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Superconductivity from repulsive interactions in the two-dimensional electron gas
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I. INTRODUCTION

In a variety of recently discovered materials, superconduc-
tivity apparently arises directly from the electron correlations
themselves. However, these materials are complex, and many
material-specific details can play a role in the mechanism
of superconductivity. The problem is greatly simplified in
the weak-coupling limit, where we recently showed1 that an
asymptotically exact treatment of the problem is possible, valid
in cases in which the superconducting state emerges at low
temperatures from a well-formed Fermi liquid. Nonetheless,
even under these circumstances, the character of the super-
conducting state and the transition temperature depend in a
complicated way on details of the band structure, both near
and far from the Fermi surface.

To the extent that there are basic principles at work
underlying the mechanism of unconventional superconduc-
tivity, it would be a great advance to find simple model
systems which exhibit such behavior. Here, we consider
the possibility of unconventional superconductivity in some
model systems with particularly simple electronic structures,
where controlled theory is possible, and where, conceivably,
experimental tests of the theory are feasible. Specifically,
we consider circumstances in which superconductivity may
occur in a two-dimensional electron gas (2DEG) in a high
mobility heterostructure. Here, due to the the stiffness of
the lattice and the limited phase space for electron-phonon
scattering, electron-phonon coupling is probably negligible,
and the single-particle dynamics can be treated accurately
within a rotationally invariant effective mass approximation.
Moreover, the strength of the correlations can, to a large extent,
be tuned by varying the electron density.

The possibility of an electronic pairing mechanism in
systems with rotational invariance was first put forth in a
seminal paper by Kohn and Luttinger.2 Although U , the
bare interactions among electrons, are repulsive, there are
effective attractive interactions that arise at O(U 2). Kohn and
Luttinger focused on the portion of the effective attractions
associated with the nonanalyticities in χ (q), the particle-
hole susceptibility, at momentum q = 2kF which reflect the
sharpness of the Fermi surface at zero temperature. More
generally, what is required for this mechanism to work is strong
q dependence of χ (q) for q � 2kF . Indeed, the Kohn-Luttinger
instability of a three-dimensional rotationally invariant system
results in the formation of a p-wave superconducting ground
state due to the peak in χ (q) near q = 0.3,4 While this result
is valid only in the weak-coupling regime where U � EF , it

is widely believed that the p-wave ground state obtained this
way is adiabatically connected to the more realistic (and more
strongly correlated) example of helium-3.5

However, the Kohn-Luttinger effect is exponentially weaker
in a rotationally invariant 2DEG,6–8 due to the fact χ (q)
is independent of momentum for momenta q � 2kF . It was
later shown that at O(U 3), the 2DEG does exhibit a pairing
instability.9 Still, at least in weak coupling, electronically
mediated superconductivity in the 2DEG is negligible.

In this paper, we show that by perturbing the 2DEG,
it is possible to significantly enhance the superconducting
transition temperature by engineering circumstances in which
instabilities arise at O(U 2) in perturbation theory. We present
asymptotically exact1 weak-coupling solutions of the super-
conducting instability in several systems that are variants of
the simplest, rotationally invariant 2DEG. As a first example,
we show that partially spin polarizing the 2DEG produces
a nonunitary p + ip superconductor. Kagan and Chubukov
have previously addressed this problem using an expansion in
powers of the electron concentration,10 and their result reduces
to ours in the weak-coupling limit. As a second example,
we consider the 2DEG in a semiconductor heterostructure
quantum well with two populated subbands. We show that this
system can possess both p-wave and d-wave ground states and
present the phase diagram of this system.

This paper is organized as follows. In the next section,
we review the method developed in Ref. 1 and discuss its
straightforward generalization needed for the present context.
In Sec. III, the effect of partially polarizing the 2DEG is
studied. In Sec. IV, we consider two subbands in a 2DEG
quantum well. Technical details of the various calculations are
presented in the Appendix. In a forthcoming paper11 we will
consider a variety of slightly more complex situations pertinent
to particular semiconductor heterostructures.

