Upper critical field of the pressure-induced superconductor EuFe₂As₂

Nobuyuki Kurita,^{1,2} Motoi Kimata,^{1,2} Kota Kodama,^{1,3} Atsushi Harada,¹ Megumi Tomita,¹ Hiroyuki S. Suzuki,¹

Takehiko Matsumoto,¹ Keizo Murata,⁴ Shinya Uji,^{1,2,3} and Taichi Terashima^{1,2}

¹National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan

²JST, Transformative Research Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan

³Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0003, Japan

⁴Division of Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan

(Received 22 November 2010; revised manuscript received 19 January 2011; published 8 March 2011)

We have carried out high-field resistivity measurements up to 27 T in EuFe₂As₂ at P = 2.5 GPa, a virtually optimal pressure for the *P*-induced superconductivity, where $T_c = 30$ K. The $B_{c2}-T_c$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($\approx 0.05 \times T_c$), for both $B \parallel ab (B_{c2}^{ab})$ and $B \parallel c (B_{c2}^c)$. The upper critical fields $B_{c2}^{ab}(0)$ and $B_{c2}^c(0)$, determined by the onset of resistive transitions, are 25 and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of T_c . The small $B_{c2}(0)$ values and the $B_{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu²⁺ moments. The anisotropy parameter, $\Gamma = B_{c2}^{ab}/B_{c2}^c$, in EuFe₂As₂ at low temperatures is comparable to that of other "122" Fe-based systems.

DOI: 10.1103/PhysRevB.83.100501

PACS number(s): 74.70.Xa, 74.25.Op, 74.25.Dw, 74.62.Fj

The discovery of superconductivity in LaFeAs(O,F) at $T_c = 26 \text{ K}^1$ has inspired experimental and theoretical research on a group of FeAs-layered superconductors (SCs).² Basically, Fe-based high- T_c superconductivity³⁻⁵ occurs when the antiferromagnetic (AF) order in the mother compounds is suppressed by means of carrier doping,¹ application of pressure (P),⁶ or isovalent substitution.⁷ As compared to other methods in studying such interplay between magnetism and superconductivity, pressure experiments have a significant advantage in that they are free from random impurity potentials that may distort the underlying physics of the low-lying energy states. Among the various crystal structures, tetragonal ThCr₂Si₂-type ("122") compounds have been investigated more intensively owing to the availability of highly pure stoichiometric single crystals. In particular, AFe_2As_2 (A = Sr, Eu) exhibits *P*-induced bulk superconductivity with T_c of order 30 K.^{6,8,9} In contrast, superconductivity under hydrostatic pressure is not exhibited by $CaFe_2As_2$,¹⁰ and its occurrence in BaFe₂As₂ has not been established definitively.^{8,11}

A fundamental characteristic of SCs is the upper critical field B_{c2} . B_{c2} has its roots in the breakdown of Cooper pairs; hence, the $B_{c2}-T_c$ phase diagram provides important insights into the pairing mechanism of high- T_c superconductivity. Thus far, to our knowledge, there have been no reports on B_{c2} for *P*-induced Fe-based SCs at low temperatures. This is mainly attributed to the difficulty in conducting high-pressure experiments on high- T_c SCs under a high field. In the case of SrFe₂As₂ ($T_c = 30$ K at 4.2 GPa), a field of 8 T brings about a small reduction in T_c (i.e., to 27 K) for $B \parallel ab$.¹³ Assuming an orbitally limited case, ¹² B_{c2} (T = 0 K) could exceed 60 T.¹³ However, the low temperature region of the B_{c2} curve, where paramagnetic and/or multiband effects may play important roles, ¹⁴ merits investigation.

