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Thermally activated avalanches: Jamming and the progression of needle domains
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Large-scale computer simulations of a simple model with a square-lattice topology, a small shear deformation
(4◦ shear angle), and open (free) boundary conditions show that domain boundary movements under adiabatic
strain deformation lead to Vogel-Fulcher behavior at high temperatures. The activation energy is independent of
temperature and details of the twin patterns. Below the Vogel-Fulcher temperature, no thermal activation was
found and the time evolution of the domain pattern becomes athermal. The movement of domain boundaries
is now dominated by the nucleation and growth of needle domains. Their movement occurs in fast jerks. The
probability to observe jerks follows a power-law spectrum with energy exponents close to α ≈ 2. At even lower
temperatures, the boundary kinetics becomes erratic even in our large (106 atoms) system. The lateral movement
of twin walls is found for our thin twin walls (w = 3 layers) to operate by kinks which propagate along the twin
wall. The needle domains nucleate either from the surface or from other existing twin walls. Intersections of twin
walls constitute pinning centers which impede the free movement of the kinks in the walls. These intersection
points then act as a pattern of intrinsic, self-induced defects which lead ultimately to the power-law distribution
of the crackling noise of the domain walls.
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I. INTRODUCTION

The kinetic process of front propagation of ferroic, mul-
tiferroic, and martensitic materials can be smooth, jerky, or
combine both aspects.1–6 It can also be athermal or thermally
activated.7–9 Smooth propagation is understood as a feature of
solitary waves (or domain walls),10–15 while the experimental
observation of jerks is somewhat surprising. Major advances
came from the analysis of acoustic emission (AE) experiments
which were seen as an indication for avalanches and were
analyzed as power laws, automata, etc.5,16–19 While the AE
and elastic three-point-bending experiments20 have been in-
strumental in defining jerky interfacial behavior, both methods
fail to generate a full picture of the front propagation, namely,
the coexistence of smooth fronts and jerks, and thermally
activated movement and athermal avalanches. In magnetic
systems, Barkhausen noise shows a similar characteristic.21

As the disorder is decreased, one finds a transition from
a smooth hysteresis loop to loops with a sharp jump in
magnetization and avalanches in a large region around this
transition point. The avalanches then show power-law distri-
butions. The theoretical approaches have, naturally, focused
on the universality of the avalanche dynamics. Since the early
work of Bak,22,23 Nattermann,5,24,25 and others, a multitude of
renormalization studies,26,27 simulations, and basic physical
considerations28–30 have elucidated this aspect.

The application to the field of ferroic phase transitions
was much less elaborate, besides some work on the role of
the Larkin length,31,32 the roughening transition, and their
importance for the formation of avalanches. The Larkin length
describes directly the ability of twin walls to meander in order
to capture as many defects as possible inside the walls. This
increases pinning of walls, i.e., systems with short Larkin
lengths pin more strongly while pinning is much weaker
in materials with long Larkin lengths. Meandering requires
local bending of twin walls, which is strongly impeded by

highly anisotropic elastic forces in ferroelastic and martensitic
materials. Electron-microscopic observations have shown that
weak bending of twin walls is possible in such materials, while
the Larkin length remains large compared with the length of
the crystallographic unit cells.33 The movement of such twin
walls with very weak bending is described in this paper.

The general term crackling noise described the approach
to multitudes of jerks in extended systems very aptly.28 An
important result from previous work30 on such crackling noise
is that near zero temperatures and at a critical point, the
energy distribution of the jerks, follow a power law with P(ω)
∼ ω−1/σνz, where 1/σν is the fractal dimension df of the
avalanche size and z relates to the correlation length ξ with
the characteristic avalanche duration t ∼ ξz. Equally, the size
exponent and duration exponent have been derived in several
models. These results are hard to compare with experimental
observations in ferroelastic and multiferroic materials, how-
ever. We will show below that the elementary jerk is related to
the advancement of a needle or a kink in a wall, which interacts
with other needles and kinks. The interatomic interactions
are highly anisotropic so that results from simulations in
models such as isotropic random-field Ising models are not
realistic for ferroic materials. It also appears that the Larkin
length of such elastic systems is very long, and bending
of interfaces requires large energies which are usually not
involved in the formation of jerks.34 In addition, we have no
easy possibility of picking up demagnetization signals, as in
Barkhausen noise spectra, so that the determination of size
distributions of avalanches becomes very difficult. The most
reliable way forward appears to be to measure the energy
(Gibbs free energy or potential energy) of a ferroic system
and estimate relative changes in the energy content of jerks
and avalanches.1 Most importantly, renewed emphasis was
put on the temperature effect,35 which we will explore in this
paper.