II. PERTURBATIVE RENORMALIZATION GROUP
TREATMENT OF SUPERCONDUCTVITY

In this section, we review the prescription of Ref. 1 and
discuss its generalization to the present context. We integrate
out high-energy modes in two steps. In the first step, we inte-
grate out all modes outside a narrow range of energies � about
the Fermi energy. � is not a physical energy in the problem,
but rather a calculational device. It is chosen large enough so
that the interactions can be treated perturbatively but small
enough that it can be set to zero in all nonsingular expressions
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without causing significant error, i.e., it is chosen to satisfy
the inequalities ρU 2 � � � μ exp{−[1/ρU ]}, where ρ is the
density of states at the Fermi energy and μ is the Fermi energy.
The effective interactions generated in the process then serve as
the “bare” interactions in a second step, in which the remaining
problem is solved using the perturbative renormalization group
procedure of Shankar and Polchinski.12,13 Tc is, up to an
unknown multiplicative constant, given by the energy scale,
T ∗, at which a relevant interaction grows to be of order 1.
It was shown by careful analysis of perturbative expressions
up to fourth order in the interaction strength that the resulting
expression for T ∗ is independent of �.

The analysis of Ref. 1 leads to the following prescription
for computing the leading-order asymptotic behavior of Tc for
weak interactions: First, compute the effective interaction in
the Cooper channel at energy scale �, �(a)(k̂,k̂′), to second
order in the interactions. Here, k̂ and k̂′ denote points on the
Fermi surface, and � is the vertex for scattering a pair of
electrons with momenta k̂ and −k̂ to states with momenta
k̂′ and −k̂′, where if there are multiple band indices, the
subband index is implicitly determined depending on whether
the momenta are on one Fermi surface or the other, and where
there is a different matrix depending on whether the electron
pair forms a spin singlet (�(s)) or a spin triplet (�(t)). We then
construct the related dimensionless matrix

g
(a)
k̂,k̂′ ≡ ρ

√
v̄/v(k̂)�(a)(k̂,k̂′)

√
v̄/v(k̂′), (1)

where v(k̂) is the magnitude of the Fermi velocity on the Fermi
surface of the corresponding subband, and ρ is the total density
of states at the Fermi energy. Manifestly, g is a real, symmetric,
hence Hermitian matrix, so it has a complete set of eigenstates
and eigenvalues,∑

k̂′

g
(a)
k̂,k̂′φ

(a,m)
k̂′ = λ(a,m)φ

(a,m)
k̂

. (2)

Among all the possible solutions, we identify the most negative
eigenvalue,

λ ≡ min[λ(a,m)], λ < 0. (3)

Then,

Tc ∼ μ exp[−1/|λ|]. (4)

III. PARTIALLY POLARIZED FERMI SURFACE

As a first example, we consider a partially spin polarized
2DEG with short-ranged repulsive interactions:

H = H0 + H1,

H0 =
∑

σ

∫
d2k

(2π )2
Eσ,σ ′(k)ψ†

σ (k)ψσ ′(k), (5)

H1 = U

∫
d2k1d

2k2d
2k3

(2π )6
ψ

†
↑(k1)ψ†

↓(k2)ψ↓(k3)ψ↑(k4),

where k4 = k1 + k2 − k3,

Eσ,σ ′ = εkδσ,σ ′ + h · τ σσ ′ , (6)

and h is a mean field that renders the ground state spin
polarized. Such a partially polarized system can occur in a

narrow-well semiconductor heterostructure in the presence of
a parallel magnetic field (in which case h = gμB H‖), or in
a ferromagnetic phase with spontaneously broken symmetry,
such as probably occurs in the Hubbard model away from
half-filling in the strong-coupling limit U � t .14,15 (However,
in the latter case, it requires something of an intuitive leap to
treat the residual interactions beyond those that produce the
mean field h as “weak.”)

Since the Fermi surfaces are spin polarized, singlet pairing
is suppressed, so the leading superconducting instability will
therefore be in the spin triplet channel. We first consider the
limit in which there is no spin-orbit coupling, in which case,
the two-particle scattering amplitude is a separate function for
each spin polarization. As derived in the Appendix,

�↑(k̂,q̂) = −U 2χ↓(�k − �q),

�↓(k̂,q̂) = −U 2χ↑(�k − �q),

where χσ is the contribution of spin σ electrons to the
susceptibility.

