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Conductance and noise signatures of Majorana backscattering
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We propose a conductance measurement to detect the backscattering of chiral Majorana edge states. Because
normal and Andreev processes have equal probability for backscattering of a single chiral Majorana edge state,
there is qualitative difference from backscattering of a chiral Dirac edge state, giving rise to half-integer Hall
conductivity and decoupling of fluctuation in incoming and outgoing modes. The latter can be detected through
thermal noise measurement. These experimental signatures of Majorana fermions are robust at finite temperature
and do not require the size of the backscattering region to be mesoscopic.
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From particle physics to condensed-matter physics, Ma-
jorana fermions currently arouse great interest.1 In particle
physics, where the concept first originated,2 the experimental
signature of Majorana fermions, though not yet detected, has
been known for a long time, that is, the neutrinoless double β

decay in the case of neutrinos.
In condensed-matter physics, two-dimensional (2D) sys-

tems where Majorana fermions can arise have been attracting
a great deal of attention recently, partly due to potential
applications to topological quantum computation.3–8 One class
of systems where Majorana fermions can appear is the 2D
chiral superconductor which has a full pairing gap in the bulk,
and N gapless chiral 1D Majorana fermions4,9 at the edge.
This system can be considered as the superconducting analog
of the quantum Hall (QH) state with N gapless chiral edge
states and is called a topological superconductor (TSC).10

The challenge now is to find a way to detect the Majorana
nature of the 1D edge state in this class of systems. There has
been no experiment so far which explicitly shows the Majorana
nature of gapless states at the boundary of a TSC, though
methods of detection have been proposed recently.11,12 The
first issue is to find a physical system which unequivocally
belongs to this class. Despite theoretical prediction that the
superconducting phase of Sr2RuO4 is the spinful version of
the N = 1 chiral TSC due to its px + ipy pairing,13 attempts
to detect the gapless edge states have not been successful.14

Therefore, we base our discussion on a recent proposal to
induce topological superconductivity through the proximity
effect on a magnetically doped Bi2Se3 film.15 The second
issue is to devise an experiment that can work at reasonable
temperatures, as interference effects get washed out above
the temperature scale set by the size of the TSC region.16–18

Our approach makes use of a generalization of the Landauer-
Büttiker formalism19 to superconducting systems,20 which was
recently used in a proposal for detecting a zero-dimensional
Majorana bound state.21

In this Rapid Communication, we study the backscattering
of the edge state of a quantum anomalous Hall (QAH) system
off aN = 1 TSC island. We find a strikingly different behavior
in both conductance and noise depending on the topological
invariant N of the TSC, which is equal to the number of chiral
Majorana edge states. In particular, for strong backscattering
by the N = 1 TSC, the incoming and outgoing channels

in the leads decouple as the probabilities for normal and
Andreev scattering become equal. Indeed, whereas Andreev
processes do not play any role in the case of the normal,
topologically trivial superconductor (NSC) or theN = 2 TSC,
backscattering due to the N = 1 TSC imposes a special
condition between the probabilities for normal and Andreev
scattering. Andreev scattering in the case of the N = 1 TSC
is due to the single chiral Dirac edge state of the QAH state
splitting into two chiral Majorana edge states.

We first discuss how to obtain a N = 1 TSC. When Cr
or Fe magnetic dopants are introduced into Bi2Se3 or Bi2Te3

thin films, the spin exchange interaction leads to the effective
Hamiltonian near the Fermi level,22

hQAH =
(

m + Bp2 A(px − ipy)

A(px + ipy) −m − Bp2

)
,

where the basis is (cp↑,cp↓)T with cpσ annihilating an electron
of momentum p and spin σ =↑ , ↓ and the QAH effect
obtained when m < 0. When this system is in proximity to
an s-wave superconductor, the combination of Cooper pair
formation through proximity effect and the electron-electron
interaction gives us a nonzero pairing gap function.23 This
gives us the Bogoliubov–de Gennes (BdG) Hamiltonian

hBdG =
(

hQAH(p) − μ i�σy

−i�∗σy −h∗
QAH(−p) + μ

)
,

the basis for which is (cp↑,cp↓,c
†
−p↑,c

†
−p↓)T . The BdG Hamil-

tonian can be written in a simple form for μ = 0,

hBdG =
(

h+(p) 0

0 −h∗
−(−p)

