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A method for homogenization of an elastic composite with periodic microstructure is presented, focusing
on the Floquet-type elastic waves. The resulting homogenized frequency-dependent elasticity and mass density
then automatically satisfy the overall conservation laws and by necessity produce the exact dispersion relations.
It is also shown that the dispersion relations and the associated field quantities can be accurately calculated
using a mixed variational approach, based on the microstructure of the associated unit cell. The method is used to
calculate the dynamic effective parameters for a layered composite by using both the exact solution and the results
of the mixed variational formulation. The exact and approximate results are shown to be in close agreement,
which makes it possible to use the approximate method for the proposed type of homogenization in cases where
an exact solution does not exist. The homogenized frequency-dependent effective parameters give rise to the
concept of dynamic Ashby charts that can be used to illustrate the effect of the microstructural architecture
on the dynamic properties of a composite. In particular, the charts vividly display how this effective stiffness
and density vary with frequency and may attain negative values within certain frequency ranges which can be
changed as desired using the microarchitecture while keeping the volume fraction of the unit cell’s constituents

constant.
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I. INTRODUCTION

There has been a recent surge of interest in the field
of the dynamic response of composites with tailor-made
microstructure. By controlling the microstructural hetero-
geneities in a periodic composite, exotic dynamic responses at
the macroscale can be achieved. This necessitates developing
systematic homogenization procedures by which the dynamic
behavior of periodic composites can be expressed in terms of
averaged parameters such as effective compliance and effective
density. For wavelengths that are suitably larger than the scale
of heterogeneity, these homogenized material parameters are
expected to provide an effective description of the dynamic
behavior of the composite. At a minimum, one must ensure
that the resulting effective parameters satisfy (1) the overall
conservation laws and compatibility relations, and (2) the
composite’s dispersion relations. These dispersion relations
can be accurately and independently calculated based on the
microstructure of the unit cell, as we discuss in this paper.
Our focus in this work is on Floquet-type harmonic waves in
periodic elastic composites.

For Floquet- or Bloch-type electromagnetic waves in
periodic media, Refs. 1-3 gave a method of homogenization,
using surface and line integrals of field variables. The authors
pointed out that the effective parameters calculated by their
method exhibit spatial dispersion for a homogeneous case
and corrected for this by removing the factor introduced
by finite differencing (FD) of Maxwell’s equations; for this,
they use the calculated dispersion relation together with first-
order corrected expressions for the effective permittivity and
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permeability. The FD method was also applied to study chiral
media.* In Ref. 4, the effective permittivity, permeability, and
chirality tensors are independently corrected up to the first
order in the normalized wave number (phase advance), and
similarly, the associated dispersion relations are corrected.
The method we present in the present paper does not require
any such correction and in fact the corresponding results as a
matter of course satisfy the above-mentioned two requirements
exactly. In Ref. 5 the authors have given a microstructurally
based homogenization technique for calculating effective
electromagnetic properties in which the values of the field
variables in the unit cell are not required and their results
do satisfy the above-stated two basic requirements. Based on
an ensemble averaging technique, Ref. 6 presented a general
method in which the displacement was driven by a nonrandom
body force, thus allowing one to consider a mean wave with
independent wave number and frequency. In this approach,
the local field equations for the mean wave are ensured to be
satisfied by the presence of the body force. When the body
force is zero, then the dispersion relation results, which relates
the wave number and frequency. In this manner, Willis cal-
culated the effective elastodynamic parameters for laminated
media using Green’s function. These effective parameters
satisfy the dispersion relation and are spatially nondispersive
in the long-wavelength limit. Here we present an analogous
approach for calculating effective elastodynamic parameters
(C°T, p°™) for Floquet waves in periodic elastic composites.
The method presented in this paper involves writing the field
equations locally through a single unit cell as a function of
position and averaging the equation with respect to the position
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variable over the unit cell. The method proposed by Willis®
involves a random medium and creates an average of statistical
ensembles. The two methods result in identical homogenized
parameters for Bloch-type waves in periodic composites,
satisfying the dispersion relation by necessity. This method
is used to calculate the effective parameters for a two-layered
composite by using the exact solution’ and an approximate
mixed variational method.?'" The efficacy and accuracy of
the approximate method were demonstrated by means of
numerical examples,®'° using Fourier series approximation.
The convergence of the method was subsequently proven.!!
It was shown that while the rate of convergence of both
the Rayleigh quotient and the mixed formulation depends
on the regularity of the elastic properties and the density
through the unit cell, the mixed formulation always has a
convergence rate faster than that of the Rayleigh quotient. Here
we show, by way of a two-layered example, that dispersion
results obtained by using the approximate method quickly
converge to the exact solution. The displacement and stress
fields thus calculated from the approximate method are used
to calculate the effective overall parameters, and it is shown
that the results converge to the results of the homogenization
calculations based on the exact solution. This is done with
the view of subsequently using the approximate method to
homogenize composites with more complex microstructures
where exact expressions for the field quantities and the
dispersion relations do not exist.

