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Compact merons and skyrmions in thin chiral magnetic films
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A meron is a controversial topological excitation because it carries just one-half of the skyrmion number. A
vortex in thin magnetic films has been argued to be a half-skyrmion, i.e., a meron. We present another type
of merons, investigating the two-dimensional nonlinear sigma model together with the Dzyaloshinskii-Moriya
interaction. Here, the vortex number of a meron is zero. Basic topological excitations are merons and skyrmions.
They behave as if they were free particles. A prominent feature is that the topological charge density is strictly
confined within compact domains. We propose an analytic approach for these compact excitations, and construct
a phase diagram. It is comprised of the helix, meron, skyrmion-crystal, skyrmion-gas, and ferromagnet phases.
It captures the essential nature of the experimental data recently performed in chiral magnets such as MnSi and

FeCoSi thin films.
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Topological excitations are endlessly fascinating. Well-
known examples are vortices and skyrmions.! A fantastic
object is a meron: it can not exist by itself since it carries
only one-half of the skyrmion number. A meron was originally
invented as a half-instanton in the context of quark confinement
in particle physics.” Then, it was introduced as a half-skyrmion
in order to account for a certain anomalous behavior in bilayer
quantum Hall effects.® Later, a meron was shown to appear
as a vortex in magnetic thin films,** where an annihilation
of a meron pair was analyzed numerically.® A meron carries
one unit of the vortex number and one-half of the skyrmion
number in these systems.>©

Recently, a skyrmion crystal’ as well as a single skyrmion
have been observed experimentally in chiral magnets such as
MnSi and FeCoSi thin films. Furthermore, magnetic domains
observed in ferromagnets such as a TbFeCo thin film® have
been argued to be giant skyrmions'® as large as ~1 um. In
this paper, we point out that there exist also merons in chiral
magnets and that they have already been observed.

The ground state of chiral magnets is a helical state in the
absence of external magnetic field. The spin texture of the
helical state has a stripe-domain structure, where the width of
a stripe has a fixed value determined by sample parameters.
A stripe breaks into pieces as the magnetic field increases. By
calculating the topological charge density, we show that the
endpoint of a broken stripe has the skyrmion number Qg =
1/2. However, the vortex number is zero: Qyonex = 0. A finite-
length stripe is a bimeron (a pair of merons) (Fig. 1), which
has the same topological number as a skyrmion.

When we talk about skyrmions in the two-dimensional
space, it is implicit to assume a Belavin-Polyakov skyrmion.
Its spin texture approaches the ground-state value only
polynomially at large distances. On the contrary, a skyrmion
must be strictly compact in the chiral magnet since it is
embedded within a stripe-domain structure. We propose an
analytic scheme to explore compact merons and skyrmions.
They behave as if they were almost free particles. Based
on this observation, using a simple combinatorial analysis,
we construct a phase diagram of the chiral ferromagnet. It
captures the essential nature of the phase diagram obtained
experimentally in a FeCoSi thin film.® This shows that our
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treatment of merons as free particles is approximately correct
in the chiral magnet.

Our system is the two-dimensional plane described by the
nonlinear O(3) sigma model H; with easy axis anisotropy,

1
Hy=3T / d*x [(3xn)(n) — 2 (n,)*], )

and the Dzyaloshinskii-Moriya interaction (DMI)

Hpm = D f d*x n(x) - [V x n(x)], 2)

where T is the exchange energy, £ is the single-ion easy-axis
anisotropy constant, and n = (n,,n,,n;) is a classical spin
field of unit length. The DMI term breaks the chiral symmetry
explicitly. We introduce the magnetic field 4 perpendicular to
the plane with the Zeeman energy Ay = Sgupuoh:

7 =—(Az/a%) / d*x ny(x), 3)

where a is the lattice constant.
We have emphasized previously'” the importance of the
magnetic dipole-dipole interaction (DDI). However, since the
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FIG. 1. (Color online) (a) The spin texture of a compact bimeron
in a thin chiral magnetic film. (b) A compact bimeron is composed
of two half-disk domains and a rectangular stripe domain. Spins are
pointed upward on the boundary and downward deep inside of the
bimeron. They are pointed forward and backward in the rectangular
part, and twisting circularly in the half-disk part. The topological
charge density is nonvanishing only in the half-disk parts, each of
which has Q, = 1/2. The half-disk part is identified as a meron. The
spin texture of a compact skyrmion is obtained simply by removing
the rectangular part and by patching the two half-disk domains.
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FIG. 2. (Color online) (a) Illustration of the helical state solution
n;(x) described by the Jacobian elliptic function (5). Here we
have taken « = 0.3. (b) Illustration of the spin structure with an
alternating up-down and forward-backward stripe domain. Spins are
strictly pointed up or down on the vertical solid or dotted lines. As
one stripe, we consider the region sandwiched by two solid lines.
(c) Illustration of a compact skyrmion described by the Jacobian
elliptic function (8). It is constructed in such a way that any cross
section passing through the center agrees with the cross section of
the stripe. The topological charge is strictly confined within the solid
circle.

i‘ €5’€

DDI constant is very small compared to the DMI constant, we
may ignore it in determining the magnetic structure of a chiral
magnet. Indeed, the typical size determined by the DMI is of
the order of 40 nm, where the DDI is negligible.

We start with a study of the system in the absence of external
magnetic field. The ferromagnetic spin state n = (0,0, £ 1) is
a solution of the Hamiltonian H; py = H; + Hpym with the
energy density

Ehomo = —1'/287%. )

However, in general, this is not the ground state. It is easy
to prove that the Hamiltonian H; py allows one-dimensional
periodic solutions, among which is the one that minimizes the
DMI term (2) given by
x —4Ls/2
M) =0, ny(x) = cn(—;/,ﬁ),
K

n,(x) = sn(x_—ES/z,Kz)
K&

in terms of the Jacobian elliptic functions [Fig. 2(a)], where
K is an integration constant with 0 < «? < 1. The periodicity
of o(x) is 205 = 4kE K (k?), where K(x?) is the complete
elliptic integral of the first kind. The periodic state (5) has
an alternating up-down and forward-backward spin-stripe
structure, as illustrated in Fig. 2(b). It may be called the
anisotropic helical state. Note that n,(—€s) = 1, n,(0) = —
and n,(€s) = 1. As one stripe, we consider the region, the
width of which is 2¢s with the center line being given by
ny(x) = —

By substituting (5) into the Hamiltonian H;_py, the energy
density of the helical state is analytically calculable:

E’_F 2 Ex?) 1 : D
helix = g2 (F K(k2) «2 ) T WEK(KD)

®)

(©)
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We determine the parameter x by minimizing FEyeix with
respect to k. It is given by solving 2 Epeix(k?) = km DE/T.

Provided D& > T, it is solved as k = A — A3/4 + ..., with
A =T'/DE, and the energy density of the helical state is
D* T
Ehelix:_f‘f—@—i-.... (7

We compare this with that of the homogeneous state (4). We
find that the helical state has a lower energy than that of the
homogeneous state if D& > /3/2T. It is interesting that the
helical state is not realized in the sample when the anisotropy
is too large.

We switch on the external magnetic field. The Zeeman
effect enforces the increase of the up-spin region. However,
it is impossible to increase only the width of the up-spin part
of the stripe, which is fixed to be £5. The simple way is to
split a stripe into two stripes, since it increases up-spin region
[Fig. 3(a)]. Let us cut one stripe at y = 0 and then put a cap so
that the spin field on the cross section smoothly approaches the
up-spin value at the boundary in order to optimize the energy
[Fig. 1(b)]. The spin texture of the cap must be given by

n,(r,0) = —cn(w,xz) sin g,
K&
ny(r.0) = cn(wmz) cos 6, 8)
K
n,(r,0) = Sn(ﬂﬁ)
K&

for the half-disk region (r < £5,0 < 6 < ) in the cylin-
drical coordinate, since it agrees with (5) at y = 0, where
cosf = 1.