)
, (1)

where

h±(p) =
(

m ± |�| + Bp2 A(px − ipy)

A(px + ipy) −m ∓ |�| − Bp2

)
, (2)

if we use the basis 1√
2
(cp↑ + c

†
−p↓,cp↓ + c

†
−p↑, − cp↑ +

c
†
−p↓, − cp↓ + c

†
−p↑)T . The existence of Majorana edge states

due to h± depends entirely on the sign of m ± |�|4,15,24

as Eq. (2) is identical to the Hamiltonian of a px + ipy

superconductor.4 Thus, |�| < −m gives two chiral Majorana
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edge states, |�| > |m| a single chiral Majorana edge state, and
|�| < m no edge states. For general μ, the condition reads15

m < −
√

|�|2 + μ2 ⇒ N = 2,

m2 < |�|2 + μ2 ⇒ N = 1,

m >
√

|�|2 + μ2 ⇒ N = 0,

(3)

as the bulk gap closes only at boundaries between these three
cases. These conditions show that opening up an infinitesimal
SC gap gives us the N = 2 TSC if the normal state is in the
QAH phase, but it gives us the N = 1 TSC if the normal state
is a metal (|μ| > |m|) obtained from doping the QAH system.
This doping can come from the Fermi level mismatch between
the QAH insulator and the SC used to induce the proximity
effect. In the following we consider a QAH bar in proximity
with a SC island in the middle, as shown in Fig. 1. The SC
island can have different topological invariant determined by

FIG. 1. (Color online) Comparison between different SCs. There
is no backscattering for N = 2 TSC, Dirac fermion backscattering
for NSC, and Majorana fermion backscattering for N = 1 TSC. Red
(gray) and blue (dark gray) arrows represent e ± h chiral Majorana
edge states, respectively.

Eq. (3). Here we only consider the cases where the SC island
is in a uniform topological phase.

The effect of the SC island on the edge state is determined
by the topological invariant of the SC island. We first note
that, on the basis of Eqs. (1) and (2), the QAH edge state
can be considered as two identical copies of chiral Majorana
fermions, one from the upper block of Eq. (1) being e + h and
the other from the lower block being e − h,8,15 where e and h

denote particle and hole states, respectively. In this sense, the
N = 2 TSC is topologically equivalent to the QAH insulator,
and at the boundary between these two phases there will be
no chiral state, as there is no change in the signs of the gaps
in both h± terms. Therefore, if we have the N = 2 TSC for
the SC island (the top of Fig. 1), the edge current will be
perfectly transmitted. By contrast, the NSC is by definition
topologically trivial and supports no edge states. This also
implies that there will be a chiral edge state at the boundary
between the QAH region and the NSC. Therefore, if we have
NSC for the SC island (the middle of Fig. 1), there will be
complete backscattering. In both cases, the edge state will not
be involved in any violation of particle number conservation
despite the presence of the SC island. In the case of the N = 1
TSC with μ = 0, we can see from Eqs. (1) and (2) that, as
|�| > |m|, the single chiral Majorana edge state comes from
h−. However, this also implies that at the boundary between
a N = 1 TSC and the QAH region, m + |�| (the gap of h+)
should change sign, meaning that there is a chiral Majorana
state at this boundary.4,24 Therefore, when the N = 1 TSC
region is inserted in the middle of a QAH bar (the bottom of
Fig. 1), the chiral edge state of the QAH region splits into two
well-separated chiral Majorana states, in a manner analogous
to the topological insulator surface state in proximity with a
ferromagnet and a SC.16 Indeed, with systems that have the
same splitting, we can realize an essentially equivalent setup.
The interesting point in thisN = 1 TSC setup is that while one
branch of chiral Majorana fermions is perfectly transmitted,
the other branch is perfectly reflected.

