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We investigate the constraints on the superfluid fraction of an amorphous solid following from an upper bound
derived by Leggett. To accomplish this, we use as input density profiles generated for amorphous solids in a
variety of different manners including by investigating Gaussian fluctuations around classical results. These
rough estimates suggest that, at least at the level of the upper bound, there is not much difference in terms of
superfluidity between a glass and a crystal characterized by the same Lindemann ratio. Moreover, we perform
path integral Monte Carlo simulations of distinguishable helium-4 rapidly quenched from the liquid phase to
very low temperature, at the density of the freezing transition. We find that the system crystallizes very quickly,
without any sign of intermediate glassiness. Overall our results suggest that the experimental observations of
large superfluid fractions in helium-4 particles after a rapid quench correspond to samples evolving far from
equilibrium, instead of being in a stable glass phase. Other scenarios and comparisons to other results on the
super-glass phase are also discussed.
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I. INTRODUCTION

Recent experiments on solid He4 by Kim and Chan1–3

raised, among many others, the important question of whether
disorder can foster the formation of superfluidity in solid
samples. Following earlier theoretical analyses,4–6 Ritner and
Reppy7,8 showed that fast quenches produce disordered sam-
ples with a change in the moment of inertia that corresponds to
an extremely high fraction of superfluid density, on the order
of 20%. In addition, the role of He3 impurities3 suggests that
disorder must play an important role in the experiments. Other
studies9 suggest that the role of disorder is not to enhance the
superfluid fraction but instead to induce nonequilibrium states
in the sample that modify the moment of inertia as a function
of temperature and frequency. Consequently, in spite of a long
series of theoretical and experimental studies, the relationship
between disorder and superfluidity in quantum solids is still
not clear.

Here we want to focus on one particular proposal that
was put forward by Boninsegni et al.:6 the possibility of
a bulk long-lived metastable glass phase of He4. These
authors performed a path integral Monte Carlo (PIMC)
numerical simulation of helium-4 at relatively high density
(ρ ∼ 0.03 Å−3), where the system was very quickly quenched
from the equilibrium liquid phase at high T to a low
temperature T = 0.2 K, at which the hcp solid phase is stable.
They reported the observation of a phase which is structurally
similar to the liquid, and with a fraction of superfluid density as
high as 60%; this phase was observed to last for a large number
of Monte Carlo sweeps before the system eventually froze into
the equilibrium ordered solid. Boninsegni et al. labeled this
the “superglass” phase. Actually, the experimental protocols
used to solidify helium likely produce very disordered solids,
possibly glasses. In fact the experiments in10 showed evidence
of very slow dynamics, the hallmark of glassy behavior. The
natural and still open question is why freezing in an amorphous
density profile should enhance superfluidity compared to the

crystalline case, which instead is thought to show zero or
very small condensate fractions.11,12 Superfluidity is related
to exchange, which is a local process and depends mostly on
the local neighborhood of a particle. Thus, one might expect,
contrary to the findings discussed above, that dense glasses
should have a fraction of superfluid density comparable to the
one of crystals at the same particle density. Indeed, a theoretical
investigation of the superglass phase in a simplified (and yet
realistic) model of interacting bosons found an extremely
small condensate fraction in the superglass phase.13 Clearly,
the relation between disorder and superfluidity deserves
further investigation, in order to reach a better microscopic
understanding of superfluidity in amorphous solids and to
explain the numerical and experimental results.

The main difficulty in the numerical investigation of this
problem comes from the fact that the glass phase (if any) is
always expected to be metastable with respect to the crystal
phase, which is the true equilibrium phase of solid helium.
In a classical system, it is reasonably straightforward to get
properties of a metastable phase or a glass, because one can
easily simulate the physical dynamics of the system by solving
Newton’s equations of motion.14 In contrast, the real-time
dynamics of quantum systems is not accessible numerically
because of the sign problem, and calculating properties
involving glassy quantum system is problematic. Previous
numerical work of Boninsegni et al.6 looked at the fraction
of superfluid density of a quenched helium-4 via directly
calculating it for a system whose PIMC dynamics slowly
equilibrates. More recently, a quantum version of the mode-
coupling theory of dynamics in glasses has been developed
and compared with path integral molecular dynamics (PIMD)
simulations,15 obtaining accurate information on the glass
transition in quantum hard spheres. However, in that study,
exchange effects were neglected and therefore superfluidity
could not be investigated. Therefore, for the moment, path
integral simulations are not conclusive.
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Here we approach the problem in a different way. In one of
the first works on supersolidity, Leggett showed how one can
derive an upper bound for the fraction of superfluid density of
a generic many-body system in which translational invariance
is broken, by means of a variational computation.16 The output
of Leggett’s computation is a formula that needs as input only
the average density profile of the solid. This formula has been
applied to helium crystals, and the aim of this work is to
use it to study the amorphous solid. At present, there is not
yet any reliable first principle computation or experimental
measurements of the density profile of amorphous helium-4.
We endeavor to generate robust estimates of it using a number
of different techniques, in particular by investigating a model
of zero-point Gaussian fluctuations around classical configura-
tions, and PIMC simulations without exchange (which should
be closer to the classical dynamics). Checking whether these
techniques all give roughly similar orders for the bound is a
way to assess the robustness of our result. In the following, we
will denote the fraction of superfluid density by “superfluid
fraction” and we always refer to Leggett’s upper bound to this
quantity, unless otherwise specified.

