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Ultraprecise studies of the thermal expansion coefficient of diamond using
backscattering x-ray diffraction

Stanislav Stoupin and Yuri V. Shvyd’ko
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 6 November 2010; published 17 March 2011)

The linear thermal expansion coefficient of diamond crystals of type IIa and type Ia was measured in the
temperature range from 10 to 295 K. Neither negative thermal expansion nor any substantial difference in the
thermal expansion coefficient in crystals of the different types were observed. An empirical expression was
obtained that approximates the temperature dependence of the thermal expansion coefficient of diamond. The T 3

temperature dependence of a Debye solid holds below ≈100 K with an accuracy of ≈10−8 K−1. A slight increase
in the value of the lattice parameter was found for the Ia-type crystal, which suggests lattice dilatation by nitrogen
impurity. The measurements were performed using Bragg diffraction in backscattering from diamond crystals
of highly monochromatic 23.7 keV x rays with the recently demonstrated high relative accuracy of 1.2 × 10−8

in the determination of the lattice parameter [S. Stoupin and Yu. Shvyd’ko, Phys. Rev. Lett. 104, 085901
(2010)].
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I. INTRODUCTION

Diamond is a crucial material for many branches of modern
technology. A growing number of demanding applications
rely on the unique properties of diamond. For example, x-ray
optics for next-generation synchrotron sources is facing a
new challenge: to provide diffracting crystals stable under the
extremely bright incident x rays.1–4 Diamond is the primary
candidate for this application due to its high radiation hardness,
low x-ray absorption, record high thermal conductivity, and
record high reflectivity for hard x rays in Bragg diffraction.
To keep stable the Bragg reflection energy band of x rays, it
is important to minimize the thermal variation of the crystal
lattice parameter. This can be accomplished by cooling to
cryogenic temperatures where the linear thermal expansion
coefficient of diamond drops by a few orders of magnitude
with respect to its room temperature value of �1 × 10−6.
The knowledge of the thermal expansion coefficient allows
quantitative evaluation of deviations in the lattice parameter
δa/a due to a variation in the crystal temperature δT . At
temperatures around 40 K the coefficient becomes as small
as 1

a
δa
δT

≈ 2 × 10−9 K−1, as reported recently.5 For practical
considerations, it is of special importance to verify the result
by performing a series of experiments on diamond crystals of
different type and origin with the best available accuracy. As a
continuation of Ref. 5, here we present detailed studies of the
thermal expansion in diamond.

The accuracy demonstrated in Ref. 5 in determination
of lattice parameter �a/a � 1.2 × 10−8 is crucial for such
an ultraprecise x-ray characterization of thermal expansion.
Earlier experimental results of other groups6–10 are based on
the relative accuracy �a/a ≈ 10−6 or more. For example,
Haruna et al.7,9,11 have measured the temperature-dependent
lattice parameter of diamond using the Bond method12 with an
accuracy of about 1 × 10−6. Values of the thermal expansion
coefficient less than 10−8 K−1 at low temperatures have been
predicted by polynomial extrapolation (i.e., have not been dir-
ectly measured). Figure 1 summarizes experimental data on
the thermal expansion coefficient of diamond reported in the
literature prior to 2010.

Early theoretical studies discuss the possibility of negative
thermal expansion (NTE) for diamond.13,14 More recent
theoretical works show that in contrast to Si and Ge, the
effect does not exist for diamond because of the positive
values of transverse-acoustic-mode Grüneisen parameters.15,16

At the same time, low-concentration impurities in some
crystals might cause low-temperature anomalies in the thermal
expansion coefficient. It is also possible that some of these
anomalies appear as the NTE effect.17,18