The effective parameters thus calculated are functions
of frequency. An efficient and logical way of representing
them is by multidimensional graphs which we call dynamic
Ashby charts. These charts are extensions of the standard
Ashby charts,'” in which the frequency (or wave vector)
forms an additional axis. We illustrate how these charts
may be used to tailor the effective dynamic properties of
heterogeneous composites using architectural design of the
microstructure. We show that by using the same volume
fraction of constituents within a unit cell but varying the
cell’s microarchitecture, composites of vastly different
dynamic properties can be created, e.g., composites that
for Floquet-type waves may display negative effective mass
density and/or negative effective stiffness, as well as negative
index of refraction over a certain desired frequency range.

It was shown in Ref. 13 that hypothetical materials with
negative index of refraction, if realized, would possess exotic
electromagnetic properties. These materials exhibit group
velocity which is antiparallel to phase velocity and which
was experimentally realized.'* “Negative” electromagnetic re-
sponse of materials is a result of local substructural resonances
in electric and magnetic fields. Analogous elastic materials
with antiparallel group velocity have been proposed.!>-!7 The
central idea was to use local resonances from rigid-body
motions to create low-frequency bands of negative group
velocity. We present a four-layered structural composite which
uses this idea and exhibits a low-frequency negative passband.
Indeed, elastic composites consisting of very stiff inclusions
periodically embedded in a relatively soft matrix do display
negative branches, as can be seen from the results presented in
the literature.'”

We mention that periodic lattices with interesting overall
dynamic properties that result from wave interaction with local
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microstructure have been extensively studied; see, e.g., Ref. 18
and references cited therein. In particular, Ref. 19 discusses
multiscale microstructural designs to alter and control the
material’s overall frequency band structure and other related
dynamic properties.

In what follows, we first present a general variational
method that yields accurate eigenvalues and eigenmodes for
periodic composites whose corresponding unit cell consists of
constituents with discontinuous properties. Then we use the
results to calculate the frequency-dependent effective stiffness
and mass density of a two-layered composite, comparing the
results with those based on the exact solution of the field
equations. Finally, we present the concept of the dynamic
Ashby chart and illustrate this for a two-layered composite,
demonstrating the effect of microstructural design on the
dynamic response of the composite.

II. MIXED METHOD FOR CALCULATION OF
EIGENMODES OF PERIODIC COMPOSITES

Consider harmonic waves in an unbounded periodic
elastic composite consisting of a collection of unit cells,
Q. In view of periodicity, we have p(x) = p(x+m' 1)
and Cjpnn(X) = Cjpmn(X +m'l ), where x is the position
vector with components x;,j = 1,2,3, p(x) is the density,
and Cjgun(x) (j,k,m,n =1,2,3) are the components of the
elasticity tensor in Cartesian coordinates. m’ is any integer
and 1%, B = 1,2,3, denote the three vectors which form a
parallelepiped enclosing the periodic unit cell.