104109-11098-0121/2011/83(10)/104109(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.104109


SALJE, DING, ZHAO, LOOKMAN, AND SAXENA PHYSICAL REVIEW B 83, 104109 (2011)

All this begs the following question: are all jerks also
avalanches? Are experimentally observed jerks the fundamen-
tal kinetic events for crackling noise or, alternatively, can jerks
be thermally activated, isolated, and unrelated to collective
behavior? An even more extreme scenario may be true, namely,
that jerks in highly defective materials and at sufficiently
low temperatures lead to crackling noise (with a power-law
distribution of energy jumps) while jerks in materials with low
defect concentrations and perhaps slightly higher temperatures
masquerade as avalanches, but may be simply propagating
fronts in systems with finite size or finite diameters of grain
boundaries.

Some indications for the possible answers stem from three
key experimental observations that have motivated these stud-
ies of avalanches and front progression: first, the coexistence
of both types of excitations in the measurement of the heat flux
during the martensitic phase transition in CuZnAl.1 The second
observation is that a single needle domain displays crackling
noise together with thermally activated front propagation.2

Third, one finds power-law dynamics in dynamical mechanical
analysis, resonance ultrasonic spectroscopy experiments, and
in AE,3–5,16–19 over some extended interval (two or more
decades). The measured exponents and some theoretical
predictions cluster around characteristic values, namely, 1.3
for the size distribution (Ref. 28, and references therein)
and about 2 for the energy distribution.1,28,36,37 The question
can now be asked whether all jerks are defect-generated
avalanches and whether athermal behavior is required to
generate such avalanches. We will show that this is not
necessarily the case. At moderate temperatures we find jerky
behavior which displays classic power-law exponents without
any extrinsic defects, while jerks can be thermally activated at
high temperatures.

II. THE MODEL

Our simulations follow the tradition of large-scale simula-
tions with open (free) boundary conditions and interatomic
potentials.38–42 Periodic boundary conditions are not used
because domain boundaries often nucleate as needle domains
from the crystal surface. Surface relaxations play a major role
in the determination of the time evolution of twin walls. A
typical singular case for the movement of a jerky domain
wall would be a simple nucleation of a needle domain and its
propagation until it hits the opposite surface. Obviously, such
jerks cannot be seen in simulations using periodic boundary
conditions. The computer code LAMMPS was used with an NVT
ensemble.

The model is based on interatomic interactions43 rather
than force-field simulations44 because the elementary step
leading to advancement of twin boundaries is known to
be—for narrow twin boundaries—related to the sideways
movement of kinks inside the boundary.45 Kink propagation
was previously observed in the propagation of phase fronts
for a polytypic transition in PbI2 but was not observed in
ferroelastic materials.46 Such atomic-scale kinks are well
reproduced by atomic-scale simulations, while force-field
calculations average over such finer structural details.46

The interatomic potentials were chosen to reproduce most
closely the macroscopic Landau potentials of the relevant

FIG. 1. (Color online) The model with nearest- and third-nearest
neighbors along the horizontal and (almost) vertical axis; the bold
double arrows indicate the nonlinear Landau springs. The shear angle
is 4◦ in a box of 106 atoms including surface relaxations.

materials.10–12,33 It was found that in ferroelastic materials
the macroscopic Gibbs free energy closely follows a Landau
potential.10 In addition, similar Landau potentials were also
recently found in martensitic phase transformations and used
for simulations.47–55 The following requirements are posed for
our potential: (1) The ground state of the model has to be
a slightly sheared pseudocubic lattice, i.e.,a heavily twinned
crystal would have an apparent, overall cubic symmetry but
is noncubic within any domain. (2) The length scales of the
interfaces have to be of the order of three atomic repetition
units. The shear angle of ferroelastic materials10 is typically
below 4◦ while martensitic materials have often larger shear
angles. We decided to construct the model such that the shear
angle was fixed to 4◦, which appears to be a good compromise
for metallic and oxide materials. The shear angle is determined
by the diagonal springs in the square configuration (Fig. 1)
which was chosen to mimic the observed Landau potentials.
The thickness of the interface and the surface relaxations are
determined by the competition of springs between nearest
neighbors and next-nearest neighbors in the direction per-
pendicular to the twin boundary.56 The resulting potential is
a sum of nearest-neighbor interaction (short black lines in
Fig. 1), U (r) = 20(r − 1)2, next-nearest-neighbor interaction
(diagonal in the square lattice, heavy lines, yellow and orange
online in Fig. 1), U (r) = −10(r − √