In the case of EuFe₂As₂ ($T_c = 30$ K at ~2.5 GPa), B_{c2} is relatively small (i.e., ~16 T between 5 and 10 K)⁹ and hence can be traced down to very low temperatures. EuFe₂As₂

is unique in that the localized Eu²⁺ moments exhibit an AF order below 20 K¹⁵⁻¹⁹ in addition to an AF order arising from the FeAs layers at $T_0 \sim 190$ K. T_N of the Eu²⁺ moments is insensitive to pressure, and the AF order occurs in the P-induced superconducting state as evidenced by magnetic and heat capacity measurements under high pressure. 9,20-22 Despite the AF order, which is produced by a weak interlayer interaction, the dominant interaction among the Eu²⁺ moments is the intralayer ferromagnetic (FM) interaction, and hence the FM alignment of the Eu²⁺ moments is easily achieved by the application of 1 \sim 2 T even below T_N at ambient pressure as well as under high pressure.^{9,18–20,23,24} Thus, EuFe₂As₂ provides an excellent opportunity where a long-standing issue of the interplay between superconductivity and magnetism can be studied in a high- T_c material using high-quality single crystals.

In this report, we present the $B_{c2}-T_c$ phase diagram of EuFe₂As₂ at a pressure of 2.5 GPa and minimum temperature of 1.6 K via high-field resistivity measurements up to 27 T, and discuss the origin of the distinctive B_{c2} curves.

Single crystals of EuFe₂As₂ were prepared via the Bridgman method from a stoichiometric mixture of the constituent elements. The samples analyzed in this study were obtained from the same batch (residual resistivity ratio RRR = 7) as that used in Refs. 9,21, and 23. The resistivity of two samples, denoted by #1 and #2, was simultaneously measured at P = 2.5GPa via an ac four-probe method in a ⁴He cryostat ($T \ge$ 1.6 K). Sample #1 (#2) was aligned with the *ab* plane (*c* axis) parallel to the longitudinal direction of a hybrid-type piston cylinder pressure cell²⁵ for $B \parallel ab (\parallel c)$ measurements. For both samples, the magnetic field was applied along the piston cylinder axis in a direction perpendicular to that of the current. To generate hydrostatic pressure, Daphne 7474 (Idemitsu Kosan) oil, which remains in the liquid state up to 3.7 GPa at room temperature,²⁶ was used as the pressure-transmitting medium. The samples were gradually cooled at an average rate of 0.5 K/min. The pressure was calibrated at 4.2 K by

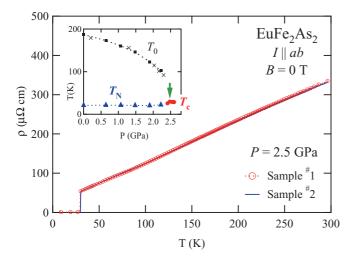


FIG. 1. (Color online) ρ vs *T* for EuFe₂As₂ at *P* = 2.5 GPa for samples #1 and #2 in the absence of applied field. The direction of current *I* is *I* || *ab*. The inset illustrates the *T*-*P* phase diagram of EuFe₂As₂.²⁹ *T*₀ and *T*_N denote the temperatures of the AF order arising from the FeAs layers and localized Eu²⁺ moments, respectively. The solid circles denote *T*_c determined under the criterion ρ = 0. The crosses denote the values obtained from Ref. 20.

the resistance change of a Manganin wire.⁹ Magnetic fields up to 27 T were produced by a water-cooled resistive magnet installed at the Tsukuba Magnet Laboratory, National Institute for Materials Science. A 17-T superconducting magnet was used for preliminary resistivity studies. In this study, the magnetic field *B* denotes an externally applied field, and the magnetization within a sample (up to $\sim 0.9 \text{ T}^{23}$) is neglected.