For time harmonic waves with frequency w (A = w?), the
field quantities are proportional to e**’. The field equations
become

Ojk,k + )"puj =0, Ojk = Cjkmnum,n- (D

For harmonic waves with wave vector q, the Bloch
boundary conditions take the form

ujx+ 1% = u;0e ", x4 17) = —;0e ()

for x on 0€2, where t is the traction vector.

To find an approximate solution of the field equations
[Eq. (1)] subject to the boundary conditions [Eq. (2)], we
consider the following expressions:

+M

=), U, 3)
a,By=—M
+M

ge= ). SP. “
a,B,y=—M

where the approximating functions f“?*) are continuous and
continuously differentiable, satisfying the Bloch periodicity
conditions. As shown in Ref. 8, the eigenvalues are obtained
by rendering the following functional stationary:

An = ({ojx,uji) + (k.0 k) — {Djkmn0ji:Omn))/ {PUj,Uj),
)

where (gu;,v;) = fQ gu; v’; dV, where the star denotes the
complex conjugate, and D 4, are the components of the elas-
tic compliance tensor, the inverse of the elasticity tensor C jxp, .
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Substituting Egs. (3) and (4) into Eq. (5) and equating
to zero the derivatives of Ay with respect to the unknown
coefficients U™ and S;‘zﬁ ") we arrive at the following set
of linear homogeneous equations:

(Gikx+ rnpij, fOPY=0," (D jtmnGmn— it i, f )= 0.2
(6)

There are 6M, (M, = 2M + 1) equations in Eq. (6)* for
a general 3-directionally periodic composite. They may be

solved for Sﬁ’s ") in terms of Uj(-“ﬂ 7) and the result substituted

into Eq. (6)'. This leads to a system of 3M ; linear equations.
The roots of the determinant of these equations give estimates
of the first 3M; eigenvalue frequencies. The corresponding

eigenvectors are U;“ﬂ ") from which the displacement field
within the unit cell 1s reconstituted. The stress variation in the
unit cell is obtained from Eq. (6)%. The following example
illustrates this procedure; as has been proved in Ref. 11,
the resulting Fourier series expression converges at a rate
that is faster than the corresponding Rayleigh quotient. The
Appendix outlines the basic equations in matrix form, for
elastic ellipsoidal inclusions periodically distributed within
an elastic matrix, providing also the dispersion curves for
elliptical fibers in an elastic matrix.

A. Example: A two-layered composite

To evaluate the effectiveness and accuracy of the mixed
variational method, consider a layered composite (Fig. 1)
with harmonic longitudinal stress waves traveling perpen-
dicular to the layers. The displacement u# and stress o are
approximated by

+M +M
i = Z U(a)ei(qurerotx/a)’ 5 = S(a)ei(qurZrmx/a).
a=—M a=—M

(N

In these equations, a is the periodicity length. Substituting
these into Eq. (6)* we obtain S in terms of U%. The resulting
equations are then substituted into Eq. (6)!, providing a set
of M, linear homogeneous equations, the roots of whose
determinant give the first M, eigenvalue frequencies for a
given wave number q.

The exact dispersion relation for 1D longitudinal wave
propagation in a periodic layered composite has been given
by Rytov,’

cos(ga) = cos(whi/cy) cos(why/cy)
-r sin(a)hl/cl) Sil‘l(a)hg/Cz), (8)
I'=(1+«%/2c), K= pici/(pc2), )

X
—
|

FIG. 1. Schematic of a layered composite.

Material 1: p=1000 kg/m?
E=2 x10° Pa
Thickness=5mm

Direction of
wave propagation

Material 2: p=3000 kg/m?
E=200 x10° Pa
Thickness=5mm
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FIG. 2. Frequency—wave number dispersion relations; compari-

son of approximate and exact results for the first four branches.

where h; is the thickness, p; is the density, and ¢; is the
longitudinal wave velocity of the ith layer (i = 1,2) in a
unit cell. In Fig. 2 we compare the frequency—wave number
dispersion relations obtained by this mixed variational method
and the exact solution.

