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Dynamics of a Heisenberg spin chain in the quantum critical regime: NMR experiment versus
effective field theory
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A comprehensive comparison between the magnetic field- and temperature-dependent low-frequency spin
dynamics in the antiferromagnetic spin-1/2 Heisenberg chain system copper pyrazine dinitrate, probed via the
13C nuclear magnetic resonance relaxation rate T −1

1 , and the field theoretical approach in the Luttinger liquid
regime was performed. We found very good agreement between experiment and theory in the investigated
temperature and field range. Our results demonstrate how spin-spin interactions strongly affect the spin dynamics
of Heisenberg spin chain compounds in the vicinity of the quantum critical point.
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The occurrence of quantum phase transitions (QPTs) in
systems of correlated electrons is a very important topic
in current solid-state physics. These transitions are present
in, e.g., high-Tc superconductors, heavy-fermion metals, or
magnetic insulators.1 The phase diagrams of systems from the
first two classes are generally complex due to several interac-
tion mechanisms. In contrast, the purely magnetic interactions
in magnetic insulators, in particular for one-dimensional spin
systems, give the rare occasion to perform exact calculations
of their characteristics and to compare them with experimental
data sets of well-characterized sample systems.2 The spin
properties of organic-based low-dimensional magnets can be
fine-tuned by the chemical synthesis. This well-controlled
synthesis allows the systematic investigation of the magnetic
properties with well-established methods such as neutron scat-
tering, electron spin resonance (ESR), dc/ac magnetometry,
muon spin relaxation (μSR), or NMR. In low-dimensional
magnets, the high sensitivity of NMR3 to local hyperfine
fields allows detailed studies of, e.g., phase transitions, the
local distribution of spin moments, and low-frequency spin
dynamics.

The isotropic antiferromagnetic spin-1/2 Heisenberg chain
(AFHC) model is one of the main paradigms of quantum
many-body physics, from both experimental and theoreti-
cal viewpoints. Its static characteristics were successfully
compared with experimentally studied features of quasi-one-
dimensional magnetic compounds, synthesized recently.4 For
the dynamical properties, especially in the vicinity of the
quantum critical point, there is still a need for highly accurate
experimental data sets for the low-frequency dynamics and
their comparison to calculations.

This Rapid Communication presents a detailed compar-
ison of field theory results with the data of recent NMR
experiments,5 probing the spin dynamics in a wide field
and temperature range in one of the best realizations of
the AFHC model, namely Cu(C4H4N2)(NO3)2 (known as
copper pyrazine dinitrate or CuPzN).6 We find an extraor-
dinary good agreement in the low-temperature behavior
across the field-driven QPT. Our results demonstrate that
the observed shift of the maximum of the field-dependent

NMR relaxation rate to fields lower than the QPT is caused
by the field dependence of the critical exponents of cor-
relation functions (i.e., by essential spin-spin interactions).
It cannot be explained using mean-field-like or perturbative
approximations.

Owing to a relatively low value of the coupling constant
J/kB = 10.7 K in CuPzN, the critical field Bs = 14.6 T is
accessible by standard laboratory equipment. Therefore, one
can examine the spin dynamics in the region of fields and tem-
peratures where spin-spin correlations manifest themselves
in the most prominent way, and compare with the results
of various theoretical methods. The interchain interactions
are supposed to be small, so the magnetic ordering (Tc ∼
107 mK) did not affect the AFHC behavior down to the
lowest T studied in the NMR experiment. Whereas these
data were compared with quantum Monte Carlo (QMC)
simulations, their agreement with results of a field theory
approach (which serves as a very good description, namely
at low T , where QMC simulations often produce larger errors)
for the Luttinger liquid (LL) regime is checked in our work. A
similar approach has been used to calculate the properties of
several low-dimensional systems,2 but so far no comparison
with NMR data of a direct realization of the AFHC has been
done, especially in the vicinity of the QPT.