Figure 1 shows the temperature dependence of the resistivity, $\rho(T)$, for the two samples, #1 and #2, at P = 2.5 GPa in the absence of an applied field. For both samples, ρ exhibits virtually T-linear dependence in the broad temperature range above T_c without any anomaly due to the AF order of the FeAs layers. This observation is consistent with the phase diagram shown in the inset:^{20,29} P = 2.5 GPa is just above the critical pressure P_c , where $T_0 \rightarrow 0$, as indicated by the arrow. Similar $\rho \sim T$ behavior was also reported in several optimally doped Fe-based SCs.^{27,28} However, the reason for such behavior is unclear. Both samples exhibit a sharp transition to zero resistivity at $T_c = 30$ K; the reentrant-like behavior as reported in Ref. 20 is not observed for either sample at this pressure. Our previous work²¹ indicates that reentrant-like behavior may be observed for $P < P_c$ but not for $P > P_c$ (as long as P is not far from P_c) in our single crystals. Since both T_c and B_{c2} attain maximum values at $P \approx P_c$, followed by a monotonic decrease with increasing P,²⁹ B_{c2} determined at 2.5 GPa in this study is expected to be close to its maximum value.

Figures 2(a)-2(d) shows the resistivity of EuFe₂As₂ at 2.5 GPa as a function of *B* and *T* for the two orientations $B \parallel ab$ and $B \parallel c$. A magnetic field of 27 T is sufficient to recover the normal state at the minimum temperature, 1.6 K ($\approx 0.05 \times T_c$), for both orientations. Using the data in Figs. 2(a) and 2(b), the $B_{c2}-T_c$ phase diagram of EuFe₂As₂ is constructed for $B \parallel ab$ at 2.5 GPa, as shown in Fig. 3. Three sets— B_{c2}^{on} (onset), and B_{c2}^{*} (x = 0 and 50, x% of the normal state resistivity ρ_n)—are plotted, and their definitions are illustrated in the inset. The

PHYSICAL REVIEW B 83, 100501(R) (2011)

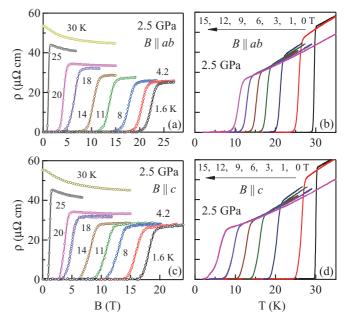


FIG. 2. (Color online) (a) ρ vs *B* and (b) ρ vs *T* for *B* || *ab* (sample [#]1) and (c) ρ vs *B* and (d) ρ vs *T* for *B* || *c* (sample [#]2) in EuFe₂As₂ at *P* = 2.5 GPa.

solid and open symbols are obtained from the $\rho(B)$ and $\rho(T)$ measurements, respectively. B_{c2}^{0} is consistent with the previous result (×) obtained from the ac- χ measurement for $B \parallel ab$.⁹ Note that all the curves of B_{c2} for $B \parallel ab$ (B_{c2}^{ab}) obtained under different criteria exhibit qualitatively similar T dependence. The same is also true for B_{c2} for $B \parallel c$ (B_{c2}^{c}), as shown in Fig. 4(a). T_{N} at zero field is indicated by an arrow in Figs. 3 and 4. However, we note that, since the AF order of the Eu²⁺ moments is destroyed by an applied field of ~1 T,⁹ the B_{c2} curves for both $B \parallel ab$ and $B \parallel c$ are in the paramagnetic or field-induced FM state of the Eu²⁺ moments.

A distinctive feature, the concave (upward) curvature of B_{c2}^{ab} around 20 K, seems to be absent from other Fe-based SCs without localized magnetic ions. Therefore, it is likely related to the magnetic state of the Eu²⁺ moments. Similar concave $B_{c2}(T)$ curves have been reported in Chevrel-phase compounds such as (Eu,*M*)Mo₆S₈ (*M* = Sn,³⁰ La,³¹ etc.) and EuMo₆S₈ under pressure.³² In these systems, the conduction electrons are subjected to an exchange field B_J in addition to an applied field via AF coupling with the Eu²⁺ localized magnetic moments. Note that the concave curvature is an indication of the negative sign of B_J ; B_J is antiparallel to the applied field.^{32,33} Within a multiple pair-breaking picture, B_{c2} in the dirty limit of three-dimensional SCs with negative B_J can be expressed by^{12,34}