The first four modes are compared in Fig. 2. It can be
seen that the mixed method gives accurate results for the
first three modes when M, =5 (M = 2) terms are used to
approximate the displacement and stress. The fourth mode is
inaccurate for the M = 2 calculation but as the number of
terms in the expansion is increased to M, =7 (M = 3), the
results converge to those obtained from the exact solution.

Since the exact dispersion relations are available for only
fairly simple geometries like layered composites, the mixed
variational formulation provides an attractive and effective
method to calculate the eigenfrequencies and eigenvectors
associated with three-dimensionally periodic composites. In
the next section we present a four-layered example where the
dispersion curves are calculated from the mixed variational
formulation.

B. Example: A four-layered composite

We present a four-layered case where a heavy and stiff
material is placed between thin layers of a soft and light
material and the whole assembly is in a heavy and stiff matrix.
The case is similar to Refs. 15—17 where the heavy and stiff
central layer produces localized resonances which give rise to
a low-frequency negative passband.

Figure 3(a) shows the schematic diagram of a unit cell of
the four-layered composite considered. Figure 3(b) shows the
dispersion curve for the composite. The first two propagating
modes have been pushed to low frequencies and a significant
stop band exists between the second and the third passbands.
Figure 4 shows the real part of the displacement profile along
the unit cell at Q = 0.5 on branch P,. It can be seen that there
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FIG. 3. Four-layered composite. (a) Schematic of a unit cell. (b) Frequency—wave number dispersion curve.

is a rigid-body motion of the central layer with respect to the
matrix.

III. HOMOGENIZATION BY INTEGRATION
OF FIELD VARIABLES

Many studies of Floquet-waves in composite materials
seek to extract effective constitutive properties from computed
solutions for waves propagating freely through the material.
This section develops a prescription which is easily applied
and delivers effective properties that are guaranteed by their
construction to produce the exact dispersion relation as
necessary condition without any approximation. It is presented
in the one-dimensional context of the present work but it can
be extended directly to two- and three-dimensional problems.

For harmonic waves traveling in a layered composite
with a periodic unit cell Q = {x: —a/2 < x < a/2}, the

0.1 ' ;
—_ 0.05F e —— J
=] d +
o) + .
E + +*
= o . |
c +
7] + .
I +
S -0.05} : : .
@© . *
2 . ;
S .0.1f ’ : 1
-0.15 1 ! !
-2 -1 0 1 2

Distance from the center of the unit cell x 1073

FIG. 4. Displacement profile along the unit cell at Q = 0.5, f =
25.8 kHz.

field variables (displacement, velocity, strain, stress, and
momentum) take the following Bloch form:

ulx,t) = Ux)e'@ =0 y(x,1) = V(x)e'@ =D (10)
e(x,t) = E(x)e" = o(x,t) = T(x)e' D (11)
p(x,t) = P(x)e' @ =", (12)

where functions U (x), €(x), V(x), E(x), £(x), and P(x) are
periodic with the periodicity of the unit cell. The dynamic

equilibrium and the strain-rate/velocity relations give
Vo +iwp =0, Vv+4iwe =0, (13)

where V denotes differentiation with respect to x.