Given the importance of precise knowledge of the mag-
nitude of thermal expansion of diamond for high-tech ap-
plications, its significance for understanding fundamental
properties of solids, and the ability to perform ultraprecise
measurements, further experimental studies are necessary.
In this paper, we report the results of thermal expansion
measurements for three high-quality IIa-type synthetic crystals
from different manufacturers and for a crystal of type Ia. We
show that contrary to previous studies,9 temperature variation
of the thermal expansion coefficients of these crystals can
be approximated with a single empirical formula and that the
deviation of the experimental values from the formula does not
exceed 3 × 10−8 K−1 in the temperature range 10–295 K. The
empirical formula deviates from the Debye T 3 approximation
at temperatures of ≈200 K and above. No evidence of negative
thermal expansion is found for any of the samples. An
influence of impurities on the thermal expansion coefficient
is not clearly manifested and thus remains speculative.

II. MEASUREMENT PRINCIPLES

The important role of x-ray Bragg backscattering in pre-
cision measurements was recognized awhile ago (e.g., Sachs
and Weerts19). The technique was improved in the early 1970s
when x-ray backsattering instruments for measuring relative
changes of lattice parameters in crystals with an accuracy of
10−6 were built.20–23 Further improvement in the measurement
accuracy became possible with the use of monochromators
with high energy resolution. High-energy-resolution Bragg
diffraction in the backscattering configuration has been used
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FIG. 1. Linear thermal expansion coefficient of diamond versus
temperature: data from the literature prior to 2010. An experimental
uncertainty of 5 × 10−7 K−1 reported by Giles et al.10 is representa-
tive. Such uncertainty prevents direct measurements of the thermal
expansion coefficient at temperatures �100 K.

to measure lattice parameters and x-ray wavelengths with high
accuracy.24–28

The Bragg law in backscattering is

λ(1 + w) = 2d(1 − �2/2), (1)

where λ is the wavelength of radiation reflected backward from
a set of parallel atomic planes with interplanar distance d. In
this equation, � is a small angular deviation from normal
incidence to the reflecting planes; and w is the refraction
correction, which is, to a good approximation a small invariant
magnitude for a given set of atomic reflecting planes.29 In
the backscattering configuration, the influence of the angular
variations δ� on λ is minimized due to the �2 dependence.
If � �

√
2ε, where ε is the required relative uncertainty

of measurements, a direct relation between the radiation
wavelength and the interplanar distance can be established:
λ(1 + w) = 2d.

However, any Bragg reflection and the incident radiation
both have finite spectral widths. Only the central wavelength of
the reflected x rays satisfies Eq. (1). The precision in measuring
the interplanar distance is determined by several factors: the
intrinsic spectral width �E of the chosen Bragg reflection, the
bandwidth of the incident x rays �EX, and the statistics with
which the reflection is measured in the experiment.

III. EXPERIMENTAL

High quality diamond single crystals were preliminarily
studied using white-beam x-ray topography performed at the
X19C beamline of the National Synchrotron Light Source
(Brookhaven National Laboratory). These studies provided
information on crystal orientation and quality. Locations of
stacking faults, dislocations, and inclusions were identified.
Four diamond crystals with substantial defect-free areas were
preselected for studies of thermal expansion. Samples C1,C2,
and C3 were synthetic high-pressure high-temperature (HPHT)
crystals of IIa-type from different manufacturers: Sumitomo
(Japan), Element Six (USA), and the Technological Institute

TABLE I. Characteristics of the studied diamond crystals.

C1 C2 C3 C4

Type IIa IIa IIa Ia
Manufacturer Sumitomo Element Six TISNCM DDK
Orientation (111) (100) (100) (111)
Thickness 0.4 mm 0.4 mm 1.0 mm 0.2 mm
Reflection (995) (13 3 3) (13 3 3) (995)
�E 2.8 meV 2.7 meV 2.5 meV 3.7 meV
a (Å) 3.567 12(2) 3.567 12(2) 3.567 12(2) 3.567 16(2)

for Superhard and Novel Carbon Materials (TISNCM, Russia),
respectively. Sample C4 was manufactured by Delaware
Diamond Knifes (DDK, USA) and was of type Ia. The
main characteristics of these crystals are given in Table I.
Diamond single crystals of type IIa are classified as those
that do not reveal infrared absorption due to boron impurity.
The nitrogen impurity content is low for these crystals
(�1 ppm). Diamonds of type Ia contain nitrogen impurities
predominantly in the form of aggreagates (see, e.g., Ref. 30
for details). Nitrogen concentrations vary from ≈10 ppm up to
3000 ppm.

