The inclusion of additional
clusters, including multisite ones, in the expansion gives only
minor improvements. Furthermore, the obtained relaxation
interactions depend quite weakly on the concentration, in line
with the findings in Ref. 8. We thus perform a linear regression
to the obtained values to get the relaxation interactions for
each concentration (in steps of �x = 0.05) to be used in the
statistical mechanics simulation.

The three strongest relaxation interaction parameters, the
pair interactions on the 2nd, 4th, and 8th coordination shells,
are shown in Fig. 3 as functions of concentration together
with the linear regression values used in the Monte Carlo
simulations. One can see that the strongest relaxation interac-
tion, V

(2)−rel
2 is positive, favoring ordering and corresponding

to the relaxation of the nitrogen positions between metal
atoms of different kinds, in line with Ref. 8. For all the
relaxation interactions the linear regression fits well with
the obtained values. Nevertheless, we double checked both
ordering-energy calculations and statistical simulations using
both the direct values and the values from the linear regression.
The differences for the results were negligible. Note that all the
relaxation interactions are rather weak compared to the first
fixed lattice interaction V

(2)−fix
1 , especially in Al-rich alloys.

But at lower Al content, on the other hand, the relaxation
interactions become relatively more important.

The situation at x = 0.5 is shown in Fig. 4, where the pure
GPM pair interactions are plotted with open black circles, the
relaxation interactions are shown with solid red squares, and
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FIG. 3. (Color online) The three strongest relaxation interactions:
pair interactions on the 2nd, 4th, and 8th coordination shells, as a
function of Al content obtained by the the Connolly-Williams cluster
expansion method (solid symbols). The linear regression values used
in the Monte Carlo simulations are shown with open symbols. Note
the different scale on the y axis as compared to the fixed-lattice
chemical interactions shown in Fig. 1.

the resulting total pair interactions, including the tuning of the
fixed-lattice interactions, are shown with large, bold circles.

C. Evaluation of the effective interactions

The top panel of Fig. 5 shows the mixing enthalpies
(at zero pressure) of the SQS structures and as obtained
using the CPA-method combined with an interpolation of the
SQS lattice relaxation energies. Also shown are the mixing
energies of the 100 ordered structures used in our cluster
expansion procedure. The effective cluster interactions have
been tested to produce the ordering energies of the considered
100 structures. The results are shown in the lower panel of

FIG. 4. (Color online) The effective cluster interactions used for
the composition Ti0.5Al0.5N. Pure GPM interactions are shown by
small open circles, and lattice relaxation interactions are shown by
solid squares. The total effective pair interactions, V (2)

p , including
also the tuning of the fixed-lattice interaction on the first coordination
shell, are shown with large circles.

FIG. 5. (Color online) (Top panel) Mixing enthalpies of
Ti1−xAlxN random alloys calculated with the CPA-EMTO method
(complimented with relaxation energies) and with the PAW-SQS
method. Also shown are the mixing energies (at the SQS volumes)
for 100 ordered structures. (Lower panel) The ordering energies of
the 100 different Ti1−xAlxN ordered structures. The values of direct
PAW calculations are shown with solid red circles. The unified cluster
expansion is shown with striped black circles.

Fig. 5. The ordering energies from the direct calculations are
based on the comparison with the SQS energies but adjusted for
the small but nonzero correlation functions of those supercells,
ξ

(n)−SQS
f according to

Es−ord
direct

= Es
DFT −

{
E

SQS
DFT −

∑
f

[
V

(n)−fix
f + V

(n)−rel
f

]
ξ

(n)−SQS
f

}
.

(6)

Those results are shown with solid red circles.
The ordering energies derived from the Ising Hamiltonian,

obtained with the unified cluster expansion method

Es−ord
Ising =

∑
f

[
V

(n)−fix
f + V

(n)−rel
f

]
ξ

(n)−s
f , (7)

are shown with striped circles to the right of the results from
the direct calculations. Lines connect the values obtained for
the same structure with the two different approaches. The
large spread in ordering energies, more than 0.280 eV/f.u.
for structures at x = 0.5 and almost as much for the structures
with x = 0.75, illustrate the strength of the configurational
interactions. As compared to those values the effective cluster
interactions describe the ordering energies very well, with an
average magnitude of the errors of 8.8 meV/f.u.. However,
an increase in the errors can be seen for the structures at
x = 0.75, indicating the difficulties to describe the Al-richest

104203-5



ALLING, RUBAN, KARIMI, HULTMAN, AND ABRIKOSOV PHYSICAL REVIEW B 83, 104203 (2011)

region, as discussed above. On the other hand, this region
corresponds to compositions where the cubic phase cannot be
grown experimentally any way. Noting that we can expect a
slightly larger inaccuracy in the analysis of compositions with
x � 0.75, we move on to the thermodynamics study.