A. Effective properties
Multiply Egs. (13) by e 4% and use Eqgs. (10)—(12) to obtain
V(Z(x)e' 1) 4 iwP(x)e' 1% =0, (14)
V(V(x)e X)) L iwE(x)e' 1% = 0. (15)
Introduce the change of variable y = x — X to obtain
Vy(E(X +y)e'?) +ioP(X 4+ y)e' ™ =0,  (16)
Vi(V(X + )e'?) +iowE(X + y)e'? = 0. (17)

Average the above equation with respect to X over the unit
cell to arrive at

Vy(Ze'?) +iwPe? =0, (13)
Vy(Ve') +iwEe'® =0, (19)
where any one of the barred quantities is defined as
_ 1 +a/2
G = —f G(X)dX. (20)
aJ_an

Note that the overall field variables defined according
to (20) satisfy the overall field equations, as is ensured by
Egs. (18) and (19), from which we have

_ w — _ w —
X+—-P=0, V4+—-E=0. (21
q q
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Now define the mean constitutive relations as

S=CME, P=pv. (22)

Then, for the four linear and homogeneous equations (21)
and (22) to admit nontrivial solutions for the overall effective
field quantities, X, P, V, and E, we must have

Ceft <a) ) 2
peff - q ’

which gives the dispersion relations. We emphasize that
this homogenization procedure delivers the exact dispersion
relation (23) as a necessary condition without any need
for further adjustment. We also mention that the effective
parameters defined by (22) are real-valued only if the unit
cell is symmetric. For nonsymmetric unit cells, the coupling
among the field variables renders the effective stiffness C°
and mass density p°", defined by (22), complex valued.

(23)

IV. HOMOGENIZATION OF LAYERED COMPOSITES

To illustrate the above method of homogenization, the
numerical example of Fig. 1 is considered again. Since
the exact solution in the form of dispersion relation and
displacement and stress fields exists for this simple layered
case, it will be shown by way of comparison that results of the
homogenization based on the approximate mixed variational
formulation rapidly converge to those based on the exact
solution, suggesting that the approximate method may be
confidently used to estimate the effective properties of two-
and three-dimensionally periodic composites for which exact
solutions cannot be constructed.

Figure 2 shows the dispersion curves corresponding to the
first four propagating branches, for the layered composite
shown in Fig. 1. These are calculated using the exact solution
and the mixed variational formulation. For the frequency band
corresponding to each of these branches, Eq. (8) yields real
(normalized) wave numbers (0 < Q = ga < 7) and a wave

x 10% x 10°
2 o Exact Solution o Exact Solution
= - M=t = - M=1
ELS,M- X M=2 - Zist % X M=2 .
iy oy
= 1r =} 1F
2 2
= =
& I
=05 fp— - =05F rﬁmxx»—
0 500 1000 1500 2000 2500 3000 1 2 3 4
Effective Density kg/m? Effective Compliance Pa!' x 10-1°
x 10
2 0 ExactSolution
— . Effectiveparameter calculation
N 510 oo 50000s0cmmm,
T 1. 0000000000000008 0 n . 1«
=
z
51T
E
g
&= 051 oo

o 5 1 15 2 25 3
Normalized Wavenumber

FIG. 5. Effective parameters for layered composite: effective
density (p°), effective compliance (D®"), and the dispersion curve
calculated from effective parameters (bottom panel).
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Frequency (MH2)

FIG. 6. (Color) Dynamic

Ashby chart
frequency-dependent effective compliance and density corresponding
to the three microstructures shown in Fig. 1, where volume fraction
and properties of the constituents within the unit cell are kept constant.

representation of

at a corresponding frequency travels undamped through the
composite. Frequency bands within which no propagating
mode exists constitute the stop bands. The normalized wave
numbers satisfying Eq. (8) for these frequencies take on
the form Q = 2n + 1) i or Q = 2nmw £ia, where o
is a positive real number and »n is an integer. These modes
are nonpropagating and their energy is trapped within the
first few layers due to multiple reflections. As a result, the
amplitude of a nonpropagating wave decreases exponentially
with propagation distance. Although an infinite number of
propagating branches exist as the frequency under considera-
tion is increased, meaningful homogenization can be carried
out only for low-frequency branches, below the diffraction
limit. Therefore, only the first two propagating branches are
considered in what follows.