The rest of this paper is organized as follows. In Sec. II,
we discuss how to adapt Leggett’s bound to an amorphous
solid. In Sec. III A, we compute the bound for a profile
made of Gaussian fluctuations around a classical configuration,
and compare the results for an amorphous and an ordered
solid, while in Sec. III B we discuss previous numerical
computations.6 In Sec. IV we try to obtain more precise
information by comparing a classical simulation of a glass-
forming system with a PIMC numerical simulation of helium.
In Sec. V, we show that under some approximations one
can obtain a formula for the bound that can—at least in
principle—be computed from neutron or x-ray scattering data.

II. LEGGETT’S BOUND

Leggett showed in his pioneering work on supersolidity
that the wave function of the ground state of a system of
bosonic particles inside a rotating cylindrical container can be
obtained by finding the ground state for the nonrotating system
but with new boundary conditions.16 Using cylindrical polar
coordinates and assuming that the thickness of the cylinder is
much smaller than the radius R, the new boundary conditions
correspond to imposing that the wave function gets an extra
phase factor exp(−2πimR2ω/h̄) when the angle θi of any
particle i is shifted by 2π . Here m is the particle mass and ω

the radial velocity. From the ω dependence of the energy of
the ground state, Emin(ω), obtained with these new boundary
conditions, one can compute the superfluid density ρs by

ρs

ρ
= lim

ω→0

1

I0

∂2Emin(ω)

∂ω2
,

where ρ is the particle density and I0 = NmR2 the classical
moment of inertia. From this expression it is clear that upper
bounds on the superfluid density can be obtained by using
variational wave functions that in the ω → 0 limit tend to
the wave function for a nonrotating container. Leggett used
a variational wave function of the form �(�r1, . . . ,�rN ) =
�0(�r1, . . . ,�rN ) exp[i

∑
i ϕ(�ri)], where �0 is the ground-state

wave function for the nonrotating case, and φ = ∑
i ϕ(�ri) a

sum of phases satisfying the condition ϕ(θ ) = ϕ(θ + 2π ) −
2πmR2ω/h̄.16,17 The bound can be improved by including
two-body correlations.18 Defining

ρ(�r) =
∫

d�r1 · · · d�rN |�0(�r1, . . . ,�rN )|2
∑

i

δ(�r − �ri), (1)

which is the density profile in the ground state, one finds that
the variational estimation of Emin(ω) reads

Emin(ω) = E0 + h̄2

2m

∫
d�r[∇ϕ(�r)]2ρ(�r), (2)

where E0 is the ground-state energy in the nonrotating case.
Because of the assumption that the thickness of the cylinder

is much smaller than the radius, one can simplify the problem
even further by “unrolling” the annulus and considering the
system inside a parallelepiped of length L = 2πR in the
x direction. In this geometry the phase ϕ has to satisfy
the boundary condition ϕ(0,y,z) = ϕ(L,y,z) − v0L where
v0 = mRω/h̄. The minimization of Eq. (2) with respect to
ϕ leads to the equation for ϕ(�r):

�∇ · [ρ(�r) ∇ϕ(�r)] = 0, (3)

and results in an upper bound on the superfluid density

ρs = 1

V v2
0

∫
V

d�rρ(�r) |∇ϕ(�r)|2 . (4)

Note that if ϕv0 (�r) is a solution of Eq. (3) with boundary condi-
tions ϕ(0,y,z) = ϕ(L,y,z) − v0L, then ϕv′

0
= (v′

0/v0)ϕv0 is a
solution with boundary conditions corresponding to v′

0. Hence,
Eq. (4) does not depend on v0 and we can choose v0 = 1
without loss of generality. Furthermore, while in the geometry
described above the wave function should satisfy hard wall
conditions at the boundary of the box in the y and z directions,
we will simplify the problem by considering periodic boundary
conditions in the y and z directions.19

To find a solution of Eq. (3) satisfying the correct boundary
condition is useful to rewrite ϕ as

ϕ(�r) = �v0 · �r + δϕ(�r), (5)

where δϕ(�r) is defined inside the volume V and satisfies
periodic boundary conditions, and �v0 is a unit vector. In
the original problem �v0 = x̂, but since we reformulated the
problem in a periodic cubic box, the direction of �v0 can be
varied without affecting the result, in the limit V → ∞. Since
δϕ(�r) is periodic, we can write the equations in Fourier space
(see Appendix A for details):

�q · �v0ρ�q =
∑
�p �=�0

(�q · �p)ρ�q− �p iδϕ �p , (6)

and from the solution for iδϕ�q one can obtain the Leggett
bound,17 which reads in Fourier space

ρs

ρ
= 1 − 1

ρv2
0

∑
�q �=�0

(�v0 · �q)iδϕ�qρ−�q . (7)

Given the density profile, the linear equation (6) for iδϕ�q can be
solved by truncating the sum over momenta at a given cutoff,
|�q| < qmax, so that the problem reduces to solving a finite set
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of linear equations, which can be done by matrix inversion.
We accomplish this via an LU decomposition.20

An important remark is that the truncation preserves the
variational nature of the computation. Indeed, it can be seen as
setting δϕ�q = 0 for |�q| � qmax, which amounts to a particular
choice of the variational function δϕ(�r) and hence still gives
an upper bound on the true superfluid fraction.