V. THERMODYNAMICS OF c-TiAlN

With the effective interaction potentials of the generalized
Ising Hamiltonian at hand we can start our analysis of the
clustering thermodynamics of c-TiAlN. The objective is to
obtain the Gibb’s free energy of mixing that governs the phase
stabilities. Previously, we have done so using the mean-field
approximation8,9

G(x,P,T ) = H MF(x,P ) − T SMF(x), (8)

where H MF(x,P ) is the mixing enthalpy of the ideal random
solid solution and

SMF(x) = −kB[xlnx + (1 − x)ln(1 − x)] (9)

is the entropy of such a system. Since the completely random
alloy configuration has the highest entropy, the mean-field de-
scription of the configuration becomes an excellent approxima-
tion as T → ∞. At lower temperatures, short-range clustering
(or ordering in other systems) will decrease the enthalpy term
more than the entropy term, so the mean-field approximation
overestimates the free energy and underestimates the stability
of the solid solutions.

These effects can be captured with a series of canonical
Monte Carlo calculations with the configurational Hamiltonian
in Eq. (1). We have performed such calculations for fixed
compositions with the step �x = 0.05 over the relevant
concentration range at specific temperature. Our Monte Carlo
simulations are carried out using the Metropolis algorithm31

utilizing simulations boxes of the dimension 16 × 16 × 16
conventional cubic cells with 16 384 metal atoms. For each
temperature we perform 13 000 trial steps per atom, of which
8000 per atom are used to collect thermodynamic data. In this
work we neglect vibrational effects and consider zero-pressure
conditions where the volumes used to calculate E are the
equilibrium volumes for each solid solution. In this case we get

G(x,T ) = E(x,T ) − T S(x,T ), (10)

where

E(x,T ) = EMF(x) + EMC(x,T ) (11)

S(x,T ) = SMF(x) +
∫ T

∞

CV (x,T ′)
T ′ dT ′, (12)

where EMF(x) is the mean-field energy, while EMC(x,T ) and
CV (x,T ) are the energy and specific heat obtained in the
Monte Carlo simulation.

We note that the Monte Carlo energy, EMC(x,T ), is negative
since it is the deviation of the energy of the system from the
energy of the ideal solid solution due to short-range order
effects at a fixed composition. Also, the change in entropy
is negative since CV (x,T ) and T are both positive, while the
integration goes from higher to lower temperature values. We
assume that S(x,T = 10 000 K) ≈ SMF(x) and perform the
thermodynamic integration from this temperature downward

FIG. 6. (Color online) The Gibb’s free energy of mixing, at zero
pressure, for cubic Ti1−xAlxN solid solutions as calculated with two
different methods, a mean-field approximation (black circles) and
Monte Carlo simulations (red squares). Values for temperatures of
T = 2000, 4000, 6000, and 8000 K are shown together with the
mixing enthalpy of the completely random solid solution.

to the temperature of interest. The resulting free energies
of mixing, calculated both within the mean-field approxi-
mation, Eq. (8), and via the more accurate treatment from
Eqs. (10)–(12), are shown in Fig. 6 for the temperature range
2000–8000 K.

The Monte Carlo simulations are restricted by compositions
x � 0.9, since at higher Al concentrations the effective
interactions become divergent and produce quite high error.
However, this does not influence more than marginally the
predictions about phase stabilities in the Ti-richer regions,
which is relevant for the experimentally achievable cubic
phases. The mixing enthalpy of the completely random solid
solution is shown for comparison.

The equilibrium phase separation transition temperature
can be determined for each composition by a common
tangent construction. This temperature is higher than the
corresponding phase-separation temperature in the individual
canonical Monte Carlo simulations. This is so since in reality,
and taken into account with the common tangent construction,
there is always an additional energy gain for the equilibrium
phase separation in comparison with the fixed volume Monte
Carlo simulations. In the latter, the decomposition products
are not allowed to fully relax and are kept out of equilibrium
in a homogenous state to lower temperatures.

Let us note that it is difficult to perform an accurate
thermodynamic integration close to the instability temperature
in the Monte Carlo simulations. However, as discussed above,
this is enough to determine both the binodal and, for most
compositions, the spinodal lines of the phase diagram. The
Monte Carlo derived free energy curve corresponding to T =
2000 K is shown only for compositions with x � 0.55 since,
at this temperature, the canonical clustering temperatures have
been reached for higher Al content.