X-ray diffraction backscattering experiments were per-
formed at the undulator beamline XOR 30-ID at the Advanced
Photon Source at Argonne National Laboratory. The experi-
mental setup is shown in Fig. 2. A highly monochromatic x-ray
beam with an energy bandwidth of �EX � 1 meV obtained
using a consecutive application of a high-heat-load monochro-
mator and a high-resolution monochromator (HRM) was
incident on a diamond crystal. High-order reflections C (9 9 5)
for crystals with (111) surface orientation and C (13 3 3)
for crystals with (100) surface orientation with spectral
bandwidth of �E ≈ 3 meV were chosen. The expected
theoretical values for the spectral bandwidth depend on the
crystal thickness (see Table I).

The intensity of the reflected x rays was measured using an
avalanche photodiode (APD) placed 10 m from the sample.
The reflected beam was aligned on the APD as described in
Appendix A assuring a small angular offset � � 1.3 × 10−4

with an accuracy δ� ≈ 3.5 × 10−5. This produces a negligible
uncertainty in the wavelength δλ/λ ≈ �δ� ≈ 4.6 × 10−9.

The Bragg energy of exact backscattering for the chosen
reflections (EH = hc/2d = 23.765 keV) is within an energy
range of a six-bounce HRM operated at the beamline.31,32

The HRM provides a monochromatic x-ray beam with a
bandwidth of �EX � 1 meV in the energy range 23.7–29.7
keV. The relative spectral resolution of this instrument is thus
�EX/E � 4 × 10−8, where E = hc/λ is the photon energy.
The precision for the measurement of a relative change in the
central energy (or central wavelength) of a single diffraction
peak is expected to be much better due to good counting
statistics.

The HRM involves three pairs of diffracting crystals as
shown in Fig. 2. The first pair (Si1 and Si2) consists of two
asymmetric Si crystals using low-index Bragg reflections. The
two crystals are coupled by a weak-link mechanism.33 This
pair is used to reduce the angular divergence of the x-ray beam
to �0.35 μrad, which is crucial for the monochromatization.
The second pair (Si3 and Si4) is a liquid-nitrogen-cooled Si
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FIG. 2. (Color online) Experimental setup: A highly monochromatic x-ray beam with an energy bandwidth of �EX � 1 meV obtained using
a two-stage monochromatization process is incident on a diamond crystal. In the first stage, application of the high-heat-load monochromator
produces x rays with an energy bandwidth of about 2 eV. In the second stage, the pre-monochromatized beam passes through the six-bounce
high-resolution monochromator (HRM, crystals Si1−6) to achieve the final bandwidth of �1 meV.31 The beam is reflected from either C (13 3
3) or C (9 9 5) atomic planes for samples with (100) and (111) orientation, respectively. The intensity of the reflected beam is measured using
an APD detector placed next to the HRM at a distance of about 10 m from the sample. The choice of the large distance permits a small angular
offset � = 1.3 × 10−4 from normal incidence. The ion chamber (IC) facilitates searching of the reflected beam.

channel-cut34 using high-index Bragg reflections and is the
actual monochromator. The third crystal pair (Si5 and Si6) is
similar to the first pair and is used to restore the size of the
beam to the original size of the incident pre-monochromatized
beam.

