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Critical magnetization behavior of the triangular- and kagome-lattice quantum antiferromagnets
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We investigate S = 1/2 quantum spin antiferromagnets on the triangular and Kagome lattices in a magnetic
field, using the numerical exact diagonalization. We focus particularly on an anomalous magnetization behavior of
each system at one-third the saturation magnetization. Critical exponent analyses suggest that it is a conventional
magnetization plateau on the triangular lattice, while an unconventional phenomenon, called the magnetization
ramp, occurs on the Kagome lattice.
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S = 1/2 triangular- and Kagome-lattice1 antiferromagnets
have attracted a lot of interest as typical frustrated systems.
Most theoretical studies have indicated that the former system
has three-sublattice long-range order,2–4 while the latter is
disordered in the ground state.5–16 Experimental studies to
observe a novel spin liquid phase have been accelerated since
discoveries of several realistic materials: the organic com-
pound κ-(BEDT-TTF)2Cu2(CN)3 for the triangular lattice17

and herbertsmithite,18,19 volborthite,20,21 and vesignieite22 for
the Kagome lattice. Since quantum Monte Carlo simulation
and DMRG calculation are useless for these systems, numeri-
cal exact diagonalization is one of the best numerical methods
for them. Numerical diagonalization studies suggest that
both systems have the one-third magnetization plateau,23–27

although classical spin systems have no plateau on either lattice
in the ground state.28,29 (Thermal or quantum fluctuations
induce a plateau in the semiclassical case, because one-third is
just a critical point between two different spin structures.)
In our recent numerical diagonalization study of S = 1/2
Kagome-lattice antiferromagnets up to N = 36, the calculated
field derivatives reveal an anomalous behavior at one-third
the saturation magnetization.30 Namely, the field derivative
diverges on the low-field side of the critical field Hc, while it is
almost 0 on the high-field side. This critical behavior is quite
different from conventional magnetization plateaus in two-
dimensional systems, where the field derivative is finite on both
sides of Hc. To distinguish such an anomalous property at one-
third magnetization of the Kagome lattice from conventional
plateaus, we called it a “magnetization ramp.” However, its
mechanism is still an open problem. In this paper, to clarify
this unconventional behavior around one-third magnetization
of S = 1/2 Kagome-lattice antiferromagnets, compared with
the triangular one, we applied numerical diagonalization for
both systems up to N = 39, which is the largest cluster at
present. In addition, we estimated the critical exponent δ

by the finite-size scaling proposed in the previous work32 to
investigate the quantum critical behavior more quantitatively.

Now we examine the magnetization process of S = 1/2
triangular- and Kagome-lattice antiferromagnets. The Hamil-
tonian is given by

H = H0 + HZ, (1)

H0 =
∑
〈i,j〉

Si · Sj , HZ = −H

N∑
j

Sz
j , (2)

where 〈i,j 〉 means all the nearest-neighbor pairs on each
lattice. Throughout we use units such that gμB = 1. For N -site
systems, the lowest energy of H0 in the subspace where∑

j Sz
j = M (macroscopic magnetization is m = M/Ms,

where Ms denotes saturation of the magnetization, namely,
Ms = NS for a spin-S system) is denoted E(N,M). We restrict
ourselves to the rhombic cluster under the periodic boundary
condition to maintain 120◦ rotational symmetry for systematic
finite-size scaling. Using numerical exact diagonalization,
we have calculated all the values of E(N,M) available for
rhombic clusters with N = 9, 12, 21, 27, 36, and 39, to
obtain the ground-state magnetization curves. (The largest
dimension of the N = 39 system is 68, 923, 264, 410. To
treat such huge matrices in computers, we have carried out
parallel calculations using the MPI-parallelized code which
was originally developed in a previous work.31) Figure 1(a)
and 1(b) show the magnetization curves of triangular- and
Kagome-lattice antiferromagnets for N = 27, 36, and 39.
They indicate plateau-like behaviors at m = 1/3 of both
systems, but the Kagome lattice exhibits an anomalous feature;
the step length increases with decreasing H toward m =
1/3, different from conventional magnetization plateaus like
triangular lattices. To clarify a difference between triangular
and Kagome lattices, we calculated the field derivative χ

defined in the form

χ−1 = E(N,M + 1) − 2E(N,M) + E(N,M + 1)

1/Ms
. (3)

Figures 2(a) and 2(b) show the derivative χ of triangular- and
Kagome-lattice systems, respectively, for N = 27, 36, and 39.
The derivative χ of the triangular system is finite at both edges
of the one-third plateau-like behavior, as in conventional two-
dimensional systems. In contrast, the Kagome system exhibits
a quite different feature between the lower and the higher field
sides of m = 1/3; χ diverges on the lower side like a plateau
in one-dimensional systems, while it is very small (possibly 0)
on the higher side. The present calculation for N = 39 more
strongly supports the ramp-like behavior predicted by our
previous work.