$$\ln \frac{1}{t} = \left(\frac{1}{2} + \frac{i\lambda_{so}}{4\gamma}\right) \times \Psi\left(\frac{1}{2} + \frac{h + i\lambda_{so}/2 + i\gamma}{2t}\right) \\ + \left(\frac{1}{2} - \frac{i\lambda_{so}}{4\gamma}\right) \times \Psi\left(\frac{1}{2} + \frac{h + i\lambda_{so}/2 - i\gamma}{2t}\right) - \Psi\left(\frac{1}{2}\right) \\ \gamma = \left[\alpha^{2}(h + h_{J})^{2} - \lambda_{so}^{2}\right]^{\frac{1}{2}}, \qquad (1)$$

where Ψ and λ_{so} are the digamma function and spin-orbit scattering parameter, respectively. The magnetic scattering

PHYSICAL REVIEW B 83, 100501(R) (2011)

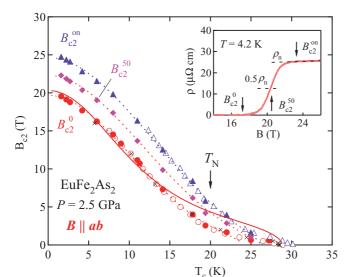


FIG. 3. (Color online) $B_{c2}-T_c$ phase diagram of EuFe₂As₂ for $B \parallel ab$ at 2.5 GPa. The values of B_{c2} are determined under three different criteria, as illustrated for $\rho(B)$ data at 4.2 K (inset). The solid or open symbols denote B_{c2} determined from $\rho(B)$ and $\rho(T)$ measurements, respectively. The solid and dashed curves are fits to Eq. (1). × denotes the previous B_{c2}^0 result deduced from an ac- χ measurement for $B \parallel ab$.⁹ The arrow indicates T_N of Eu²⁺ moments in the superconducting state in the absence of an applied field at 2.6 GPa.⁹

parameter $\lambda_{\rm m}$ used in the complete formula^{12,34} is typically ignored for simplicity.^{32,35} The Maki parameter α is defined as $\sqrt{2} B_{\rm c2}^*/B_{\rm p}$, using the orbital critical field $B_{\rm c2}^*$ at T = 0 and the Pauli-Clogston paramagnetic limit $B_{\rm p}^{36}$. Reduced units— $t = T/T_{\rm c}$, $h = 0.281 B_{\rm c2}/B_{\rm c2}^*$, and $h_J = 0.281 B_J/B_{\rm c2}^*$ —are employed. We assume $B_J = \beta M$ (β : constant), where the magnetization M is modeled within a molecular-field approximation.³⁷ To simplify the following discussions, α for $B \parallel ab$ is set to 3, a typical value for "122" systems.

The solid curve in Fig. 3 was calculated from Eq. (1) for B_{c2}^{0} data with T_{c} set to the experimental value $T_{c} = 29$ K. The fit yields a parameter set (λ_{so} , β) = (7.9, -187). β = -187 indicates that the maximum of $|B_J|$, B_I^m , is around 168 T. The fit captures the qualitative characteristics of the experimental B_{c2}^{0} curve satisfactorily, especially the positive curvature below $T_{\rm N} = 20$ K, and shows that the low value of $B_{\rm c2}$ (compared to other Fe-based SCs' with similar T_c values) is due to the large B_J , which is a consequence of a large Eu²⁺ magnetization due to the field-induced FM alignment of the Eu^{2+} moments. However, its deviation from the experimental curve is also noticeable at low fields near T_c . This disagreement probably indicates that the phase diagram in this T-range is affected by a subtle competition between superconductivity and magnetic fluctuations, and it is beyond the scope of Eq. (1), which assumes a homogeneous B_J produced by paramagnetic spins. Since the dominant interaction among the Eu^{2+} moments is the intralayer FM interaction, ^{18,19,23,24} the FM fluctuations develop when T is lowered to $T_{\rm N}$, as evidenced by the enhancement of the magnetic susceptibility as $T \to T_{\rm N}$.^{9,19,23} Such FM fluctuations may be detrimental to