Monochromatization of x rays in the HRM is ob-
tained using properties of Bragg reflections from two crys-
tals in the dispersive configuration. A relative change of
the central wavelength of the monochromatized beam is
given by

δλ

λ
= δψ12

tan θ1 + tan θ2
, (2)

where ψ12 is an angle between reciprocal vectors H1 and H2

of the Bragg reflections of the two crystals, and θ1 and θ2 are
glancing angles of incidence to the first and the second crystals,
respectively (see, e.g., Ref. 29 for details). In our setup, the
crystal pairs Si1,2 and Si3,4 represent the aforementioned two
crystals. The angle ψ12 is varied with an increment as small
as 25 nrad.31 Equation (2) is used to draw a correspondence
between the angular scale of the monochromator and the
energy of the resulting monochromatic x rays.

Initial measurements of reflectivity and the energy width
�E were conducted at room temperature for different

positions of the x-ray beam on each sample.35 Crystal regions
(≈0.7 × 0.7 mm2) were selected exhibiting a narrow and
symmetric reflectivity curve. These regions were found to be
within defect-free crystal areas in the corresponding white-
beam x-ray topographs. For the sample C4 the reflectivity of
any region exhibited substantial broadening due to a lower
crystalline quality. The best available region that exhibited
a single reflectivity peak with narrowest width was chosen.
The reflectivity curves of the selected regions for each crystal
C1−4 are shown in Fig. 3 along with theoretical curves.
The theoretical reflectivity was calculated using dynamical
theory of x-ray diffraction for each diamond crystal of the
given sample thickness and an incident x-ray beam with an
energy bandwidth of 1 meV. The full width at half maximum
(FWHM) of the experimental curves closely matches the
theoretical results except for the type Ia crystal (C4). For
all crystals, variation of the FWHM of the reflectivity curves
with temperature did not exceed 20%, which indicates that the
probed regions were not developing strain in the course of all
the measurements.

After the initial evaluation of each crystal, measurements of
the relative change in the lattice parameter were performed as a
function of temperature. The crystal was placed into a cryostat
with a beryllium window to allow passage of the x rays. To
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FIG. 3. (Color online) Normalized reflectivity curves from either (995) (C1 and C4) or (13 3 3) (C2 and C3) atomic planes: experimental
curves for the selected region on each of the crystals (filled circles, solid black line); theoretical curves obtained using dynamical theory of
x-ray diffraction for an incident x-ray beam with a bandwidth �EX = 1 meV (dashed lines).
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obtain data for each experimental point, the temperature of the
cryostat was lowered and allowed to equilibrate.

IV. RESULTS AND DISCUSSION

The absolute lattice parameter was determined for each
sample using the procedure described in Appendix B.
Equations (B6) and (B7) and experimental uncertainties yield
the following lattice parameters at 298 K: aIIa = 3.567 12(2) Å
for the crystals of type IIa, and aIa = 3.567 16(2) Å for the
crystal of type Ia (also given in Table I). Our value for aIIa is in
agreement with the result of Holloway et al.36 [3.567 14(5) Å]
and that of Yamanaka et al.37 [3.567 11(5) Å] for diamond
crystals with natural isotopic abundance. The lattice parameter
of the type Ia diamond is larger by (aIa − aIIa)/aIIa ≈
1 × 10−5. Sato et al.9 found a similar increase in the lattice
parameter of a nitrogen-containing Ib-type diamond at room
temperature. The increase was attributed to lattice dilatation
due to substitutional nitrogen and was in agreement with the
result of Lang et al.38 for a sample containing 88 ppm nitrogen.
The observed agreement in our case suggests a nitrogen
concentration on the same order of magnitude, although
contrary to aggregated nitrogen in type Ia, diamonds of
type Ib contain single substitutional nitrogen as dominating
defects.