Another important remark is that the bound derived above
applies only, strictly speaking, to the true ground state of
the system. In the following, however, we are interested in
applying it to the glass state, which is at best a long-lived
metastable state, the crystal being always the true ground state.
Still, it is clear from the derivation that if the lifetime τ of the
state is very long, such that for any experimentally accessible
frequency one has ωτ 	 1, then the system does not have time
to escape from the metastable state during the experiment and
the bound should apply without modification.

III. SUPERFLUID FRACTION OF AMORPHOUS SOLIDS

A. Hard sphere systems

To understand whether disorder in the density profile can
lead to an increase of the superfluid density, we shall compare
the result of the bound for an amorphous glassy profile
and the corresponding crystal. The only input for our study
are the density profiles of the amorphous and crystal state.
Unfortunately, the former is not available for He4 in realistic
conditions. As a consequence, we decided for a first study to
focus on a more simple and academic case that can still provide
insights into the role of disorder. We consider the amorphous
and crystalline density profiles that one obtains for classical
hard spheres. Although this certainly is not a realistic model
of density profiles for He4, it allows us to address the role of
disorder on ρs . Furthermore, a mapping from quantum systems
at zero temperature and classical Brownian systems allows
one to find quantum many particle models whose ground-state
wave function can be mapped exactly on (the square of) the
probability distribution of classical hard sphere systems.13

Thus, the results of this section apply directly to those models.
Classical hard spheres are known to be characterized by a

high-density crystal fcc phase. However, if compressed fast
enough, or due to a small polydispersity, the hard spheres
freeze in an amorphous glassy state. A typical density profile
of a very quickly compressed glassy state can be obtained by
the Lubachevski-Stillinger compression algorithm21 (we used
the implementation of Ref. 22), which is known to be very
efficient in producing amorphous jammed configurations. The
output of the algorithm are the positions R = {R1, . . . ,RN }
of the particles in a random close packed state (at infinite
pressure). The algorithm is deterministic, but different final
configurations are obtained by starting the compression from
random initial configurations of points. The compression runs
were performed at very fast rates (we fixed the parameter γ =
0.1, see Refs. 22 and 23 for details) to avoid crystallization.

Furthermore, we will assume that the density profile of a
typical glassy configuration at finite pressure is the sum of
Gaussians centered around the amorphous sites, which are
the output of the previous algorithm. For classical systems,
this assumption has been tested numerically for fcc crystals,24

and has been often used in density functional computations of
both ordered25 and amorphous structures,23,26 giving accurate
results. For quantum systems, the Gaussian model has been
shown to be accurate enough, at least for the purpose of
computing the Leggett’s upper bound.27–29

For a given configuration R, the density profile we use is
defined as

ρ(�r|R) =
∑

i

γA(|�r − �Ri |)

=
∫

V

d�s γA(|�r − �s|)
∑

i

δ(�s − �Ri) , (8)

where γA(�x) = exp[−|�x|2/(2A)]/(2πA)3/2 is a normalized
Gaussian of width A, and |�r − �Ri | is the distance on the
periodic box, i.e., it is the distance between �r and its closest
image of �Ri . The corresponding Fourier transform reads
[neglecting terms of order exp(−L2/A)]

ρ�q(R) = e−Aq2/2 1

V

∑
i

ei �q· �Ri . (9)

In solving Eqs. (6) and (7) we considered amorphous
configurations of N = 20 and N = 100 particles. All the
calculations were done with the cutoff set at qmax = 20π/L.
We checked that the result does not depend on the specific
amorphous configuration used by considering different
amorphous configurations Rα , α = 1 , . . . ,N ; this is
expected since the superfluid density is a macroscopic
quantity. The reported results are therefore averaged over ten
independent configurations. More details on the numerics can
be found in Appendix A.

The results are plotted in Fig. 1. One can notice that, apart
from the smallest values of the dimensionless parameter, the
two curves corresponding to 20 and 100 particle configurations
perfectly agree. The discrepancy in the region of small � =
ρ1/3A1/2 is due to the approximation brought by the introduc-
tion of a cutoff, and vanishes in the limit qmax 	 1/

√
A.

0.1 0.2 0.3 0.4
ρ1/3

A
1/2

0

0.2
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0.6
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ρ s/ρ

N=20 glass
N=100 glass
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FIG. 1. (Color online) Leggett upper bound for ρs/ρ, for a
Gaussian profile of width A1/2 around an amorphous jammed
configuration and in a fcc lattice, as a function of the adimensional
parameter � = ρ1/3A1/2 (the Lindemann ratio).
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To understand to what extent the disorder influences the
value of the superfluid density, we compare the superfluid
fraction found in the amorphous system to the values obtained
through the same calculations in the case of a crystal.17,27–29

Figure 1 reports the results for the average superfluid fraction
of the amorphous solid just described and those corresponding
to the fcc lattice (which is the thermodynamically stable one for
hard spheres) for �Ri , according to the same Gaussian model
(in the latter case, our results are consistent with previous
ones17,27–29). The difference between the two is very small,
suggesting two conclusions.

(1) Disorder does not influence much the superfluid behav-
ior of the system for comparable values of ρ1/3A1/2, at least at
the level of this variational calculation.

(2) The dependence of ρs on the density profile is mainly
through the Lindemann ratio � = ρ1/3A1/2. This conjecture
allows us to obtain an estimate of the Leggett upper bound for
ρs in more realistic cases, as we will do in the next section.