In the case of a rotationally invariant system with ε�k,σ =
k2/2m + σh, vf,σ (k̂) = kf,σ /m, and ρσ = ρ = m/2π is in-
dependent of the spin polarization. Therefore the matrix gk̂,q̂

defined in the previous section is

gσ

k̂,q̂
= ρ�σ (k̂,k̂′). (7)

The particle-hole susceptibility for this system has the follow-
ing well-known form (see the Appendix):

χσ (�q) = ρ

2

[
1 − Re

√
q2 − (2kFσ )2

q

]
. (8)

Thus, χσ (q) is a constant for q < 2kFσ , has a derivative
discontinuity at q = 2kFσ , and vanishes as 1/q2 when q �
2kFσ .

The rotational invariance of the problem implies that the
triplet eigenfunctions are of the form

ψt,m
σ (k̂) = ψ(kFσ ) cos (mθk̂), (9)

where m is an odd integer. The eigenvalue problem for this
system therefore reduces to the integral expressions

λ(m,↑) = −ρU 2
∫

dθ

2π
χ↓(2kF↑| sin(θ/2)|) cos (mθ ),

(10)

λ(m,↓) = −ρU 2
∫

dθ

2π
χ↑(2kF↓| sin (θ/2)|) cos (mθ ),

where θ is the angle relative between k̂ and q̂.
Without loss of generality, we suppose that kF↓ < kF↑. For

any k̂,q̂ on the smaller (spin-down) Fermi surface, k̂ − q̂ <

2kF↓ < 2kF↑ so the effective interaction, ∼χ↑(k̂ − q̂), is a
constant. Therefore, it follows that λm↓ = 0 for all m or in
other words, the smaller Fermi surface has no superconducting
instability to O(U 2). [Presumably, λm,↓ ∼ O(U 3).]

Conversely, the effective interaction between electrons on
the larger (spin-up) Fermi surface is ∼χ↓(k̂ − q̂), which does
depend on the relative position of the incoming and outgoing
electrons on the Fermi surface. Using Eq. (8), the above
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expression for the eigenvalue on the larger Fermi surface
becomes

λm↑(η) = ρ2U 2

π

∫ π

θc

dθ

√
sin2 θ

2 − η2

sin θ
2

cos (mθ ), (11)

where η = (kF↓/kF↑), 0 � η � 1, and θc = 2 sin−1 η. As can
be seen from the equation above, λm↑(0) = λm↑(1) = 0. That
is, in the limit where the Fermi surface is either completely po-
larized, or completely unpolarized, there is no superconducting
instability to O(U 2). However, for intermediate values of the
polarization, the integral above yields

λ1↑(η) = −ρ2U 2η(1 − η), (12)

which is clearly negative for all intermediate values of η. This is
the main result of this section: by polarizing the Fermi surfaces
in two dimensions, there is a significant enhancement of p-
wave superconductivity. The optimal pairing strength occurs
when η = 1/2, so that

max[λm↑(η)] = λ1↑(η = 0.5) = − (ρU )2

4
. (13)

[Note that Eq. (7) of Ref. 10 reduces to this result in the limit
of weak interaction.] For completeness, we quote the next
leading eigenvalue, which corresponds to the f wave (i.e.,
m = 3) solution:

λ3↑(η) = −ρ2U 2η[1 − η(3 − 4η2 + 2η4)], (14)

which is not symmetric about the point η = 0.5.
Weak but nonvanishing spin-orbit coupling will generically

change this situation, since superconductivity will be induced
in the minority fluid by the proximity effect as soon as the
majority fluid becomes superconducting. In 2D, this induced
superconductivity will generally track the fundamental order
parameter.

IV. TWO SUBBANDS IN A 2DEG

In this section, we consider the case of a 2DEG in a
semiconductor heterostructure having two subbands, with
Hamiltonian:

H = H0 + H1,

H0 =
∑
a=1,2

∑
σ

∫
d2k

(2π )2
εk,aψ

†
a,σ (k)ψa,σ (k),

H1 =
∑

a

∑
σ,σ ′

V
σ,σ ′
ab,cd

∫
d2k1d

2k2d
2k3

(2π )6

×[ψ†
a,σ (k1)ψ†

b,σ ′ψc,σ ′ (k3)ψd,σ (k4)], (15)

where a is the subband index and is used to distinguish
the smaller (a = 1) and larger (a = 2) Fermi surface, and
εk,a = k2/2m + δa with δ1 = 0 and δ2 > 0. The interactions
are assumed to be short ranged, consisting of an intraband
repulsion U , an interband repulsion V , and an interband

pair-hopping amplitude J . The interaction matrix in the basis
(1σ1σ ′,1σ2σ ′,2σ1σ ′,2σ2σ ′) is thus