The linear thermal expansion coefficients of the four
crystals were obtained by point-by-point calculation. The
resulting values are plotted in Fig. 4(a). The primary source
of errors in the experiment is a limited reproducibility in
mechanical motion of the ψ12 angular stage of the HRM.
The statistical uncertainty �ψ12 = 0.1 μrad was the maximum
observed mismatch between different statistical characteristics
for the angular position of the reflectivity curve (e.g., position
of the peak maximum vs the peak center of gravity). The
experimental points were determined as peak positions of

either Gaussian or Lorentzian profile fit to the experimental
reflectivity curves measured at different temperatures.

Using Eq. (2) the statistical uncertainty yields δa/a =
1.2 × 10−8 as relative measurement accuracy of the lattice
parameter. The size of the error bars in Fig. 4 is

δα =
√

2

(
1

�T

δa

a

)2

+
(

α(T )
δ(�T )

�T

)2

. (3)

The factor of 2 in the first root-mean-squared component of
Eq. (3) reflects the fact that two measurements at neighboring
temperature points T1 and T2 are required to obtain the
value of the thermal expansion coefficient α(T ), where T =
(T1 + T2)/2. The second component represents uncertainty
in determination of the temperature interval �T = T2 − T1

between the experimental points. The inset in Fig. 4(a) shows
the low-temperature regime T � 100 K where α(T ) � 5 ×
10−8 K−1. At these low temperatures the measured thermal
expansion coefficient occasionally (i.e., no particular trend)
takes small negative values; however, those remain within
the experimental uncertainty (�4 × 10−9 K−1). Thus, negative
thermal expansion is not observed in our experiment.

The solid line is an empirical formula,

x(T ) = bT 3W (T ) + cT 2[1 − W (T )],
(4)

W (T ) =
(

1 + exp
T − T0

�T0

)−1

,

that approximates the measured linear thermal expansion co-
efficients of all four crystals simultaneously in the temperature
range from 10 to 295 K. The parameters in Eq. (4) determined
using least-squares fitting of all available data are given in
Table II.

Deviations of the thermal expansion from the empirical
formula �α(T ) are shown in Fig. 4(b) for each of the four
samples. These deviations do not exceed 3 × 10−8 K−1 over
the studied temperature range. The dotted line in Fig. 4(b)
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FIG. 4. (Color online) (a) Linear thermal expansion coefficients of IIa-type diamond crystals C1−3 and Ia-type C4 obtained using point-
by-point calculation from the results of the measurements. The notation of the symbols is the same as shown in the legend of the (b) panel.
The solid line represents approximation with the empirical formula. The inset shows region of temperatures below 100 K in more detail.
(b) Deviations of the measured thermal expansion coefficients from the empirical approximation. The dotted line is the difference between the
empirical formula and the best fit to the Debye approximation (T 3).
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TABLE II. Coefficients of the empirical formula Eq. (4) obtained
using least-squares simultaneous fit of all available data.

Coefficient Value

b 3.6(6) × 10−14 K−4

c 1.21(3) × 10−11 K−3

T0 212(24) K
�T0 47(5) K

represents the difference between the empirical formula and
the best fit of all available data to the Debye approximation
[α(T ) = 4.25(2) × 10−14T 3].

As an accurate representation of the thermal expansion
coefficient, Eq. (4) illustrates a breakdown of the Debye
approximation at temperatures about T0 = 212 K, which is
much less than �D � 2220 K, the Debye temperature for
diamond.39 At temperatures �100 K, the thermal expansion
coefficient is that of a Debye solid (T 3).

Our result for the thermal expansion coefficient at room
temperature is in agreement with a value recommended ear-
lier in several generalized studies8,40,41 [α = 1 × 10−6 K−1 ±
(10–15)%]. The accuracy of our data is superior, i.e., α =
1.06(3) × 10−6 K−1 at 300 K according to Eq. (4). A number
of experimental studies report a somewhat higher value at
room temperature. For example, the result of Sato et al.9 for
type IIa diamond is α = 1.6 × 10−6 K−1, yet the accuracy is
not explicitly stated.