To conclude this section, we observe that the above results
allow us to obtain a quantitative upper bound for the superfluid
fraction of a system whose wave function is exactly the Jastrow
wave function corresponding to classical hard spheres. The
quantum glassy phase of this system has been discussed in
Ref. 13. In both the crystal and glassy phases, the values of
A1/2 for classical hard spheres do not exceed 0.1 (in units of
the sphere diameter),23–25 and the same is true for �, since the
density is very close to 1 (in the same units) in both solid
phases. Using the results of Fig. 1, we obtain an upper bound
ρs/ρ � 0.1%, which is consistent with the extremely small
values of the condensate fraction found in Ref. 13.

B. Superfluid fraction of amorphous solid helium-4

In this section, we attempt an application of our results
to the more interesting case of disordered solid He4, based
on the observation above, that an estimate of the Lindemann
ratio � = ρ1/3A1/2, together with the results of Fig. 1, should
provide a reasonable estimate of Leggett’s bound.

At the end of Ref. 29, it is stated that, by fitting the
PIMC density profile of hcp solid He4, one obtains a value√

A = 0.1274 d at ρ = 0.0353 Å−3 and
√

A = 0.1486 d at
ρ = 0.029 Å−3. Here d is the nearest-neighbor distance for the
hcp lattice. The number density of the hcp lattice satisfies the
relation ρd3 = √

2, hence d = 21/6/ρ1/3 and � = √
Aρ1/3 =

21/6
√

A/d. In the same reference it is also stated that the
upper bound computed by using the fitted Gaussian density
profile coincides with the one obtained by using the true PIMC
density profile, and corresponds, respectively, to ρs/ρ = 0.06
and 0.22. These values are reported in Table I.

We now make the following assumptions:
(1) At least for the purpose of computing Leggett’s upper

bound, the true density profile can be fitted to a Gaussian
profile. This is true for the crystal29 and we assume that it
remains true for an amorphous solid.

(2) The parameter � for the amorphous solid is smaller than
that of the crystal at the same density. This can be understood
by observing that crystalline configurations are better packed
than amorphous configurations, therefore leaving more room
(“free volume”) for fluctuations. It is true for Jastrow wave
functions13 (i.e., classical system) and we do not find any

TABLE I. Leggett’s bound ρs/ρ for He4 in the hcp crystal
state29 and glassy state. Quantum Monte Carlo results for the
glass are also reported.6

Hcp (Ref. 29) Glass (this work) Glass (Ref. 6)
ρ (Å−3) � ρs/ρ ρs/ρ ρs/ρ

0.029 0.167 0.22 0.282 0.6
0.0353 0.143 0.06 0.127 0.07

reason why quantum fluctuations should dramatically affect
this property.
Based on these assumptions, the true Leggett’s bound for the
amorphous system should be smaller than the same bound for
the crystal at the same density. This can be estimated using the
values of � reported in Ref. 29 and reading the corresponding
superfluid fraction from Fig. 1 or using the results obtained in
Ref. 29 for the hcp crystal. These values are reported in Table I
and are similar.

We compare the upper bound obtained in this way with
the values of ρs obtained numerically by Boninsegni et al. via
PIMC.6 Interestingly, we find that the bound is very close to the
PIMC numerical result, and in particular at the smallest density
the bound is violated by the PIMC result. This can be due either
to the very rough approximations involved in our computation,
or to the fact that the glass is not a really long-lived metastable
state at this very low density. The latter possibility, i.e., that
the system is rapidly evolving out of equilibrium, would
invalidate the derivation of Leggett’s bound, but it would
also raise problematic questions regarding the measurement
of ρs using the Ceperley formula, which is strictly valid if
thermodynamic equilibrium is achieved and in the limit of
small frequency.

IV. DOES A STABLE GLASS STATE EXIST
FOR HELIUM-4?

To study the stability of the glass phase in helium-4, we
performed path integral Monte Carlo simulations, which we
discuss in this section. Before discussing the more complex
quantum simulation, we present some classical simulations
in order to deal with a well-controlled situation, where the
presence of a glass transition has been firmly established.

A. What should we expect from a glass-forming system?
A classical simulation

We performed standard molecular dynamics (MD) sim-
ulations of the Kob-Andersen binary mixture,14 which is
known to be a good glass former and does not show any
sign of crystallization even after very long MD runs at low
temperature. The latter is a mixture of two types of particles (A
and B), interacting through different Lennard-Jones potentials,
with the parameters specified in Ref. 14. In the rest of this
section we use reduced Lennard-Jones (LJ) units, namely, we
use σAA and εAA as units of length and energy, and m as the
unit of mass. Consequently,

√
mσ 2

AA/εAA is the unit of time (the
latter convention is slightly different from the one of Ref. 14).
Note that to compare with helium, one should keep in mind
that for that system σ ∼ 2.56 Å and ε ∼ 10.2 K.

094530-4



LEGGETT’s BOUND FOR AMORPHOUS SOLIDS PHYSICAL REVIEW B 83, 094530 (2011)

We quenched a dense (ρ = 1.2) system of N = 216
particles from very high temperature (T = 2) to very low
temperature (T = 0.05) deep in the glass phase (the glass
transition temperature being around T = 0.435 at this
density14). We ran the simulation for a total time τ = 15 000
and we printed configurations every �t = 5 which is of
the order of the decorrelation time in the glass (estimated
from the decay of the self-scattering functions). From each
configuration we deduced

ρ�q(t) = 1

V

∑
j

ei �q·�rj (t) , (10)

where �rj (t) is the position of particle j at time t , and the
corresponding instantaneous value of the static structure factor
S�q(t) = V |ρ�q(t)|2/ρ.