At high temperatures, e.g., T = 8000 K, the mean-field free
energy is very close to the free energy including the clustering
contribution, with only a small deviation at high Al content
where the effective cluster interactions become quite strong.
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FIG. 7. (Color online) The isostructural phase diagram of cubic
TiAlN as calculated with both the mean-field approximaiton, Eq. (8)
(black solid lines), and the Monte Carlo approach, Eqs. (10)–(12) (red
dashed lines). The binodal lines are shown with thick lines while the
spinodal lines, corresponding to the condition ( ∂2G

∂x2 )T = 0, are shown
by thin lines. The simulation of the coherent spinodal is shown with
a dotted line.

As the temperature decreases, the importance of the clustering
becomes more and more apparent over a larger composition
range.

The phase diagram with the binodal lines derived with the
common tangent construction and the spinodal lines from
the consideration of the ( ∂2G

∂x2 )T = 0 condition is seen in
Fig. 7. The Monte Carlo–derived results are actually similar
to the mean-field ones, especially in the composition region
x � 0.66, in which the single-phase cubic thin films are
possible to grow experimentally.32 In the Al-rich region, the
impact of the clustering effects are somewhat larger. The
maximum temperature of the miscibility gap in the mean-field
approximation is 8900 K at x = 0.84, while the local clustering
effects reduce this temperature to 7900 K at x = 0.83. Of
course, these temperatures are of mere theoretical interest
since the melting temperature of TiN is ∼3500 K16 and
the equilibrium wurtzite structure AlN should unavoidably
form at temperatures well below the closure of the cubic
miscibility gap. At temperatures of more practical interest
for the cutting applications, T < 1500 K, the miscibility
gap covers almost the entire composition range regardless if
short-range clustering effects are considered or not.

The spinodal region, believed to be of particular importance
for age hardening, also covers the larger part of the composition
space. At T = 2000 K compositions with x � 0.29 are subject
to spinodal decomposition according to the Monte Carlo
simulations (we neglect the Al-richest side where a minimal
amount of Ti could be present without spinodal decomposition
at this temperature). In the Ti-rich region, x � 0.5, the Monte
Carlo spinodal line is actually ∼500 K above the mean-field
spinodal line. Since the presented results correspond to the
so-called chemical spinodal, where the free energy of each
composition is derived for its equilibrium volume, it is of
interest to study also the coherent spinodal line, the phase
region where spinodal decomposition occurs even without
any possibilities for volume relaxation of the resulting phases.

We estimate these temperatures for the Al content x = 0.3,
0.4, 0.5, and 0.6 by substituting the zero-pressure mixing
enthalpies with the mixing energies calculated at the relevant
fixed volume; e.g., when obtaining the coherent spinodal
for x = 0.5, all the mixing energies entering as �Hmix in
Eq. (2) or EMF(x) in Eq. (11) are calculated at the equilibrium
volume for c-Ti0.5Al0.5N. The resulting coherent spinodal is
shown with a blue dotted line in Fig. 7. The difference from
the chemical spinodal is a decrease in spinodal temperatures
by about 400–500 K in the composition interval considered
here.

There is a relatively close agreement between the phase
diagram obtained with our accurate thermodynamic treatment
and the approximate mean-field approach in the TiN-rich
region. Our view is that for these compositions, the phase
separation proceeds through a first-order phase transition, quite
far from the critical point where short-range correlations,
neglected completely in the mean-field approach, become
important. One reason is the presence in the TiAlN system of
a small, but finite, volume mismatch. The volume differences
are almost entirely governed by the composition rather than by
particular configurations at a fixed composition. In the AlN-
rich regime the impact of short-range clustering is stronger.
However, for those compositions the cubic phase diagram is
of less practical interest due to the tendency to form the stable
wurtzite structure of AlN.

VI. CONCLUSIONS

In conclusion, we have introduced the unified cluster
expansion method and solved the difficult alloy problem of
clustering thermodynamics in c-Ti1−xAlxN. This approach
illustrates how the two main tools of alloy theory to obtain
effective cluster interactions, the structure inversion and the
generalized perturbation methods, could be fruitfully com-
bined. We do so by separating the interactions into chemical
contribution obtained on a fixed lattice, for which the GPM
method works well, and the lattice relaxation term, for which
the cluster expansion is applied. Using these interactions we
perform Monte Carlo simulations to determine the short-
range clustering effects on the free energy of mixing. When
constructing the isostructural phase diagram we find that cubic
TiAlN is a phase-separating system over almost the whole
concentration range at typical cutting tool working temper-
atures 1000 � T � 1500 K. At T = 2000 K the spinodal
region extends from about x � 0.33 or x � 0.28, depending if
one considers coherent decomposition conditions. The results
show a striking, but explainable, close resemblance with those
obtained with the mean-field approximation in the composition
region of experimental and industrial relevance.
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