The NMR relaxation rate T −1
1 can be presented as7 T −1

1 =
(γ 2

e γ 2
Nh̄2/2)

∫
dq[Fx(q)Sxx(q,ωN )+Fz(q)Szz(q,ωN )], where

γe and γN are the electronic and nuclear gyromagnetic ratios,
respectively; ωN is the resonance frequency of nuclear spins;
Fx,z(q) are the hyperfine form factors of nuclear spins, parallel
and perpendicular to the external dc magnetic field B; and
Sμν(q,ωN ) (μν = x,z) are the components of the tensor of the
dynamical structure factor (DSF) of the AFHC, also parallel
and perpendicular to B. For the transverse components, we
have Sxx = Syy because of the rotational symmetry perpen-
dicular to the field direction. Since ωN � Jh̄,γeB, we use
the limit ωN → 0. The asymptotic behavior of the correlation
functions of the AFHC can be calculated in the framework of
the conformal field theory.8 The low-energy states approach
zero (ω = 0) for nonzero B at the vector q ∼ 0,π (1 − 2m),
where m is the magnetic moment per site of the AFHC, for the
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FIG. 1. The magnetic field-dependent (given in units of J/h̄γe)
and temperature-dependent (given in units of kB/J ) behavior of the
transverse staggered component of the DSF of the AFHC model,
calculated using the conformal field theory.

longitudinal component of the DSF, and at q ∼ 2πm,π for the
transverse component.9

For the transverse component of the DSF at q ∼ π

(staggered part), which yields the main contribution to the
measured relaxation rate in our experiments (see below), we
have

vSxx
s

| cos(2πγ ′)| ∼ C1B
2

(
γ ′

2
,1 − γ ′

)(
2παkBT

v

)2γ ′−1

, (1)

where γ ′ = 1/(4K); K is the critical LL exponent; v is
the Fermi velocity of a spinon, the elementary excitation of
the AFHC model; B(x,y) = �(x)�(y)/�(x + y) is the beta
function; C1(B) is the field-dependent multiplier10; and α is the
cutoff parameter of the theory. The velocity and the LL expo-
nent are B dependent in the AFHC model. These dependencies
can be obtained from the exact Bethe ansatz solution. Recently,
a simple ansatz for the field behavior of the velocity and
exponent, valid in the interval 0 � B � Bs , was proposed11:
v = (πJ/2)

√
[1 − (B/Bs)][1 − (B/Bs)+(2h̄γeB/πJ )], K =

f/
√

4f 2 − 3(h̄γeB)2, f = πJ [1 − (B/Bs)] + h̄γeB. The be-
havior of v and K , given by those expressions, agrees
with the Bethe ansatz calculations. Near the saturation point
B = Bs , the correlation amplitude goes to zero, while at
zero field the value of the correlation function in the ground
state is approximately equal to 0.18.10 Hence, we can write
the multiplier as C1(0) = 0.18/B2(1/4,1/2) ≈ 0.0065. The
results of the calculation are presented in Fig. 1. It clearly
reveals a maximum in the low-T quantum regime below Bs .
That shift of the maximum to fields below Bs is the direct
consequence of the fact that the LL exponent K is not equal
to unity for fields lower than Bs . It is well known8 that
after the Jordan-Wigner transformation the Hamiltonian of the
AFHC model can be written as the Hamiltonian of spinless
lattice fermions. The latter consists of the quadratic part in the
fermion operators (which describes noninteracting fermions),
and the quartic term, which describes the interaction between
fermions (namely those interactions are responsible for the
existence of multispinon continua). Theoretical mean-field-
like and/or perturbative methods yield a critical exponent

K for the correlation functions which is independent of B

(unity). Only exact (or field-theoretical) approaches describe
the field dependence of that exponent.8 In the absence of
the B dependence of K (i.e., without essential LL spin-
spin interactions), the transverse component of the DSF is
temperature independent and reveals a divergency at B = Bs

(see Fig. 2; cf. Ref. 12).
For the homogenous part of the DSF at q ∼ 2πm, we get

vSxx
h

cos(2πγ )
∼ 2C2B

(
γ + 2

2
, − 1 − γ

)
B

(γ

2
,1 − γ

)