The presence of impurities, even at small concentrations
(�10 ppm),17,18 may alter the thermal expansion coefficient
of a crystalline solid. Although a higher concentration of
impurities is expected in the studied Ia-type diamond (C4),
this does not result in a measurable change of the thermal
expansion coefficient. In our earlier work5 we speculate that
the increase in the thermal expansion coefficient observed for
sample C1 at T � 20 K could be attributed to tunneling effects
due to low-concentration impurities/vacancies. However, to
date we have not accumulated a sufficient data to either prove
or disprove this hypothesis.

In the vicinity of room temperature our finding contradicts
the results by Sato et al.,9 where reduced values of the
thermal expansion coefficient were found for �100 ppm
nitrogen-doped and ≈100 ppm boron-doped diamonds with
respect to that of a IIa-type specimen. This was attributed to
an increase in the bulk modulus due to impurities. On the other
hand, Brazhkin et al. found that an appreciable change in the
thermal expansion of boron-doped diamonds occurs only at
concentrations >1%.42 To address this controversy a more
detailed ultraprecise experimental study is required, a study
on doped crystals with dopant concentration characterized
independently. Nevertheless, the present study offers an
unambiguous ultraprecise result for the thermal expansion
coefficient of single crystal diamond with small (�100 ppm)
impurity concentrations.

V. CONCLUSIONS

In summary, ultraprecise measurements of the thermal
expansion of diamond reveal the absence of a negative thermal
expansion in the low temperature region (10 K � T � 100 K)

with a measurement accuracy of ≈10−9 K−1. We conclude that
as suggested in one of the early experimental studies on the
topic by Novikova,6 the effect of negative thermal expansion
cannot be considered as a physical phenomenon characteristic
of diamond crystals. Thus, the theoretical results15,16,43–45 are
now confirmed by direct measurements. Small negative values
and faint trends reported earlier in literature can be attributed to
the lack of measurement accuracy and possibly to the presence
of impurities, which can alter the thermal expansion coefficient
(e.g., tunneling effects).

Crystals of two different types were studied. Three of the
samples were high-quality crystals of type IIa from different
manufacturers and one crystal of type Ia of lower quality and
with an increased impurity content. Indirect measurements of
the absolute lattice parameter show an increased value for the
Ia-type crystal, which is consistent with earlier observations
interpreted as dilatation of diamond by an impurity. The result
for the thermal expansion is essentially the same for all studied
samples as approximated with a single empirical formula.
Contrary to the findings of Sato et al.,9 no difference in thermal
expansion was found for the two different types of diamond
crystals with different concentrations of nitrogen impurities.
The empirical law is in agreement with thermal expansion
of a Debye solid (T 3) at low temperatures (�100 K). The
accuracy of the obtained approximation is �3 × 10−8 K−1

in the temperature range 10–295 K. With this accuracy, the
presence of low-concentration impurities in the Ia-type sample
does not alter the thermal expansion coefficient.
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APPENDIX A: ALIGNMENT PROCEDURE

The cryostat was mounted onto a θ -χ -φ goniometer with
χ and θ being the angles in the horizontal and vertical planes,
respectively. The ion chamber (IC) positioned at ≈0.5 m from
the sample facilitated alignment of the reflected x rays on
the APD detector as follows. The goniometer angles χ and
θ were consecutively scanned in angular ranges where the
Bragg condition at a chosen energy is fulfilled two times.
The backscattering signal was recorded with the ion chamber.
The resulting χ and θ scans, each containing two diffraction
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FIG. 5. Backscattering signal from the ion chamber as a function
of χ (rotation in the plane perpendicular to the diffraction plane)
(a) and the diffraction angle θ (b). At a chosen energy, the Bragg
condition is fulfilled two times. For each scan the angle of the exact
backscattering is approximated with the average angular position of
the two peaks.

peaks, are shown in Fig. 5. Angles of the exact backscattering
χ0 and θ0 were estimated as average angular positions of
the two diffraction peaks. While χ = χ0 was chosen, an
angular deviation from the exact backscattering � � 1.3 ×
10−4 was introduced to direct the reflected beam to the APD
detector.