2)2 + 2000(r − √
2)4,

and third-nearest-neighbor interaction (long black lines in
Fig. 1), U (r) = −(r − 2)4, where r is the distance vector.

The ground state of this lattice is sheared with a shear
angle determined by the diagonal interaction. In addition, free
boundary relaxations enhance the shear angle57 to 4◦. The
calculated cell has 106 particles and contains two buffer layers
on the top and bottom of the two-dimensional sheet. These
buffer layers were sheared by the external boundary condi-
tions (fixed shear angle, hard boundary conditions). Limited
computer power leads to simulations in two dimensions. We
believe that this choice is reasonable because it was shown
previously that the addition of further layers did not change
the microstructures significantly.12,39

The initial condition contained one horizontal twin bound-
ary [Fig. 2(a)] which under external strain moved laterally so
that the final situation was a single crystal. Each configuration
was annealed before any strain was changed as boundary
condition for 106 time steps using a conjugate gradient
refinement procedure to find the optimal position for each
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FIG. 2. (Color online) (a) The initial twin model with one central
twin boundary; a shear is applied at the top from right to left and at the
bottom from left to right. (b) A complex wall configuration is formed
(in the bottom region of the initial model), prior to the nucleation of
secondary needles perpendicular to the first generation of needles.

lattice point. In all cases the only relaxations which occurred
during this procedure were surface relaxations; no further
microstructures developed. After this relaxation, the external
strain was increased via a global shear of the two boundary
layers. The increase of the shear was performed adiabatically
with 107 time steps. For comparison, the phonon excitation
(vibration) time was 1000 time steps. The thickness of the
initial, relaxed twin walls was three lattice units. For the
analysis of the energy evolution of the domain configurations,
the sum of all potential energies for all sites was calculated
and recorded for each time step during the shearing of the
sample.

III. RESULTS

The increase of external strain leads to the nucleation and
growth of needle domains and the sideways movement of the
central twin boundary. The initial nucleation site for the needle
domains lies at the surface. As shear is applied at the top from
right to left and at the bottom from left to right in the present
calculation [Fig. 2(a)], needles nucleate on the bottom-left
surface and generate a deformation of the surface area with the
needle tip oriented towards the interior of the sample. Further
loading drives the needle domain from the left to the right
[similar to as shown in Fig. 3(e)]. The colors in the online
version indicate the local shear, where for small angles the

value is additive and is defined as θ = |θver − 4| + θhor. Here,
θver and θhor denote the local shear angle in the vertical direction
and horizontal direction, respectively, which are calculated
over three atoms; see the scale in the online version). This leads
to an increase of the region with right shear at the expense of
regions with left shear. The movement is akin to a weaving
pattern and leads to a global movement of walls from the
bottom to the top.45 During the above process, the central twin
boundary remains pinned by the preexisting needle domain
and cannot move down.

After a number of needle domains and twin boundaries
are nucleated, a complex wall configuration is formed in
the bottom region, and hence induces the nucleation of
secondary needles perpendicular to the first generation of
needles (hereafter called vertical twins). As shown in Fig. 2(b),
three domains are separated by two twin boundaries. The twin
boundary between the bottom domain and the middle domain
is relatively thin whereas a multitude of topological defects
occur at the upper boundary. A trace of a vertical wall (in red)
is seen near the right-hand side of the image [A in Fig. 2(b)].
A kink in the horizontal twin boundary is pinned near the
junction B in Fig. 2(b). This kink has a thicker wall on the left
side and a thinner wall on the right side. The kink moves to the
left and thereby moves the upper twin boundary downwards.
Just below this configuration is a double kink [C in Fig. 2(b)]
which connects two walls. This kink moves to the right and
eliminates some left sheared region.