Figure 5 shows the effective parameters for the case of the
two-layered composite. It can be seen that the homogenization
results from the approximate method are in very good
agreement with those from the exact solution. The top left
panel of Fig. 5 shows the variation of the effective density, and
the top right that of the effective compliance (D" = 1/C°)
of the composite, as functions of frequency. It can be seen that
the effective density and compliance are nearly constant for

(a) (b) (©
| 3.8 mm 3.8 mm k—38mm___
I >] I d
[ — = AR A
1.5 mm 1.5 mm .8 mm 1.3mm .8 mm 54 1 44 5
B Material 1: p=1180 kg/m? B Material 2: p=7954 kg/m3
E=8.68 x10° Pa E=320 x10° Pa

FIG. 7. (Color online) Schematic of the architectures used for
comparison.
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FIG. 8. Dispersion curves for considered microarchitectures.

low frequencies and are equal to the volume average of those
of the individual constituents of the unit cell. This is expected
since at low frequencies the Bloch wavelength is much larger
than the thickness of individual layers and the response of the
composite is nearly static. The bottom panel of Fig. 5 shows the
dispersion curves, based on the calculated effective parameters
[Q = a(w?p™ D*M)!/2]. 1t can be seen from the panel that the
calculated effective parameters exactly satisfy the dispersion
relation of Fig. 2.

A. Dynamic Ashby chart representation

The effective material properties calculated above define
propagation, reflection, and refraction of stress waves in the
composite. They may be nicely dislayed in a three-dimensional
chart, as shown in Fig. 6. We refer to charts of this kind as
dynamic Ashby charts. In general, dynamic Ashby charts are

Frequency (MH2)

@ Architecture 1

@ Architecture 2

@ Architecture 3

FIG. 9. (Color) Dynamic Ashby chart: effect of microarchitecture
on dynamic properties.

PHYSICAL REVIEW B 83, 104103 (2011)

X,

_

Direction of
wave propagation

FIG. 10. (Color online) Schematic of the 2D plane stress case of
elliptic inclusions uniformly distributed in an elastic matrix.

obtained from the corresponding static ones (associated with
zero frequency), augmented with additional axes (representing
frequency and wave vector) to account for the microstructural
dependence of the overall dynamic properties of the material.

In Fig. 6, the 3D trajectory (black spheres) shows the
effective density and compliance as functions of frequency.
Its projection on the y—z plane (green curve) and x—z plane
(blue curve) respectively shows the variation of the effective
compliance and density with the wave frequency.

B. Microarchitectural control of dynamic properties

In a standard Ashby chart the composite is represented by
a single point that corresponds to its considered quasistatic
properties. The effective dynamic properties of the composite,
however, can take on a broad range of values depending on its
microarchitecture, that is, depending on the manner by which
the composite’s constituents are distributed within its unit
cell. This is illustrated by comparing the dynamic trajectories
of three simple architectures shown in Fig. 7 with the same
static overall mass density and compliance; i.e., all three
trajectories start from the same point in the corresponding
static Ashby chart.

Starting with the same linear fraction of each of the two
materials, measured per unit length, we consider the dynamic
effects of their distribution within a unit cell according to three
different architectures, denoted as (1), (2), and (3) in Fig. 7.

****%ak—******%*************************H******H*M******H**

©
®

Normalized frequency (v)
=z
&
g
H
@
8

*****a«—**M*aHe***ak*%H*********H%*****H*********%%**%******

FkkK k-
I **H************H********** |
. KKk Kok

*
kK
0.4 ****** R
***** Positive Longitudinal
¥
¥
#% AR KK
***** ***************
0.2r ***** ********* Positive Shear B
' *
o *********
3
*
#¥ ok
oL A ‘ ‘ ‘

0 0.5 1 1.5 2 2.5

Normalized wavenumber (Q)

FIG. 11. Dispersion curves for acomposite consisting of elliptical
fibers periodically distributed in an elastic matrix. The lower first two
curves are for the shear and longitudinal waves with the corresponding
phase and group velocities parallel. The third curve is a negative
shear-wave branch with antiparallel phase and group velocities.
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Figure 8 shows the dispersion curves for the first two
propagating branches for the three cases. As material is
redistributed from case (1) to case (2), the low-frequency stop
band is decreased. For architecture (3) with a finer distribution
of the two constituent materials, the overall dynamic response
corresponds to higher frequencies as compared to those of the
first two architectures.