In Fig. 2 we plotted ρ�q(t) and the structure factor S�q(t)
as a function of MD time after the quench. The vectors
�q = 2π/L(nx,ny,nz) and the corresponding integers are given
in the caption. We see that after a short transient, the density
profiles fluctuate around a nonzero value which is quite stable,
except for some rare “crack” events where the density changes
abruptly. These are probably due to groups of particles that
switch back and forth between two different locally stable
configurations. This system is indeed extremely dense and
at very low T , therefore its dynamics is basically that of
harmonic vibrations around local minima of the potential
(except for the rare cracks). The largest instantaneous value
of S�q(t) corresponds to the (2,1, − 6) curve in Fig. 2 for all
t > 1000; therefore, all values are smaller than 20 at all times,
showing that there are no Bragg peaks. This is what we expect
to see in a glass. In this case, we can easily deduce the average
values of ρ�q for a given glassy configurations by taking the
average of ρ�q(t) over a time interval where there are no crack
events. From these, we could compute the Leggett bound as
previously discussed.

B. Absence of a stable glass phase from a PIMC simulation

Motivated by the results of Ref. 6, we tried to compute
the superfluid fraction based directly on path integral Monte
Carlo data. Unfortunately, PIMC does not give access to the
real-time dynamics of the system, but following Ref. 6, we
studied the Monte Carlo dynamics, in the hope that this is a
reasonable proxy for the real-time dynamics.

The representation of quantum systems in PIMC involves
certain important extensions beyond the classical representa-
tion of point particles. To begin with, particles are represented
by paths (or polymers) in space. These paths manifest the
zero point motion inherent in the quantum mechanical system.
For distinguishable particles, this is the only difference. For
particles with statistics (bosons), these paths then can permute
onto each other forming larger paths or cycles.

We initially focus on studying a quenched quantum system
of helium particles but require that they act like distinguishable
particles. There are a number of potential advantages to this
approach. To begin with, one may hope that distinguishable
particles are more likely to retain the relationship between
real dynamics and the Monte Carlo dynamics. Second, the
simulation of distinguishable particles is faster and more
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FIG. 2. (Color online) Evolution of the density profile after a
quench from high to low temperature for a classical glass forming
system, using molecular dynamics. (Top) Instantaneous value of S�q (t)
for three representative values of �q; the corresponding (nx,ny,nz) are
indicated in the figure. (Middle) Instantaneous values of ρ�q (t) for a
representative value of �q. (Bottom) Time average of S�q (t) over the
whole simulation, as a function of q (in reduced LJ units). Scatter
points are values for a given �q, the full black line is the angular
average over all vectors with the same modulus.

easily parallelized over many processors, thus allowing longer
simulations.
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We used the Aziz potential as a model for helium,30 and
in this section we always use angstroms as units of length
and kelvins as units of temperature. The pair product action
is used as the approximation for the high-temperature density
matrix, and an imaginary time step of δτ = 0.025 K is used. We
equilibrated a system of N = 216 particles in the liquid phase
at a density of 0.029 Å−1 and a temperature of T = 2 K. The
system was then instantaneously quenched to T = 0.166 K.
This was accomplished by taking a snapshot of the paths
from T = 2 K and then, for each time slice of the old path,
placing 12 time slices for the new lower temperature path;
this is similar to what was done by Boninsegni et al.6 We
then ran the PIMC from this quenched configuration. These
paths are obviously highly artificial because the distances
between many adjacent time slices are zero. Over a very
short period at the beginning of the quenched run, though,
this artificial aspect of the path quickly relaxes, leaving the
paths in a configuration that mirrors the higher temperature
formation.

In the following we refer to t as the PIMC “time” (number
of PIMC sweeps31), while τ is the imaginary time. At each
time t , the PIMC code returns a configuration �rτ

j (t), the latter
being the imaginary time trajectory of particle j as function
of the imaginary time τ . We can define the instantaneous
density as

ρ�q(t) = 1

βV

∑
j

∫ β

0
dτ ei �q·�rτ

j (t) , (11)

and the instantaneous structure factor

S�q(t) = 1

βN

∑
j,k

∫ β

0
dτ ei �q·[�rτ

j (t)−�rτ
k (t)] . (12)

Note that in the quantum case, at variance with the classical
case, these two quantities are not directly related. At each
PIMC sweep we recorded the values of the above quantities,
which we then averaged over 50 PIMC sweeps in order to
eliminate part of the fluctuations.