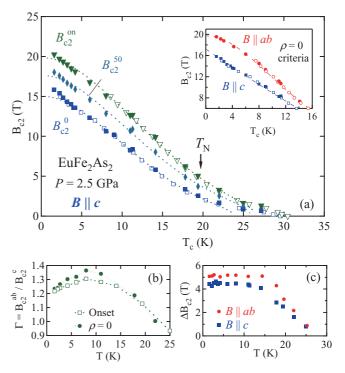


FIG. 4. (Color online) (a) $B_{c2}-T_c$ phase diagram of EuFe₂As₂ for $B \parallel c$ at 2.5 GPa. The solid and open symbols denote B_{c2} deduced from $\rho(H)$ and $\rho(T)$ data, respectively. The dashed curves are fits to Eq. (1). The inset shows B_{c2}^0 vs T_c for $B \parallel ab$ and $B \parallel c$. The dashed curves are fits for T = 0 extrapolation (see text). (b) T variation of an anisotropy parameter, $\Gamma = B_{c2}^{ab}/B_{c2}^c$, determined by the onset and zero resistivity. (c) T dependence of the superconducting transition width, $\Delta B_{c2} (=B_{c2}^o - B_{c2}^0)$, for $B \parallel ab$ and $B \parallel c$.

superconductivity. One way to phenomenologically overcome this problem and to improve the fit in a T-range not close to T_c is to use a reduced value of T_c . Thus, the three dotted curves are calculated using the reduced T_c value. They reproduce the experimental curves excellently over the entire *T*-range, with a minimum temperature of 1.6 K. For B_{c2}^{0} , we assumed (λ_{so} , β , T_c) = (2.7, -83, 24 K), where $B_J^m \sim 75$ T. Here, it may be worthwhile to compare the parameters with those of the Chevrel compounds. The comparison revealed that he obtained λ_{so} is comparable to that found in the Chevrel-type Eu compounds, 32,35 and B_J^m in EuFe₂As₂ is a few times greater than that reported in the Chevrel-type Eu compounds.^{32,35} We note that the concave curvature of B_{c2} in EuFe₂As₂ essentially differs from the positive curvatures often observed in highly two-dimensional SCs such as high- T_c cuprates. In the latter, the curvature is highly dependent on what criterion is chosen to define B_{c2} , and it is most likely affected by the vortex lattice phase transitions (i.e., from a vortex-liquid state to a vortex-solid state).38

Figure 4(a) shows the $B_{c2}-T_c$ phase diagram of EuFe₂As₂ for $B \parallel c$ at 2.5 GPa,³⁹ determined in the same manner as that used for B_{c2}^{ab} . A concave curvature around 20 K is also visible for the B_{c2}^c curves. The dashed curves are calculated using the parameters comparable to those used for B_{c2}^{ab} , that is, for B_{c2}^0 , the fit gives $(\alpha, \lambda_{so}) = (1.9, 2.6)$ when we assume $(β, T_c) = (-83, 24 \text{ K})$, identical to the values used for B_{c2}^{ab} . The calculated curves tend to saturate below 3 K, whereas the experimental curves appear to increase linearly as *T* decreases to zero. The unsaturation of B_{c2}^c has been observed in other Febased SCs,^{14,40-42} and it has been explained using a two-band model. Figure 4(b) shows the anisotropy ratio, $Γ = B_{c2}^{ab} / B_{c2}^c$, calculated from $B_{c2}^0(T)$ and $B_{c2}^{on}(T)$. In spite of the quasi-two-dimensional layered structure in EuFe₂As₂, we obtain a small value of Γ, ranging between 0.9 and 1.4, which is comparable to that obtained for other "122" compounds. $^{40-43}$ In contrast to the monotonic decrease in Γ with decreasing *T* in other "122" compounds, Γ in EuFe₂As₂ exhibits a broad maximum at around 8 K, which is likely ascribed to the presence of the *B_J*.