×
(

2παkBT

v

)2γ+1

, (2)

where γ = K − 1 + 1/(4K). In the ground state, numerical
calculations10 give the value of the correlation function at
zero field as ∼0.03, which defines C2(B = 0). At B = 0 the
exponent for the AFHC is K = 1/2,8 and, therefore, this
component of the DSF, calculated in this approach, diverges
at B = m = 0. However, that divergency is well known to be
nonphysical. It is easy to calculate the transverse homogeneous
magnetic susceptibility for the Heisenberg spin system at q =
0: it is equal to m/h̄γeB. For the AFHC, the magnetic moment
is proportional to the field for small values of B; hence, in that
regime, the transverse magnetic susceptibility coincides with
the longitudinal one. The magnetic susceptibility is related to
the DSF via the fluctuation-dissipation theorem. Therefore, at
low fields, Sxx

h � Szz
h .

For the longitudinal component of the DSF at q ∼ 0 we
have

πv2Szz
h = 2KαkBT , (3)

and for q ∼ π (1 − 2m) we get

vSzz
s

cos(2πK)
∼ C3B

2

(
K

2
,1 − K

) (
2παkBT

v

)2K−1

. (4)

At m = 1/2, this contribution has to coincide with Eq. (3),
which defines C3(Bs). The calculated longitudinal components
of the DSF manifest weak dependencies on T and B, except
in the vicinity of the QPT (at which v → 0), where they show
a strong growth linear in T . Hence, the correct magnetic field
behavior of the homogenous transverse component of the DSF
has to behave as the homogeneous longitudinal component for
small values of the field and must decay to zero at B → Bs (i.e.,
to coincide with the staggered transverse component there),
because at B = Bs we have m = 1/2, and 2πm = π .

It is worth mentioning that marginal operators (from
the renormalization group viewpoint) introduce logarithmic
corrections to the asymptotic behavior of correlation functions
of the AFHC in the conformal limit at low T .8 Those
corrections can be taken into account (see, e.g., Ref. 13), which
yields the additional multiplier

√
ln(24.27J/αkBT )/(2π )3/2 to

the right-hand-side of Eqs. (1)–(4).
Recently, it was pointed out14 that the low-energy dynamics

of quantum chains is determined not only by the Fermi
points but also by high-energy states of the system; i.e.,
the nonlinearity of the dispersion relations was taken into
account. Generalizing the approach of Ref. 14, we conjecture
that the B and T behavior of the DSF is determined by
Eqs. (1)–(4) with exponents, renormalized due to high-energy
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states. In the conformal field theory, we replace �M →
(�M − nimp), �D → (�D − dimp), where �M and �D are
integers, determining the finite-size spectra of the chain,8

and nimp = ±(
√

K − 1) and dimp = −(1/2
√

K)nimp are the
parameters of high-energy states of the AFHC model. Thus, in
Eq. (1) we have to replace γ ′ → (1/2) − (

√
K/2) + (K/4) for

a high-energy hole, and γ ′ → (1/2) + (1/K) − (1/2
√

K) +
(K/4) − (

√
K/2) for a high-energy excitation. In Eq. (2)

we need to replace the exponent γ → (9K/16) − (1/2) −
(3

√
K/4) for a high-energy hole, and γ → (1/K) + K −

(1/2) + (
√

K/2) − (1/2
√

K) for a high-energy excitation.
The behavior of the longitudinal homogeneous component of
the DSF, Eq. (3), is, obviously, not renormalized. In Eq. (4)
we have to replace the exponent K → (1/2) − (1/2

√
K) +

(1/4K) + (9K/16) − (3
√

K/4) for a high-energy hole and
K → (1/2) − (1/2

√
K) + (1/4K) + (K/4) − (

√
K/2) for a

high-energy excitation. The T and B dependencies of the
components of the DSF, obtained within that conjecture, do
not agree with our experimentally observed data. It can be
explained as follows. A small interval of quasimomenta of
spinons near ω = 0 mostly contributes to T −1

1 . In that interval,
one expects the “traditional” LL exponent near the Fermi point,
and renormalized exponents close to the edges of the interval,
with a smooth crossover. The calculation of that crossover is a
subtle point, not yet performed. Our NMR experiments suggest
that the main contribution to T −1

1 comes from the region where
the traditional exponent is applicable.