For this reason, in the N = 1 TSC setup of Fig. 1 there is
equal probability for normal and Andreev scattering. To show
this, we need to obtain the S matrix sij ;αβ of the TSC region
which relates the annihilation operators for incoming modes
âj ;β to the annihilation operators for outgoing modes b̂i;α ,

b̂i;α = sij ;αβ âj ;β, (4)

where i = 1,2 is the lead label and α,β = e,h is the par-
ticle/hole label, which means âi;h = â

†
i;e,b̂i;h = b̂

†
i;e. As the

QAH edge state splits into two chiral Majorana edge states,
the S matrix can be factorized into two parts,

(
b̂1;e + b̂

†
1;e

b̂2;e + b̂
†
2;e

)
=

(−1 0

0 1

)(
â1;e + â

†
1;e

â2;e + â
†
2;e

)
(5)

and

(
b̂1;e − b̂

†
1;e

b̂2;e − b̂
†
2;e

)
=

(
0 1

1 0

) (
â1;e − â

†
1;e

â2;e − â
†
2;e

)
. (6)
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FIG. 2. (Color online) Schematic of the backscattering setup. The
voltages V1 and V2 are applied to leads 1 and 2, respectively, and set
the chemical potential for the incoming modes that are annihilated by
â1;e and â2;e. In the central region, TSC is induced through proximity
to two SC slabs that sandwich the QAH. The TSC is grounded through
a contact to its bulk.

This gives the S matrix⎛
⎜⎜⎜⎝

b̂1;e

b̂
†
1;e

b̂2;e

b̂
†
2;e

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

−1 −1 1 −1

−1 −1 −1 1

1 −1 1 1

−1 1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

â1;e

â
†
1;e

â2;e

â
†
2;e

⎞
⎟⎟⎟⎠ . (7)

The elements of the first column of this S matrix correspond
to the amplitudes for normal reflection, Andreev reflection,
normal transmission, and Andreev transmission for the in-
coming right-moving particle, respectively; they are all equal
up to signs. Likewise, the third column shows that these four
scattering processes have equal probability for the incoming
left-moving particle. The crucial point is that only when
backscattering is due to the N = 1 TSC does it involve
Andreev scattering. Backscattering from the N = 2 TSC or
NSC does not involve Andreev scattering, as the splitting of
the QAH chiral edge state into two chiral Majorana edge states
does not happen in these cases.

Because of this property, for the N = 1 TSC, changes of
current due to the incoming modes a1,a2 of Fig. 2 do not lead to
changes of current due to the outgoing modes b1,b2. To analyze
this setup using the above S matrix, we use Anantram and
Datta’s generalization20 of the Landauer-Büttiker formalism,
which allows for Andreev scattering. This formalism extends
the conventional Landauer-Büttiker formula19 by adding the
particle/hole index,

Îi = e

h

∫
dE

∑
α

sgn(α)(â†
i;αâi;α − b̂

†
j ;β b̂k;γ )

= e

h

∫
dE

∑
α

∑
jk;βγ

sgn(α)A(iα)
jk;βγ â

†
j ;β âk;γ , (8)

where sgn(e) = 1, sgn(h) = −1, and, to make Eq. (8) consis-
tent with Eq. (4), A(iα) is a 4 × 4 matrix defined as

A
(iα)
jk;βγ ≡ δij δikδαβδαγ − s∗

ij ;αβsik;αγ .

Just as in the Blonder-Tinkham-Klapwijk formula for the
conductance of a normal-superconducting interface,25 con-
tributions from Andreev scattering cancel those of normal

scattering. This gives us the incoming currents for the leads 1
and 2,20,26

I1 = e2

h
[(1−R+RA)(V1−VSC)−(T −TA)(V2−VSC)],

(9)

I2 = e2

h
[(1−R+RA)(V2−VSC)−(T −TA)(V1−VSC)],

where VSC is the voltage applied to the SC island, R,T are
normal reflection and transmission probabilities and RA,TA

are Andreev reflection and transmission probabilities for the
incoming particles.

A half-integer Hall conductivity is measured in the setup of
Fig. 2 for the N = 1 case of Fig. 1. This is because the first
and the third columns of Eq. (7) give us R=RA =T =TA = 1

4 .
When we ground the SC island (VSC = 0) and apply voltage
V1 =−V2 = V

2 , Eq. (9) gives

I1 = −I2 = e2

2h
V,

which are currents flowing into leads 1 and 2, respectively. This
result is due to the increase of incoming current by e2V/2h

in lead 1 and decrease of incoming current by e2V/2h in lead
2, while outgoing current stays the same for both leads. Thus,
charge is conserved in this voltage setup. In addition, the QAH
edge is grounded along with the SC region and all the voltage
drop occurs at the contacts to the voltage. By contrast, for the
N = 2 TSC or the NSC in the same setup, we will measure
Hall conductivity of e2/h and 0, respectively.