The results for a representative run of the above procedure
are reported in Fig. 3. Unfortunately, the dynamics of this
system looks quite different from the formation of a glass from
a quenched liquid. First of all, the structure factor becomes
quite large for some values of �q, therefore suggesting the
presence of large crystallites in the sample. Indeed, the largest
value of the structure factor corresponds to the (5,0,4) curve
in Fig. 3 at large times and to the (5,4,2) curve in Fig. 3 at
short times. We see that while at short times the values of
S�q(t) are smaller than 10, at larger times they grow up to
50, which clearly indicates the presence of large crystallites
in the sample (note in addition that these values have been
averaged over 50 PIMC sweeps and also over imaginary time).
Moreover, the ρ�q(t) (reported for a representative value of �q
in the middle panel of Fig. 3) are not fluctuating around some
stable value; they display a sluggish evolution that does not
allow us to identify a region of times where the system is close
to some metastable density profile that does not evolve in
time. What we can learn from this is that the quenching from a
(exchange-free) liquid to a (exchange-free) low-temperature
liquid froze to a (possibly very broken) crystal relatively
quickly without showing any intermediate signs of glassiness.
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q
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FIG. 3. (Color online) Evolution of the density profile after a
quench from high to low temperature for a quantum helium-4 system,
using PIMC. Time here represents the number of Monte Carlo sweeps.
The panels are the same as in Fig. 2, except that the average of S�q (t)
in the lower panel has been taken for t > 75 000, and the angular
average is not reported because of the strong anisotropy of the result.
All quantities are plotted using Å as units of length.

Note, however, that this behavior was not observed in all runs:
some runs did not display signs of crystallization for times up
to ∼200 000 PIMC sweeps. Still the dynamics was sluggish
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enough to prevent the identification of a stable glass phase.
We also tried turning off some moves (the displace moves) in
order to slow down the relaxation to the crystal, but the system
still seemed to freeze just as quickly.

In conclusion, we were not able to find a long-lived
metastable glassy state in our quantum simulations. This is
probably due to the fact that monodisperse systems always
crystallize quite fast. This is well known in the classical case
and seems to also hold true when quantum zero point motion
is introduced (at least in this specific example). This leaves
the discrepancy between our findings and those of Ref. 6
to be explained. One possibility is that exchange, which we
neglected, may be critically important for exhibiting the glassy
behavior of helium-4: it could be that the path integral at
the low temperatures we are focusing on is dominated by
exchange paths, whereas the paths that make the glass unstable
are mainly without exchange; indeed we find them with our
PIMC. In this case, the instability of the glass would be a much
rarer process once one takes into account exchange paths. In
particular, since crystals have a very low or zero superfluid
fraction, we know that their corresponding path integral is
dominated by paths without exchange. As a consequence,
eliminating the exchange could also make crystal nucleation
easier, since it makes it a less rare process.

An additional possibility is that the glassy behavior is
sensitive to the specific details of the simulation (type of
Monte Carlo moves, length of the paths, etc.). We leave a
more detailed investigation of this point for future study.

V. TOWARD A METHOD FOR EXPERIMENTALLY
ASSESSING THE LEGGETT BOUND

As we discussed previously, the problem in applying our
analysis to realistic system is that the amorphous density
profile of He4 cannot be easily measured experimentally.
Below, we endeavor to connect the bound on ρs to the so-called
nonergodic factor g̃q , which in principle could be measured
in experiments, e.g., by neutrons or x-ray scattering. It is
defined as

ρ2

N
g̃q = 1

N
∑

α

ρα
�q ρα

−�q = ρ�qρ−�q , (13)

where the overbar denotes the statistical average over the
amorphous states sampled statistically by the system. These
are indexed by α = 1 , . . . ,N , and under the Gaussian approx-
imation each profile ρα

�q is obtained from Eq. (9) by plugging the
reference positions corresponding to each different amorphous
configuration Rα . The statistical average is performed with
the weights α that correspond to the frequency with which
they appear in an experiment, or equivalently their Boltzmann
weight.

First, let us focus on ρs , which is the average of the
superfluid density ρα

s corresponding to each amorphous
state. Since the superfluid density is a macroscopic quan-
tity, we expect (and we have checked numerically, see
Appendix A) a self-averaging behavior, i.e., the fluctuations of
ρα

s are negligible. However, as usual for disordered systems,

the computations are easier for ρs . Multiplying Eq. (6) by ρα
−�q

and averaging over α we obtain

(�q · �v0)
ρ2

N
g̃q =

∑
�p �=�0

(�q · �p)F (�q, �p) , (14)

where we define, for �p,�q �= 0 (which are the only cases
involved in the equation above)

F (�q, �p) = 1

N
∑

α

ρα
�q− �p iδϕα

�pρα
−�q = ρ�q− �p iδϕ �pρ−�q . (15)

Clearly iϕ�q is strongly correlated to ρ�q , being the solution of
Eq. (6). To simplify the problem we assume that these variables
are Gaussian distributed. Using Wick’s theorem, one has

F (�q, �p) = ρ�q− �p iδϕ �p ρ−�q + ρ�q− �p iδϕ �pρ−�q
+ ρ�q− �piδϕ �p ρ−�q + ρ�q− �pρ−�q iδϕ �p . (16)

Note that, due to translation invariance of the averages over α,
one has ρ�q = ρδ�q,�0 and ρ�qρ− �p = ρ2

N
g̃qδ�q, �p. Hence, for �p,�q �=

0, we get

F (�q, �p) = ρ�q− �p iδϕ �pρ−�q = ρδ�q, �p iδϕ�qρ−�q ≡ ρδ�q, �p F (�q) .

(17)

Substituting the last expression in Eq. (14), we obtain

F (�q) = ρ(�q · �v0)̃gq

Nq2
. (18)

Averaging Eq. (7) over α, we get

ρs

ρ
= 1 − 1

ρv2
0

∑
�q �=�0

(�v0 · �q)F (�q) = 1 − 1

N

∑
�q �=�0

(�v0 · �q)2

v2
0q

2
g̃q .