In order to compare the magnitude of $B_{c2}(0)$ with that of other Fe-based SCs, we estimate it by extrapolating the low-*T* data to T = 0, as shown by the dashed curves in the inset of Fig. 4(a). For the extrapolations, an empirical expression, $B_{c2}(t) = B_{c2}(0)(1 - t^2)/(1 + t^2)$,⁴⁴ and a linear fit are used for B_{c2}^{ab} and B_{c2}^{c} , respectively. We obtain $B_{c2}^{ab}(0) = 24.7$ T and 19.7 T and $B_{c2}^{c}(0) = 21.5$ T and 17.2 T for B_{c2}^{on} and B_{c2}^{0} , respectively. $B_{c2}(0)$ in EuFe₂As₂ is significantly lower than $B_{c2}(0) > 50$ T in other Fe-based SCs at $T_c =$

- ¹Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. **130**, 3296 (2008).
- ²For recent reviews, see K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. **78**, 062001 (2009); D. C. Johnston, Advances in Physics **59**, 803 (2010).
- ³H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. **77**, 063707 (2008).
- ⁴Z.-A. Ren et al., Chin. Phys. Lett. 25, 2215 (2008).
- ⁵C. Wang *et al.*, Europhys. Lett. **83**, 67006 (2008).
- ⁶P. L. Alireza, J. Gillett, Y. T. Chris Ko, S. E. Sebastian, and G. G.
- Lonzarich, J. Phys. Condens. Matter 21, 012208 (2009).
- ⁷Z. Ren *et al.*, Phys. Rev. Lett. **102**, 137002 (2009).
- ⁸K. Matsubayashi et al., J. Phys. Soc. Jpn. 78, 073706 (2009).
- ⁹T. Terashima *et al.*, J. Phys. Soc. Jpn. **78**, 083701 (2009); **78**, 118001 (2009); Physica C **470**, S443 (2010).
- ¹⁰W. Yu et al., Phys. Rev. B **79**, 020511(R) (2009).
- ¹¹T. Yamazaki *et al.*, Phys. Rev. B **81**, 224511 (2010).
- ¹²N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. **147**, 295 (1966).
- ¹³H. Kotegawa, H. Sugawara, and H. Tou, J. Phys. Soc. Jpn. 78, 013709 (2009).
- ¹⁴F. Hunte *et al.*, Nature (London) **453**, 903 (2008).
- ¹⁵H. Raffius et al., J. Phys. Chem. Solids 54, 135 (1993).
- ¹⁶H. S. Jeevan *et al.*, Phys. Rev. B **78**, 052502 (2008).
- ¹⁷Z. Ren et al., Phys. Rev. B 78, 052501 (2008).
- ¹⁸Y. Xiao et al., Phys. Rev. B 80, 174424 (2009).
- ¹⁹S. Jiang *et al.*, N. J. Phys. **11**, 025007 (2009).
- ²⁰C. F. Miclea *et al.*, Phys. Rev. B **79**, 212509 (2009).
- ²¹N. Kurita *et al.*, e-print arXiv:1008.0684 (to be published in J. Phys: Conf. Ser.).
- ²²K. Matsubayashi et al., e-print arXiv:1007.2889.
- ²³T. Terashima et al., J. Phys. Soc. Jpn. 79, 103706 (2010).