A stripe may be broken into three stripes with one finite-
length stripe [Fig. 3(a)]. The spin structure of a finite-length
stripe is illustrated in Fig. 1. The shortest stripe is a cylindrical
symmetric domain [Figs. 3(a) and 2(c)], the spin texture of

FIG. 3. (Color online) (a) Illustration of compact skyrmions,
merons, and bimerons embedded in the stripe-domain structure. (b)
Ilustration of the topological charge density confined within compact
domains. Dotted lines show the boundaries of stripes.
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which is described by (8) for the disk region (r < £5,0 < 6 <
27).

The use of a continuum approximation and of classical
fields to represent the spins is justified as far as we analyze
phenomena with a characteristic wavelength that is much
larger than the lattice constant. In this regime, there exists the
topologically conserved charge, that is, the Pontryagin number
or the skyrmion number Qgy, = f d*x Psky(x), with

= ! 0 0 9
Priy(X) = —— %jeijn<x)-[ in(x) x 9;n(x)l, (9

where i,j run over x,y with &; being the completely
antisymmetric tensor. We are able to determine the topological
charge density pgy(x) for various spin textures.

First, it is trivial to see that the stripe configuration (5) has
no topological density. Then, calculating it for the half-disk
configuration (8) with 0 < 6 < 7, we find that Qgy, = 1/2.
Similarly, we find Qgy, = 1 for the cylindrical symmetric
configuration (8) with 0 < 6 < 2m. Clearly, we can identify
them as a meron and a skyrmion, respectively. A prominent
feature is that the topological charge is strictly confined within
a compact domain. Hence, we may call them a compact
skyrmion and so on. In general, there appear a variety of
topological excitations [Fig. 3(a)]. We have illustrated the
corresponding topological charge density in Fig. 3(b). Let us
refer to this regime of topological excitations as the meron
phase, since the basic excitation is a meron that appears at the
endpoint of a stripe. Note that merons are half-vortices.

A comment is in order with respect to the vortex number
for the nonlinear sigma field. We can define it by

Qo = —— Zsufdx i (X)3n ;(x) (10)
vortex o -~ ij kTt kI j P
where i, j,k run over x,y. It is given by value of n; along the
boundary of the compact domain, where it follows from (8)
that n, = 0. Hence, Qyorex = 0 for a meron and a skyrmion in
chiral magnet. On the contrary, we find that Qyorex = 1 for
a vortex-meron>>% in the easy-plane ferromagnet.

We now estimate the energy of a topological configuration.
The Jacobian elliptic functions are well approximated by the
sinusoidal functions when « is not close to 1, say, « < 0.5.
Namely, we may approximate (5) by n,(x) =0, n,(x) =
sin(kx), and n,(x) = — cos(kx), where k = 1/k&. This is the
well-known expression for the helical ground state in the
isotropic system, which is the limit § — oo with k being fixed.
The spin texture of the cap (8) is approximated by

ny(r,0) = —sin(kr)sin@, n,(r,0) = sin(kr)cos 0,

(1)
n,(r,0) = — cos(kr)

for r < m/k. We consider the isotropic system for simplicity.

With the use of the meron configuration (11), by integrating
the total Hamiltonian H = H; + Hpwm + Hz, it is straightfor-
ward to calculate the energy gain when a stripe is broken into
two stripes:

AE _z 4 7\ D? 4 8 A
em(5 (2 )]
(12)

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 83, 100408(R) (2011)

This is the creation energy of a meron pair. The energy gain
when a skyrmion emerges in a stripe is just twice of A Eerons-
It follows that AE perons < 01f Az > A ;‘el”"SkX with

ABIXSKX — 027D/ T (13)

Since the energy gain is negative, all stripes are spontaneously
broken into a maximum number of skyrmions for Az >
ABIXSEX S which would lead to the formation of a skyrmion
crystal (SkX). Namely, A1x-SKX jg the phase-transition point
between the helix and SkX phases. It is concluded that there
exists no meron phase at zero temperature.

The SkX has been discussed in literature, although
Belavin-Polyakov skyrmions are assumed on all lattice points
with a certain cutoff.