On further loading, the vertical twins grow and finally
intersect with the horizontal twins [Figs. 3(a)–3(d)]. The
intersections of the horizontal and vertical needles and twin
walls generate perturbations of the twin boundaries, which
act as pinning centers for moving kinks and additional needle
domains. This configuration constitutes the jamming process
of the wall propagation. Following, the sideways movement of
the central twin boundary occurs via the development of kinks
in the twin boundary and the movement of these kinks along
the twin boundary [Figs. 3(a)–3(d)]. All movements of the
walls are related to wall segments, which move horizontally.
Freely moving kinks are shown in Figs. 3(b), 3(d) (left corner),
and 3(e), while a pinned kink is seen on the right-hand side
of Fig. 3(d). The pinning in Fig. 3(d) occurs again at the
intersection between a horizontal wall and a vertical wall. See
the supplemental material for movies on the evolution of twins
at different temperatures.58

We now describe the time evolution of the total potential
energy Pe of the system. After the initial relaxation the
ground-state potential energy of the system is −0.026721
in normalized units, at zero temperature. When the shear
increases, the potential energy increases quadratically with the
macroscopic shear strain. After a threshold for the nucleation
of a twin boundary is surpassed, a domain boundary propagates
and reduces the strain energy. Accordingly, the potential
energy reduces stepwise (on the time scale of the needle
propagation). Further increase of the shear strain repeats the
same process with further domains propagating. This leads to
a sawtooth appearance for the energy derivative versus strain
plots in Fig. 4(a). Temperature does superimpose dynamical
fluctuations at high temperatures which ease the nucleation
and growth of needle domains and the propagation of the
kinks inside the twin domain walls. Visual inspection of the
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FIG. 3. (Color online) (a) Global microstructure at T = 2.4TVF with three horizontal penetrating twin boundaries and numerous needle
domains both horizontally and vertically. The image (b) is the expanded black rectangle region in (a) showing a typical kink formation which
facilitates the lateral movement of the horizontal twin boundary. These kinks are weakly pinned (at high temperatures) by the intersection with
the vertical twin boundaries. (c) and (d) show similar views for a configuration near the Vogel-Fulcher temperature (T = 1.2TVF). The domain
structure has fewer intersections; two kinks (one pinned and one free) are shown in (d). The microstructure below TVF is similar to (c) and
(d). (e) At very low temperatures (T = 1.68 × 10−3TVF) only lateral movements of twin walls are found. The mechanism of the movement is
exclusively via the movement of kinks inside the walls.

graphs on the left-hand side of Fig. 4 already shows that we can
distinguish three dynamical regimes: at high temperatures we
find significant thermal fluctuations and a very large number of
energy jerks. In the intermediate temperature regime, a large
number of jerks still persist but with very few temperature
fluctuations, while at low temperatures the initial, mechanical
sawtooth pattern is clearly visible with few additional jerks.
We now quantify these temperature regimes.

The potential-energy versus shear strain curves in Fig. 4
are now analyzed in terms of jerk energies. As the potential
energy is the integral over all energy contributions by moving
twin boundaries, we resort to measurements of the squared first
derivative of Pe with respect to the applied shear strain (es). As
the shear strain increases with a constant rate, the derivative is
identical to derivatives in time. Similar derivatives were used
previously59 to derive temporal fluctuations in avalanching
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FIG. 4. (Color online) Time evolution of the microstructure at various temperatures. The lower panel of (a) shows the typical sawtooth
behavior with superimposed noise in the derivative of the energy curves. The probability to find a jerk of a certain energy content is then
plotted as a function of energy of the jerk at different temperatures as shown in (b), (d), (f), and (h). These distributions show erratic behavior at
very low temperatures [(a) and (b)], power spectra below the Vogel-Fulcher temperature [(c) and (d)], and thermally activated behavior at high
temperatures [(g) and (h)]. At 1.2TVF [(e) and (f)] the spectrum shows a short cutoff for the power law with large exponential tails.
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systems and a similar quantity (des/df )2, where es is the
macroscopic shear strain and f is the applied force, was used
in the experimental paper.2 These data are shown in Figs. 4(a),
4(c), 4(e), and 4(g); large jerks appear at the edge of the
sawteeth and smaller ones inside the ramps of each sawtooth.
We note here that the avalanches are not properly defined in
the thermal case and also in the power-law region close to
the Vogel-Fulcher temperature. With this caveat in mind, the
analysis of the derivatives appears to be the best option at
present.