(19)

In the thermodynamic limit, the sum can be replaced by an
integral, and performing the angular integration we obtain

ρs

ρ
= 1 − 2

3

∫ ∞

0

dq q2

(2π )2ρ
g̃q . (20)

The same result can be obtained by means of a large A

expansion of the system of equations, which, however, is
poorly convergent and cannot be used in a systematic way,
see Appendix B.

As before we need to introduce a cutoff in the sum on
�q in Eq. (9) and calculate numerically the nonergodic factor
g̃q by averaging the density over the same configurations Rα

considered above. We set the cutoff according to the spherical
constraint |�q| � qmax. We increased qmax until qmax = 20π/L,
when the convergence in g̃q was reached. For the purpose of
computing the nonergodic factor and then the approximate
bound, as given in Eq. (19), we averaged over 100 different
configurations. In this case, in fact, one does not face the
computational problem of inverting the linear system (6) and
thus a larger statistics can easily be taken. The results of the
computations are shown in Fig. 4. We plotted the superfluid
fraction obtained through the exact procedure (7) and the
approximated one (20), both for the configurations with 20 and
100 particles. The agreement between the approximated curve
and the exact one is good for large value of � while they start
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FIG. 4. (Color online) Result for ρs/ρ as a function of � =
ρ1/3A1/2, where �Ri are the center of the spheres in an amorphous
jammed configuration of N spheres with periodic boundary condi-
tions. We report the exact computation according to Eq. (7) and the
approximate result Eq. (20).

to differ when the localization parameter decreases, for values
of the bound around 0.7. Unfortunately for the interesting
values of � the approximated calculation gives wrong results.
However, we find it useful, since it allows us to estimate the
typical scale of � at which the bound starts decreasing fast
from 1 to 0, and we hope that it will be possible to improve
it in the future, in order to be able to apply it to realistic
cases.

VI. CONCLUSIONS

The aim of this paper was to study Leggett’s upper
bound for amorphous quantum solids. We showed that
for quantum systems described by a hard-sphere Jastrow
wave function, the superfluid fraction must be smaller that
0.1%, which is consistent with a previous investigation that
found extremely small condensate fractions for this system.13

Moreover, the hard-sphere result suggests that crystal and
glass phases characterized by the same Lindemann ratio
should have similar Leggett’s upper bounds for the superfluid
fraction.

On this basis, we attempted to apply our results to glassy
He4.6 We found that the upper bound for ρs is in general very
close to the numerical results of Ref. 6, and at density ρ =
0.029 Å−3 it is below. One possible origin of this discrepancy
could be that at such low density the lifetime of the metastable
glassy state is too short, and the system is intrinsically out of
equilibrium; in that situation, Leggett’s bound is inapplicable,
since it assumes that the reference wave function corresponds
to a truly metastable state. Indeed we generically found from
path integral Monte Carlo calculations that (at least if exchange
is neglected) the system crystallizes very fast after the quench,
which is consistent with a very short lifetime of the metastable
glass.

Overall, our findings suggest two possible scenarios (not
necessarily antithetic).

(1) An amorphous stable glass has a superfluid fraction,
not only a Leggett’s upper bound, very similar to a defect-free
crystal with the same Lindemann ratio. Since we know from
experiments and simulations that this superfluid fraction is
very small, or possibly zero, we are bound to conclude that
the glassy supersolid phase found in experiments does not
correspond to a truly stable glass: the system is instead rapidly
evolving out of equilibrium and, somehow, this enhances
superfluidity.

(2) Exchange promotes glassiness and whereas a stable
glass phase cannot exist, because it has a very short lifetime,
a superglass can. This could be partially tested by comparing
the stability of the glass phase in imaginary time simulations
with and without exchange.

It is worth noting that we neglected the role of a small
concentration of He3 impurities (on the order of few ppm),
which has received a lot of attention in experiments.3 The
reason is that we focused on a bulk glass phase of He4, whose
density profile should be largely independent of such a small
concentration of He3 impurities. It could be, however, that He3

impurities affect the dynamical stability of the glass phase.
Based on the experience on classical systems, it is likely
that in the presence of a large concentration of impurities,
crystallization will be avoided14 and a long-lived quantum
glass phase15,32 will be stable. In this case, it should be
very easy to measure the density profile and compute the
Leggett bound using the procedure detailed above. However,
it has been estimated that a concentration of at least 0.1%
of impurities is needed to stabilize the glass.33 Therefore,
the typical concentration of He3 (∼ppm) should not be
enough to produce a sensible effect, unless some unexpected
phenomenon related to the quantum mechanical nature of
the systems (e.g., exchange, as already discussed) becomes
relevant.
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APPENDIX A: DETAILS ON THE
NUMERICAL PROCEDURE

We define the Fourier transforms in the cubic box of side L

and volume V = L3 as follows:

ρ�q = 1

V

∫
V

d�rρ(�r)ei �q·�r , ρ(�r) =
∑

�q
ρ�qe−i �q·�r , (A1)

where �q = 2π
L

(nx,ny,nz), and each of the integers ni ∈ Z, and
similarly

δϕ�q = 1

V

∫
V

d�rδϕ(�r)ei �q·�r . (A2)
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Note that δϕ�0 is an irrelevant constant phase in the variational
wave function so we set it to zero. Finally,

�v�q =
{

�v0 �q = �0 ,

−i �qϕ�q �q �= �0 .
(A3)

which leads immediately to Eq. (6).
We performed the calculations for different values of the