The NMR measurements were performed in two different
standard NMR setups, each with a superconducting magnet,
a 4He temperature insert, and a commercial/homebuild spec-
trometer. An inversion-recovery pulse sequence was used to
measure the 13C nuclear relaxation rate T −1

1 . To ensure well-
defined comparability with the theory for Sxx , the hyperfine
form factor Fz, which scales the contribution of Szz to T −1

1 ,
was minimized. This was done via an orientation-dependent
study of the NMR frequency shift and T −1

1 , determining the
angle 	 (B,b) = 50◦ in the b-c plane.5 In this orientation the
critical field is Bs = (2J/h̄γe) = 14.6 T, adjusted according to
the anisotropic g factor from recently published ESR results.15

In this case we have

T −1
1 = F

′x
s (q)Sxx

s + F
′x
h (q)Sxx

h , (5)

leaving only the two form factors and the cutoff α as free
parameters to fit our calculations to the experimental data.16

The results of this fit procedure are shown in Figs. 2 and 3.
The B dependence of T1

−1, shown in Fig. 2, is reproduced by
considering only Sxx

s . For fields larger than Bs , a spin excitation
gap opens linear with B − Bs , leading to an exponential decay
of the relaxation rate. We find an excellent agreement between
our calculations and the NMR experiment for the whole region
of fields, in particular near the QPT.

The temperature dependence of T −1
1 at different fields

is shown in Fig. 3. The values of F
′x
s (q) and α, obtained

from the fit of the field dependence, were kept constant for
the scaling of Sxx

s at all B and T . At B close to Bs , the
experimental and theoretical NMR relaxation rates show a
diverging behavior as T → 0. This singularity occurs when
B, acting as the chemical potential for spinons, crosses the
boundary of the dispersion relation (at this QPT, v goes to

FIG. 2. (Color online) B dependence of T1
−1 at kBT /J = 0.15

(error bars are within symbol size). The effective field theory results
for the AFHC model are given by the solid (black) line for fields up to
Bs . Above Bs , an exponential function was fitted to the data [dashed
(blue) line]. The relaxation rates resulting from the model with
fermion-fermion interactions taken in the mean-field approximation,
given by the dotted (orange) line, diverge at B = Bs at all T .

zero); cf. Eq. (1). Again, the critical regime, i.e., T −1
1 (T )

at 12.8 T and 13.8 T, is fully described by F
′x
s (q)Sxx

s .
Note that one expects the accuracy of the field-theoretical
calculations to significantly decrease for T > J/kB . The
agreement with experiment is, nevertheless, surprisingly good
for the whole region of temperatures measured, with T −1

1
becoming almost T independent at high temperatures. At low
fields, the experimental rates show an approximately linear
T dependence up to T ∼ 2J/kB (cf. inset of Fig. 3). In this
field regime, Sxx

s is almost T independent and Sxx
h , linear in T ,

becomes relevant. To avoid the unphysical divergence of Sxx
h

at very low fields, in the fit of 1/T1 at 2 T and 6 T according
to Eq. (5) for T < J/h̄γe, we used, as discussed above, Szz

h

FIG. 3. (Color online) Comparison of temperature-dependent
experimental (symbols) and theoretical (lines) T1

−1 rates at different
external fields. At low fields (see inset), an additional contribution
from the homogeneous DSF is included in the theoretical rates (see
text).
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instead of Sxx
h at 2 T. Thus, we find a very satisfying agreement

at low temperatures and fields.
In summary, based on the conformal field theory, we

presented a comprehensive calculation of both the transverse
and the longitudinal low-frequency DSF of the AFHC model in
the LL regime. The comparison to NMR results on the AFHC
system CuPzN was performed for a large temperature interval
0.19 < (kBT )/J < 4.5 and for fields up to B ∼ 2.2J/h̄γe.
Our results manifest that the observed shift of the maximum
of T −1

1 (B) to fields lower than the critical field Bs is caused by
the field dependence of the LL exponent, i.e., by substantial
spin-spin interactions. It cannot be explained using mean-field-

like or perturbative approximations. We stress that CuPzN is so
far the only compound with an experimentally fully accessible
magnetic behavior, for which this good agreement has been
found.
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