PHYSICAL REVIEW B 83, 100501(R) (2011)

20–30 K.^{14,40–42} The width of the superconducting transition, $\Delta B \ (=B_{c2}^{\text{on}} - B_{c2}^{0})$, increases as *T* decreases to 15 K for both *B* || *ab* and *B* || *c* [Fig. 4(c)]. Below 15 K, ΔB is virtually *T* independent, as reflected by the parallel shifts of the $\rho(B)$ curves in Figs. 2(a) and 2(c). The *T* dependence may correlate with the development of *M*; *M* at $B = B_{c2}(T)$ increases rapidly as *T* decreases from *T*_c, but it is virtually saturated below ~15 K.¹⁹ At 1.6 K, ΔB is estimated as 5.1 T and 4.4 T for *B* || *ab* and *B* || *c*, respectively. The relatively narrow transition width at low-*T*, which is also observed in Ba(Fe,Co)₂As₂,^{42,43} signifies a strong vortex pinning force in EuFe₂As₂.

In conclusion, we carried out high-field resistivity measurements up to 27 T for EuFe₂As₂ at 2.5 GPa, and we constructed the $B_{c2}-T_c$ phase diagram down to a minimum temperature of 1.6 K. Our analysis was based on a multiple pair-breaking model, and it revealed that the distinctive B_{c2} curves with positive curvature and the reduced B_{c2} values can be attributed to the substantial negative exchange field from the Eu²⁺ moments. The low temperature anisotropy at 1.6 K, $\Gamma = 1.2$, is comparable to the results obtained for other "122" systems.

- ²⁴Y. Xiao *et al.*, Phys. Rev. B **81**, 220406(R) (2010).
- ²⁵Y. Uwatoko et al., Physica C 329-333, 1658 (2003).
- ²⁶K. Murata *et al.*, Rev. Sci. Instrum. **79**, 085101 (2008).
- ²⁷R. H. Liu *et al.*, Phys. Rev. Lett. **101**, 087001 (2008).
- ²⁸M. Gooch B. Lv, B. Lorenz, A. M. Guloy, and C. W. Chu, Phys. Rev. B **79**, 104504 (2009).
- ²⁹N. Kurita et al. (unpublished).
- ³⁰Ø. Fischer *et al.*, J. Phys. C **8**, L474 (1975).
- ³¹M. S. Torikachvili and M. B. Maple, Solid State Commun. **40**, 1 (1981).
- ³²M. Decroux et al., Phys. Rev. Lett. **52**, 1563 (1984).
- ³³V. Jaccarino and M. Peter, Phys. Rev. Lett. 9, 290 (1962).
- ³⁴Ø. Fisher, Helv. Phys. Acta **45**, 331 (1972).
- ³⁵C. Rossel *et al.*, J. Appl. Phys. **57**, 3099 (1985).
- ³⁶B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962); A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
- ³⁷The model reproduces experimental *c*-axis magnetization satisfactorily.²³ The anisotropy of magnetization is small, except for a low-*T* and low-*B* region;¹⁹ hence, we use the same model for both B || ab and B || c.
- ³⁸Y. Ando *et al.*, Phys. Rev. B **60**, 12475 (1999).
- ³⁹There is discrepancy between the present and previous B_{c2}^c data. The latter was determined from $ac-\chi$.⁹ This could be due to the difference in the applied pressure and/or sample variations. In this study, ρ was simultaneously measured using the two samples from the same piece.
- ⁴⁰H. Q. Yuan *et al.*, Nature (London) **457**, 565 (2009).
- ⁴¹S. A. Baily *et al.*, Phys. Rev. Lett. **102**, 117004 (2009).
- ⁴²M. Kano et al., J. Phys. Soc. Jpn. 78, 084719 (2009).
- ⁴³A. Yamamoto *et al.*, Appl. Phys. Lett. **94**, 062511 (2009).
- ⁴⁴A. Leitner, D. Olaya, C. T. Rogers, and J. C. Price, Phys. Rev. B 62, 1408 (2000).