Lindemann parameter � = ρ1/3A1/2, increasing the number of
vectors �q according to the spherical constraint |�q| � qmax, until
a reasonable convergence in the value of the bound in Eq. (7)
was achieved, at least for large values of A. From Eq. (9)
one sees that for large |�q| the corresponding component ρ�q
is suppressed through the factor e−Aq2/2. Thus, one needs to
truncate the sum over �q at qmax∼1/

√
A, as higher terms will not

contribute. Unfortunately, for small A, this cutoff is too heavy
in terms of computational time and we should use a lower one.
Still, considering small configurations and sufficiently large
values of A, which nevertheless span the physical region of
interest, we could reach a good convergence or keep the error
under control. Note additionally that by increasing the number
of vectors �q in Eq. (9), the value found for the superfluid
fraction monotonically decreases, as expected because of the
variational property already discussed. This permits us to
preserve the nature of the upper bound for Eq. (7), despite
the cutoff approximation. Overall, we found that the better
compromise was to set qmax = 20π/L.

To check the independence of the bound on the flow
direction, we also compared the results obtained with the
velocity v0 along the (1,0,0) direction to those along (1,1,1)
and we observed a negligible difference which is expected to
vanish in the thermodynamic limit, because amorphous solids
are statistically homogeneous on large scales.

We have also checked that the bound for the superfluid
density almost does not fluctuate by considering different
amorphous configurationsRα , α = 1 , . . . ,N , as it is expected
since the superfluid density is a macroscopic quantity. We
computed the corresponding superfluid fraction ρα

s and the
average ρs = ∑

α ρα
s /N for ten different configurations. The

variance of ρs is very small. In this paper we presented results
averaged over ten realizations of Rα , larger statistics do not
lead to appreciable differences.

Finally, as a check of our codes, we repeated all the
calculations on configurations of 20 particles occupying
uncorrelated uniformly random positions in the box, i.e., where
�Ri are uniform and independent random variables in [0,L]3.

In this case it is easy to show that g̃q = exp(−Aq2). Hence
Eq. (20) becomes

ρs

ρ
= 1 − 2

3(2π )2ρ

∫ ∞

0
dq q2 e−Aq2 = 1 − 1

24π3/2 ρA3/2
.

(A4)

In this case the values of the bound were more sensitive
to the particular realization, so we took averages over
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FIG. 5. (Color online) Result for ρs/ρ as a function of the
localization parameter ρ1/3A1/2, where �Ri are N random points in
[0,L]3 with periodic boundary conditions.

30 configurations. For every value of the localization param-
eter, the superfluid fractions that we found were on average
smaller, as reported in Fig 5.

APPENDIX B: LARGE A EXPANSION

For large A, we expect that the density becomes uniform.
Hence, ρ�0 → ρ, and ρ�q → 0 for �q �= �0. We can use this
to expand iδϕ�q systematically in powers of ρ�q . We rewrite
Eq. (6) as

�q · �v0ρ�q = q2ρiδϕ�q +
∑
�p �=�0,�q

(�q · �p)ρ�q− �p iδϕ �p . (B1)

We write δϕ�q = δϕ
(1)
�q + δϕ

(2)
�q + · · ·, where the different terms

are of order (ρ�q)k . At first order,

iδϕ
(1)
�q = �q · �v0

q2ρ
ρ�q , (B2)

at second order,

iδϕ
(2)
�q = − 1

q2ρ

∑
�p �=�0,�q

(�q · �p)ρ�q− �p iδϕ
(1)
�p

= −
∑
�p �=�0,�q

(�q · �p)( �p · �v0)

p2q2ρ2
ρ�q− �pρ �p , (B3)

and at third order,

iϕ
(3)
�q = − 1

�q2ρ

∑
�p �=�0,�q

(�q · �p)ρ�q− �piϕ
(2)
�p

=
∑
�p �=�0,�q

∑
�p′ �=�0, �p

(�q · �p)( �p · �p′)( �p′ · �v0)

q2p2p′2ρ3
ρ�q− �pρ �p− �p′ρ �p′ ,

(B4)
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from which we can guess the order k:

iϕ
(k)
�q = (−1)k−1

∑
�p1 �=�0,�q; �p2 �=�0, �p1; ··· �pk−1 �=�0, �pk−2

(�q · �p1)( �p1 · �p2) · · · ( �pk−1 · �v0)

q2p2
1 · · · p2

k−1ρ
k

ρ�q− �p1ρ �p1− �p2 · · · ρ �pk−2− �pk−1ρ �pk−1 (B5)

and so on. Plugging this into Eq. (7) we get

ρs

ρ
= 1 −

∑
�q �=�0

(�v0 · �q)2

ρ2v2
0q

2
ρ�qρ−�q +

∑
�q �=�0

∑
�p �=�0,�q

(�v0 · �q)(�q · �p)( �p · �v0)

q2p2v2
0ρ

3
ρ�q− �pρ �pρ−�q

−
∑
�q �=�0

∑
�p �=�0,�q

∑
�p′ �=�0, �p

(�v0 · �q)(�q · �p)( �p · �p′)( �p′ · �v0)

q2p2p′2v2
0ρ

4
ρ�q− �pρ �p− �p′ρ �p′ρ−�q + · · · . (B6)

While this expansion seems a simple strategy for the solution of Eq. (6), it is very poorly convergent, and in practice it is not
very helpful.
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