APPENDIX B: DETERMINATION OF THE
LATTICE PARAMETER

Absolute measurement of the lattice parameter in our
experiment required a reference on the energy/wavelength
scale of the HRM (i.e., the angular scale of the cooled channel
cut). The reference value was obtained by tuning the energy
of the HRM to backscattering from a Si (12 12 12) analyzer at
room temperature. Since Bragg reflections from Si at different
temperatures are involved in the measurement, the knowledge
of temperature dependence of the Si lattice parameter was
required to perform the calibration. An empirical formula of
Okada and Tokumaru46 was chosen:

aSi(T ) = aSi
0

[∫ T

T0

αSi(T )dT + 1

]
,

αSi(T ) = A1{1 − exp[−A2(T − T0)]} + A3T , (B1)

where aSi
0 is the lattice parameter at T0 = 273.2 K, A1 =

3.725 × 10−6, A2 = 5.88 × 10−3, A3 = 5.548 × 10−10, and
T1 = 124 K. This formula describes the temperature variation
of the lattice parameter for high-quality Si and is applicable
in the temperature range from 120 K to 1500 K. In the
temperature range 120–300 K the formula is based on
experimental data of Lyon et al.47

The Bragg law was applied to backscattering from the
analyzer crystal and to the backscattering from a diamond

crystal. In each of these cases the wavelength of the
incident radiation was expressed using the Bragg law in
the general form applied to the working reflection of the
channel cut:

λ(1 + w2) = 2d2 sin θ2, (B2)

where d2 is the interplane distance at 124 K, θ2 is the glancing
angle of incidence to the atomic planes, and w2 is the refraction
correction.

Backscattering from the atomic planes with the interplanar
distance dSi of the Si analyzer yields

λ(1 + wSi) = 2dSi
(
1 − �2

Si

/
2
)
. (B3)

Here, wSi is the refraction correction, and �Si is the angular
deviation from the exact backscattering.

Initially, the HRM was tuned to the backscattering from
the Si (12 12 12) planes of the analyzer. The output intensity
was maximized and the backscattering signal was recorded
while scanning θ2. The backscattering signal reached its
maximum at a certain angular position of the θ2 motor,
which we denote as ρ1. Under these conditions, the region of
wavelengths selected by the HRM is centered at λ defined by
Eq. (B2), and this wavelength also satisfies Eq. (B3). Thus, the
unknown glancing angle of incidence θSi

2 at which the analyzer
backscattering is observed can be related to the characteristics
of a Si crystal:

sin θSi
2 = dSi

d2

1 + w2

1 + wSi

(
1 − �2

Si

/
2
)
. (B4)

Similarly, the HRM was tuned to the diamond reflection of
interest, and the maximum of the backscattering signal was
observed at the motor position ρ2. Application of the Bragg
law as in the previous case yields the following expression for
the interplanar distance of the diamond crystal:

dC = d2 sin θC
2

1 − �2
C/2

1 + wC

1 + w2
, (B5)

where θC
2 is the glancing angle of incidence for the channel

cut at which the HRM is tuned to the diamond backscattering,
wC is the refraction correction, and �C is the deviation from
the exact backscattering. The difference between the actual θ2

angles corresponding to backscattering from Si and diamond
is equal to that of the motor positions: θC

2 − θSi
2 = ρ2 − ρ1 =

�ρ. Using this relationship, we calculate the interplanar
distance for diamond from the Si crystal characteristics and
the known experimental parameters:

dC = d2 sin
[
θSi

2 + �ρ
]

1 − �2
C/2

1 + wC

1 + w2
. (B6)

The lattice parameter was obtained as

a = dC

√
n2 + k2 + l2, (B7)

where n,k, and l are the Miller indices of the studied reflection.
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