Figure 9 shows the corresponding trajectories for the
three architectures in the dynamic Ashby chart. All three
trajectories start at the same point on the zero-frequency
plane, with effective density =2742 kg/m> and effective
compliance = 8.94 x 10~!! Pa~!, calculated according to the
volume fraction of the constituents. It can be seen that the
trajectories of effective density and compliance for the three ar-
chitectures pass through significantly different regions within
this three-dimensional dynamic Ashby chart. By changing the
distribution scale of the individual constituent materials, it is
seen that architecture (3) exhibits a relatively static response
at frequencies up to about 300 kHz, but its dynamic response
is frequency dependent at higher frequencies. This illustrates
how one can change the architecture at nano-, micro-, meso-,
and macro-scales to manage stress waves over many windows
of frequencies.

V. CONCLUSIONS

For Floquet waves in a periodic elastic composite, a
homogenization method is presented. It is adapted from a
more general approach® and is based on the integration
of field variables over a unit cell. The resulting effective
parameters satisfy the overall field equations, yield the exact
dispersion relation as a necessary condition, and are spatially
nondispersive in the long-wavelength limit. The technique is
used to calculate the effective properties of a two-layered
composite, employing both the exact solution and an ap-
proximate solution® using a mixed variational formulation.
It is shown that the effective parameters calculated from the
approximate method quickly converge to the homogenization
results based on the exact solution. The results are presented in
the context of general augmented Ashby-type charts, referred
to as dynamic Ashby charts, that provide an effective tool for
the representation of frequency-dependent dynamic effective
properties of composites.
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APPENDIX A: EXPLICIT EQUATIONS FOR THE
CALCULATION OF THE DISPERSION RELATION
FOR A 3D CASE: ELLIPSIODAL INCLUSIONS IN
ELASTIC MATRIX

For illustration of the explicit equations for a 3D case,
consider a composite whose unit cell is a rectangular par-
allelepiped with dimensions a; in directions x; (i = 1,2,3),
respectively. Let the cell consist of two material constituents,
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the matrix and an ellipsoidal inclusion. The inclusion is
centered with respect to the unit cell in such a manner
that its three principal axes are each placed parallel to the
corresponding sides of the unit cell so that it has diameters b;
in directions x; (i = 1,2,3), respectively.

For this case, Egs. (6) can be written in the following matrix
form:

2

[H<I>1H* — ”—sz] U=0 (A1)
d - E)

where matrices H, ®, and 2 are defined as follows:

Hl Hz H3 0 0 0
H=|0 H 0 H, Hy 0|,
0 0 H;y 0 Hp Hs
where H;, Ha, and H; are @M + 1)° x (2M + 1)? matrices

defined in the following manner: Fora =6, 8 = u,and y =
7, and with Q; = g;a; (no sum),

Hi(1y,J1) = —i(Q1 + 27a),

Ho(1y,J1) = —i(Q2 + 27 B)no, (A2)
H3(I1,J1) = —i(Q3 + 2w y)my.
Fora #68,8 # 1,y # 1,
Hi Iy, J1) = Ho(dy, J1) = Hs(y,J1), (A3)

where h=@+1+M)+B+M)QCM+1)+(y+
MM +1)2and Ji =G +1+ M)+ (u+MQCM+ 1)+
T+MQCM+ 1% 8,u,t=0,+1,+£2,..., £ M.