Whether Andreev scattering processes are involved or not
can be shown directly by measuring the current flowing from
the SC island to the ground. When V2 	= −V1, the change
in the right-moving current e2V1/h will not be canceled by
the change in the left-moving current e2V2/h. In the case
of the N = 1 TSC, however, these currents do not flow out
into the outgoing modes b1,b2 of the QAH region. Rather,
since the SC island in our setup is not floating but grounded
(Fig. 2), the net incoming current,

ISC = e2

h
(V1 + V2), (10)

will be flowing from the SC island to the ground. On the other
hand, for the NSC or theN = 2 TSC, all incoming current will
flow out into the outgoing modes b1,b2 of the QAH region,
and no current will flow from the SC island to the ground.
This will hold true regardless of whether we have V2 	= −V1

or not. In other words, unlike for the NSC or the N = 2 TSC,
the current is not solely determined by V1 − V2 for the N = 1
TSC.

Noise measurements will also show qualitative differences
from the case of normal backscattering, because the correlation
between current fluctuations in the same lead is unaffected by
backscattering while the correlation between current fluctu-
ations in different leads vanishes. From the Anantram-Datta
formalism, we obtain the zero frequency noise,20

Sij = 2e2

h

∑
αβ

∑
kl;γ δ

∫
dEsgn(α)sgn(β)A(iα)

kl;γ δA
(jβ)
lk;δγ

×nkγ (1 − nlδ).
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This gives us the noise formula for eV1,2 
 kBT :

S11 = S22 = 4e2

h
kBT (1 − R + RA),

(11)

S12 = 4e2

h
kBT (−T + TA),

which clearly gives S11 = S22 = 4e2

h
kBT and S12 = 0. Inter-

estingly, even if the N = 1 TSC is near the transition to the
N = 2, so that the e − h chiral Majorana state is not reflected
perfectly as in Eq. (5), we would still have R = RA as long
as Eq. (6) stays unmodified. Thus, in this case, although
S12 	= −Sii , we do have S11 = S22 = 4e2

h
kBT just like the

case where the chiral edge state transmits perfectly. Similarly,
near the transition between N = 1 TSC and N = 0 NSC,
we have S12 = 0 just like the case chiral edge state reflects
perfectly, though S11 and S22 are nonzero. This decoupling
of the self- and cross-noise correlation is a special feature of
our backscattering setup absent in previous proposals18,27,28 to
detect the Majorana state through noise measurement.

We emphasize that the above results for the thermal noise
hold only because we are keeping the chemical potential of the
SC fixed by grounding it. If the SC potential is floating, that
is, not connected directly to any external voltage, combination
of current conservation I1 + I2 = 0 and VSC fluctuation will
result in the Johnson-Nyquist relation S11 = S22 = −S12 =
4GkBT where G is the conductance between the two leads.
Indeed, even if there is Andreev scattering, this relation should
always hold for the two-terminal measurement.20

These subtleties do not have any effect when backscattering
is caused by the N = 2 TSC or NSC, where S11 = S22 =
−S12 = 4GkBT always holds. This is because in those cases
R + T = 1 andTA = RA = 0. For the setup of Fig. 1, we have
R = 1 for the NSC, which gives G = 0 and thus reduces all
noise to zero. For theN = 2 TSC, we haveR = 1 for the NSC,
which gives G = e2/h and S11 = S22 = −S12 = 4(e2/h)kBT .
Whereas for the conductance, the N = 1 TSC gives a value
that is halfway between that of the NSC and the N = 2 TSC,
for the noise, we find Sii to be just that of the N = 2 TSC and
S12 to be that of the NSC.

In summary, we have described a method to detect a chiral
Majorana state through transport measurements. Probabilities
for normal and Andreev scattering are equal when backscatter-
ing occurs through a single chiral Majorana state. If the voltage
is applied symmetrically (V2 = −V1), this gives a half-integer
Hall conductivity, and if not, we will have a quantized current
flowing from the SC to the ground [Eq. (10)]. Also, due to
normal and Andreev scattering having the same probability,
the correlation of current fluctuations within the same lead is
unaffected by backscattering, while the correlation of current
fluctuations in different leads vanishes.
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