The critical exponent δ defined in the form

|m − mc| ∼ |H − Hc|1/δ (4)

is an important index for specifying the universality class
of the field-induced quantum phase transition. Previous
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FIG. 1. (Color) Magnetization curves of (a) triangular- and
(b) Kagome-lattice antifferomagnets for N = 27, 36, and 39.

theoretical work indicated δ = 2 for some typical one-
dimensional gapped systems,33,34 while δ = 1 for two-
dimensional systems.35 To investigate the quantum critical
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FIG. 2. (Color) Field derivatives of (a) triangular- and
(b) Kagome-lattice antifferomagnets for N = 27, 36, and 39.

behavior at m = 1/3 of triangular- and Kagome-lattice
antiferromagnets more quantitatively, we estimate δ by the
finite-size scaling developed in a previous work.32 Although
it was proposed for one-dimensional systems, it can easily be
generalized for two dimensions. We assume the asymptotic
form of the size dependence of the energy to be

1

N
E(N,M) ∼ ε(m) + C(m)

1

Nθ
(N → ∞), (5)

where ε(m) is the bulk energy and the second term describes
the leading size correction. We also assume that C(m) is an
analytic function of m. The lowest and highest magnetic fields
corresponding to m = 1/3 in the thermodynamic limit are
defined as Hc− and Hc+, respectively, in the form

E

(
N,

N

3
± 1

)
− E

(
N,

N

3

)
→ ±Hc± (N → ∞). (6)

To consider the critical magnetization behaviors for m < 1/3
and m > 1/3 independently, we define the critical exponents
δc− and δc+ by the forms∣∣∣∣m − 1

3

∣∣∣∣ ∼ |H − Hc±|1/δ± . (7)

If we define the quantities f+(N ) and f−(N ) by the forms

f±(N ) ≡ ±
[
E

(
N,

N

3
± 2

)
+ E

(
N,

N

3

)
− 2E

(
N,

N

3
± 1

)]
,

(8)

the asymptotic forms of them are expected to be

f±(N ) ∼ 1

Nδ±
+ O

(
1

Nθ+1

)
(N → ∞), (9)

as long as we assume the form (6). Thus the exponents δ−
and δ+ can be estimated from the slope of the ln f±-ln N

plot, respectively, under the condition θ > δ± − 1. To avoid
an oscillation of the finite-size correction due to the cluster
shape dependence, we just use rhombic clusters under the
periodic boundary condition with N = 9, 12, 21, 27, 36, and
39. Figures 3(a) and 3(b) show plots of ln f± versus ln N for
triangular- and Kagome-lattice antiferromagnets. Figure 3(a)
suggests that the calculated points are well fitted to a line for
each of f− and f+ in the case of the triangular lattice. Thus
applying the standard least squares fitting to lines (dashed and
long-dashed lines are used to obtain δ+ and δ−, respectively.)
for all the available system sizes, N = 9, 12, 21, 27, 36, and
39 (N = 9 cannot be used for δ−), δ− and δ+ are estimated as

δ− = 1.00 ± 0.17, δ+ = 0.89 ± 0.15

for the triangular lattice. Errors are estimated from the devia-
tion of points from the fitted lines. It would be reasonable to
conclude that δ− = δ+ = 1 at m = 1/3 of the triangular-lattice
antiferromagnet, as expected for conventional magnetization
plateaus in two dimensions. In contrast, Fig. 3(b) indicates
quite different features of the Kagome-lattice antiferromagnet.
The same least squares fitting yields the estimates

δ− = 1.92 ± 0.99, δ+ = 0.56 ± 0.15

for the Kagome-lattice antiferromagnet. Exponent δ− has a
large error because the line fitting is not good. It does not
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FIG. 3. ln(f ) is plotted versus ln(N ) for (a) triangular- and
(b) Kagome-lattice antiferromagnets, respectively. Filled circles
and squares represent estimated critical exponents δ+ and δ−,
respectively.