€ 0 0
R]I=]0 € 0
0 0 @
and
K3t 0 0 @12 0 11337
0 4951, 0 0 0 0
0 0 4933 0 0 0
(2] = @12 0 0 L) 0 D2 |
0 0 0 0 4Pr3y3 0
_61133 0 0 033 0 <i>3333_

where € and ®,;; are M +1)* x 2M + 1)* matrices
defined in the following manner:
QUL,J)=1if « =8, B=p, and y =1;
6—1

B [n]yz namaly J32(R)
) iy + 0

R3/2

otherwise;
(Ad)

where J3; is a Bessel function of the first kind of order 3/2
and its argument R is given by

R=m[nd —aP +miu—BY +Bx —y7]"”. (AS)

For I} # Ji, ®;ji; is obtained if one substitutes (y;ju — 1)
Rijki /(1 + fizyi111) for mGJ:ﬁlze in the expression for (1}, J;),
and for Iy = J; one has

= (1 + MaVijk) Riju
Bijy = ——— .
(i1 + fayinn)

(A6)
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The following notation is used in the above expressions:

PHYSICAL REVIEW B 83, 104103 (2011)

, wiajp  _ Do 2~ = n - 2) -
=— 5=pY 4+ 0%, Cnu =C§1)|1”1+C51)11”27
Cun
_ _ _ b1bybs p? b by
n=1—ny nNp=—-"—-7-, =—n Mm=— m=—,
6ajaras P a; a
2)

bs a, a) Djklm

122 — ho=—, mo=—, Vjkim = @

as az as Jjkim

(1)

Dy - = - Ny - 2 -
Rjim = —2=, d=1/(Cii11D1111),  Dun = Dﬁl)”m + Dgl)”nz,
D(l)

1111

where j,k,l,m = 1,2,3; a;, a;, a3 are the dimensions of the
unit cell; and by, by, b3 are the diameters of the ellipsoidal
inclusion in the coordinate directions x;, x,, and x3, respec-
tively. Superscript (1) refers to the matrix and (2) refers to the
inclusion. The tensors ¥, and R, are the compliances of
the inclusion and matrix materials normalized with respect to
Dill)l 1 For the case of isotropic inclusions and isotropic matrix
materials, tensors Cl(;,lel(lz,il and their inverses Dl.(;,zl,Dl. g are
determined by four independent elastic constants (two for the
matrix and two for the inclusion). In terms of the Young
modulus and Poisson’s ratio, E and v, the elasticity tensor
of an isotropic material is given by

E 2v
2(14+v) [(l —2v)

Ciju = 8ij0u + (Sikdj1 + ‘Sil(sjk):|' (A8)
The corresponding shear modulus then is u = E/2(1 4 v).
The above treatment explicitly outlines the basic equations
involved in the mixed variational formulation for the most gen-
eral 3D case of ellipsoidal inclusions periodically distributed
within an elastic matrix. No restriction is imposed on the
elasticity of the matrix or inclusions. The plane stress case
is obtained at the limit when the dimension of the unit cell

(A7)

(and the ellipsoid diameter) in the thickness direction (x3) is
negligibly small compared to the other two direction (Fig. 10).
In this case displacements in only the x; and x, directions are
considered and the only nonzero stresses are those which are
in the plane x;—Xj.

For this case, we have calculated the first five branches of
the dispersion curves for isotropic fibers within an isotropic
elastic matrix (Fig. 11). The relevant dimensional relations
are a; = ap,by = 0.5a;,b, = 0.75a,. The wave vector is in
the x; direction. The Young’s modulus of the inclusion is
100 times the modulus of the matrix (E® = 100E™), and
its density is 3 times the density of the matrix (p® = 3p1).
Poisson’s ratio for the matrix and the inclusion are 0.4 and
0.3, respectively. The results shown in Fig. 11 are for an
approximation of M = 2. The lower first two curves in this
figure are for the shear (lowest; particle displacement normal
to the wave vector in the x; direction) and longitudinal (particle
displacement parallel to the wave vector, in the x; direction)
waves with the corresponding phase and group velocities
parallel to one another (positive branches), whereas the third
curve is a negative shear-wave branch with antiparallel phase
and group velocities.
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