The probability to find a jerk of certain energy content is
then plotted as a function of energy of the jerk. Here we see the
three regimes very clearly in Figs. 4(b), 4(d), 4(f), and 4(h):
the probability distribution is exponential at high temperatures
and follows closely a Vogel-Fulcher (VF) distribution P(E)
∼ exp−([E/(T − TVF)]), where TVF is the Vogel-Fulcher
temperature. We calibrate all temperatures with respect to TVF

(= 4 × 10−4, in our potential units). This thermally activated
behavior disappears when T is less than 1.2TVF and gives
way to a power-law distribution P(E) ∼E−α dependence in
the temperature regime well below 1.2TVF [Fig. 4(f)]. In the
Vogel-Fulcher regime we find a very good agreement of the
distribution function with the Vogel-Fulcher law. Plotting the
absolute value of the inverse exponent (normalized by TVF)
as a function of temperature (Fig. 5) leads to the definition of
TVF. At a slightly higher temperature of 1.2TVF we find that
the exponential distribution is already significantly perturbed
while a power-law fit is valid only over a very small interval.
We define this temperature as the crossover point between
the Vogel-Fulcher regime and the power-law regime. At lower
temperatures we find the power-law regime in the interval II.

FIG. 5. (Color online) Inverse exponent of the logarithmic prob-
ability functions in Fig. 4 as a function of temperature. The linear
dependence of the inverse slope constitutes the Vogel-Fulcher law. We
normalized the temperature scale with respect to the Vogel-Fulcher
temperature. At lower temperatures (regime II) the probability
functions follow a power law with energy exponents around 2. At
very low temperatures (regime I) our simulations do not provide
sufficient data to constitute reliable functional dependences. In this
regime a fairly erratic dependence is expected even in experimental
observations of small samples. (a)–(e) refer to the microstructures of
Fig. 3 that are seen in the various regimes.

The horizontal line indicates the upwards shift of the x axis if
one takes the 1.2TVF as the crossover point.

IV. DISCUSSION

Vogel-Fulcher relaxational behavior is typically observed
in glassy systems and systems which undergo relaxor phase
transitions.60 TVF is often called the freezing temperature
at which all dynamical relaxations cease. It is commonly
believed that the dielectric response of glasses and relaxor
materials is governed by the ensemble of local configura-
tions which relax dynamically with an exponentially broad
spectrum of relaxation times. For relaxation spectra which
are smooth and wide enough, the real part of the dielectric
permittivity can be approximated by the following logarithmic
scaling:

ε(ω, T ) = ε0(T ) f (ln ω0/ω ,T ).

The maximum of ε(ω,T ) may occur at TA so that the TVF

can be approximated by

TVF = TA + C(ln ω0/ω),

with some constant C which describes the dispersion of
the relaxation times.61 Logarithmically slow relaxations and
temperature dependences of the Vogel-Fulcher type are hence
conceptually linked62 and have been explored widely for
highly disordered systems.63 Our results for the power-law
distribution at modest temperatures just below TVF show
power-law behavior with exponent α ≈ 2, which is identical
to those one would expect for avalanche statistics with large
defect concentrations.64 This clearly shows that the empirical
observation of power-law distributions with α near 2 does
not imply that defect-generated crackling noise or critical
avalanches, or self-induced criticality is at play. No extrinsic
defects are part of our model so that the only reason why jerky
front propagation follows a power-law distribution appears to
be that the active centers of the movement, namely, the twin
boundaries, generate the defects intrinsically. This means that
at a well-defined wall concentration their interaction leads
to jamming and hinders further time evolution of the strain
release. Close inspection of the domain pattern in Fig. 3
shows that the active defects are the intersections between
walls and the tips of needle domains. Parallel twin walls do
not (virtually) interact over distances relevant in our patterns
so that the network of interacting centers is defined by the
points (or lines in three dimensions) of intersections of walls.
The intersections form a fairly high defect density which
would satisfy the usual conditions of avalanche dynamics.
We can then characterize our results as follows: the defect
concentration is too low at low temperatures to generate
smooth jerk distributions. At slightly higher temperatures,
these concentrations are sufficient and power-law distributions
are seen. The energy exponent assumes values around 2.
At temperatures well above the Vogel-Fulcher temperature,
we find thermally activated behavior with constant activation
energies.
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