converge well with respect to the system size but seems still
to increase with N . The same line fitting to the points for
N = 27, 36, and 39 yields the estimation δ− = 4.59 ± 0.25.
Thus we can just conclude that δ− � 2 at most. This means
that the divergent behavior of the field derivative at Hc− is
stronger than in one-dimensional systems. This leads to two
possibilities. One is a jump (a first-order transition) in the
magnetization curve. A magnetization jump that also appears
near saturation was proved.36 The other possibility is an
anomalous continuous transition. A similar phenomenon was
reported in the metal-insulator transition of the Hubbard chain
with next-nearest-neighbor hopping.37 In comparison with δ−,
δ+ is more conclusive, because the fitting error is much smaller.
According to the above result of line fitting, we conclude that
δ+ = 0.6 ± 0.2. Thus the field derivative χ should be 0 on the
higher field side of Hc+, because δ+ is smaller than unity. It
also justifies a property of the magnetization ramp.

Finally, we consider whether or not a flat part of the magne-
tization curve at m = 1/3 exists for triangular- and Kagome-
lattice antiferromagnets. Namely, we examine whether each
system has no plateau (Hc− = Hc+) or a finite plateau (Hc− 	=
Hc+) at m = 1/3 in the thermodynamic limit. We evaluate
the length of the flat part Hc+ − Hc− corresponding to the
plateau width of finite-size clusters with N = 9, 12, 21, 27,
36 and 39 for both systems. If the system has a gapless
excitation like a spin wave from some ordered states, the
low-lying energy spectrum is expected to be proportional
to the wave vector k in the long-wavelength limit. Thus the
excitation energy gap of the finite-size systems should have
the asymptotic form ∼1/N1/2 in two-dimensional gapless
systems. In contrast, in gapped systems the gap is expected
to converge to the thermodynamic limit with exponentially
decaying (faster than 1/N1/2) finite-size correction as the
system size increases. Thus if extrapolation by fitting the gap
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FIG. 4. Plateau width Hc+ − Hc− is plotted versus 1/N1/2. Open
triangles and filled squares represent triangular- and Kagome-lattice
antiferromagnets, respectively. Fitted lines are used for extrapolation
to the thermodynamic limit.

versus 1/N1/2 leads to a finite gap in the thermodynamic limit,
this would be strong evidence to confirm the gapped ground
state. The length of the flat part Hc+ − Hc− is plotted versus
1/N1/2 in Fig. 4, where open triangles and filled circles are for
triangular- and Kagome-lattice antiferromagnets, respectively.
The least squares fitting to a line leads to the following results:
Hc+ − Hc− = 0.47 ± 0.28 for the triangular lattice and Hc+ −
Hc− = −0.32 ± 0.35 for the Kagome lattice. Obviously we
can conclude that the triangular-lattice antiferromagnet has the
one-third magnetization plateau. In contrast, the result for the
Kagome lattice suggests that it possibly has a single critical
field, Hc = Hc− = Hc+. However, it is difficult to exclude
a finite magnetization plateau, because of the large error of
the extrapolation. Note that any other plateaus are difficult to
investigate using the present method, because fewer system
sizes are available for m 	= 1/3.

In recent magnetization measurements20 of a candidate of
the Kagome-lattice antiferromagnet volborthite, several step-
like behaviors were observed, but they had not reached m =
1/3 yet. The same measurement is continuing to observe an
anomaly at m = 1/3, which is expected to be about 60 T. It
would be interesting to detect some unconventional features.

In summary, we have investigated critical magnetization
behaviors at m = 1/3 for S = 1/2 triangular- and Kagome-
lattice quantum antiferromagnets, using numerical exact diag-
onalization of rhombic clusters up to N = 39. The triangular
lattice is revealed to have critical exponents δ− = δ+ = 1
and a finite plateau, which is consistent with a conventional
magnetization plateau in two-dimensional systems. In con-
trast, the Kagome lattice is revealed to exhibit unconventional
critical properties: δ− < 1 < δ+; that is, the field derivative χ

is divergent on the lower field side, while it is 0 on the higher
side of a possibly single critical field, Hc = Hc− = Hc+ . The
conclusion supports magnetization ramp behavior at m = 1/3
of the Kagome-lattice antiferromagnet.

100405-3



RAPID COMMUNICATIONS
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