On the other hand, the ferromagnet (FM) phase appears in
sufficiently strong external magnetic field, which has only the
Zeeman energy Epy = — Az /a®. By comparing this with (12),
it follows that the critical Zeeman energy is

11,12

AT — 0.84D?/ T, (14)

so that the FM phase appears for Az > ASKXFM,

We proceed to construct the phase diagram in the plane
of temperature and magnetic field. We have it already at zero
temperature, where there exists only the helix, SkX, and FM
phases. The meron phase appears at finite temperature, since
its entropy is much larger than that of the helix or SkX phase.

At finite temperature, in general, the fluctuation of stripes
is important. Indeed, this leads to a labyrinth state of stripes in
ordinary ferromagnetic films. However, the real-space imaging
experiment and the numerical simulation in Ref. 8 demonstrate
clearly that the fluctuation of stripes is small in chiral magnetic
films. Instead of fluctuating, a stripe breaks into pieces because
there exists an energy gain of the DMI energy. Hence, we
neglect it and only take into account the breaking degree of
freedom in the first-order approximation.

In determining the boundary between the helix and meron
phases, the basic excitation is a pair of merons in the helix
phase [Fig. 3(b)]. It appears when a stripe is broken into two
pieces with the excitation energy A Eyerons being given by (12).
Let N be the maximum number of the topological charges (the
maximum number of compact skyrmions) that the system can
accommodate. When the topological charge of the system is n,
the entropy is given by S = In N!/n!(N — n)!. Then, the free
energy at temperature 7 is givenby F = Epelix + A Emerons —
TS.Letting N — oo, we obtain the formula for the free energy
density

kT 1
f = Ehelix T+ qAEmerons + — (6] - _> s (15)
2 2

where f = F/N, é€helix = Enelix/N, and ¢ =n/N is the
average topological charge density (0 < ¢ < 1). It is easy to
minimize the free energy density f with respect to g. Since f
is quadratic in g, it yields two lines starting from the helix-SkX
phase-transition point at 7 = 0. They determine the boundary
between the helix-meron phases and the boundary between the
meron-SkX phases, as illustrated in Fig. 4. The SkX melts into
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FIG. 4. (Color online) (a) Phase diagram. The horizontal axis is
the temperature 7' in units of D?/kgT", while the vertical axis is the
Zeeman energy A in units of D?/ T'. (b) Average topological charge
density in various phases.

a skyrmion gas (SkG) at higher temperature. We can make a
similar argument to derive the boundary between the SkX and
SkG phases, where the basic object is a skyrmion in the SkX
phase with the excitation energy being

7 D? 4
AEsky = _ES 7 + ; -7 AZ . (16)

We arrive at the same formula as (15) by replacing é&pejix
with gsix, and A Eperons With AEgy. In this way, we obtain
the boundary between the SkX-SkG phases and the boundary
between the SkKG-FM phases [Fig. 4]. Finally, the boundary
between the meron and SkG phases is given by AZon-SkG —
D?/2T for T > 4D?/mwkgT" by comparing their free energies.
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The phase diagram thus constructed is characterized by the
topological charge density g as follows:

0 forAE; > $kgT  (helix, FM),
q=1{1-—2E for|]AE;| < ikgT (meron, SkG) , (17)
1 for— AE; > YgT  SKX,

where AE; stands for AEpeons Or AEgy. Note that the
topological charge density g is observable by measuring the
Hall conductance o, of the topological current!3-1 Oyy X ¢.

‘We have proposed a concept of compact topological excita-
tions together with their analytic formulas. We have identified
merons as endpoints of stripes in thin chiral magnetic films.
A meron has Qgy = £1/2 and Qyorex = 0 in the easy-axis
ferromagnet. This makes a sharp contrast with a meron in the
easy-plane ferromagnet, where Qgy = +1/2 and Qyonex =
+1. By neglecting the stripe fluctuations, we have constructed
the phase diagram, which is in qualitative agreement with those
obtained experimentally and by a Monte Carlo simulation.®
This demonstrates that our treatment of merons as free particles
is a good starting point. It is a future problem to include stripe
fluctuations to improve approximation. Magnetic thin films are
ideal systems to investigate and test various intriguing ideas
on topological excitations.
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