V
σ,σ ′
ab,cd =

⎛
⎜⎜⎜⎝

Uσσ ′ 0 0 Jσσ ′

0 0 Vσσ ′ 0

0 Vσσ ′ 0 0

Jσσ ′ 0 0 Uσσ ′

⎞
⎟⎟⎟⎠ , (16)

where

Uσσ ′ = U (1 − δσσ ′),

Jσσ ′ = J (1 − δσσ ′), (17)

Vσσ ′ = V.

As before, rotational invariance enables us to label the
eigenstates by the eigenvalue of the rotation operator,

φ
(m)
k̂

= φ(m)
a cos (mθ ), (18)

where the complex amplitude φ(m)
a depends only on the

subband index associated with k̂, θ is the angle between k̂ and
an arbitrarily defined x axis, and m must be an even integer in
the singlet channel and an odd integer in the triplet channel.
Consequently, for each integer m, rotational symmetry reduces
the eigenvalue problem to a 2 × 2 problem,∑

a,a′
g̃

(m)
a,a′φ

(m)
a′ = λ(m)φ(m)

a , (19)

where

g̃
(m)
a,a′ ≡

∫
a

dk̂

2π

∫
a′

dk̂

2π
g

(y)
k̂,k̂′e

−imθ eimθ ′
, (20)

where y = s (singlet) for m even and y = t (triplet) for m odd.
The most negative eigenvalue for fixed m is

λ(m) = −
(

g̃
(m)
1,1 + g̃

(m)
2,2

2

)

−

√√√√(
g̃

(m)
1,1 − g̃

(m)
2,2

2

)2

+ ∣∣g̃(m)
1,2

∣∣2
. (21)

We first consider the spin-triplet channel (m odd) which
is only a slight extension of the result obtained for a partially
polarized Fermi surface. As shown in the Appendix, for odd
m, the effective interaction is diagonal in the subband index,
and depends on U and V , but not J :

g
(t)
1,1(k̂,q̂) = −ρU 2χ1,1(k̂ − q̂) − 2ρV 2χ2,2(k̂ − q̂),

g
(t)
2,2(k̂,q̂) = −ρU 2χ2,2(k̂ − q̂) − 2ρV 2χ1,1(k̂ − q̂), (22)

g
(t)
1,2(k̂,q̂) = 0,

where

χa,b(k) =
∫

d2p

(2π )2

f (ε p+k,a) − f (ε p,b)

ε p+k,a − ε p,b

(23)

is the particle-hole susceptibility generalized to the two-band
system. The intraband susceptibilities are precisely the same
functions used before:

χa,a(�q) = ρ

2

[
1 − Re

√
q2 − (2kFa)2

q

]
(24)
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with the subband index playing the role that the spin played in
the previous section. Therefore, we may simply transcribe the
results found in the previous section to the present context.
The band which forms the smaller Fermi surface (a = 1)
does not exhibit a superconducting instability to O(U 2). The
larger Fermi surface exhibits a triplet p-wave instability with
a pairing strength determined solely by V :

λ(1)(η) = −4ρ2V 2η(1 − η), (25)

where η = (kF1/kF2).
In the spin-singlet channel, the matrix g has off-diagonal

components:

g
(s)
1,1(k̂,q̂) = ρU1 − 2ρV 2χ2,2(k̂ − q̂),

g
(s)
2,2(k̂,q̂) = ρU2 − 2ρV 2χ1,1(k̂ − q̂), (26)

g
(s)
1,2(k̂,q̂) = ρU12 + ρV J [χ1,2(k̂ + q̂) + χ1,2(k̂ − q̂)],

where Uab are momentum-independent interactions,

U1 ≡ U + U 2P1(�) + J 2P2(�) + U 2χ1,1(k̂ + q̂),

U2 ≡ U + U 2P2(�) + J 2P1(�) + U 2χ2,2(k̂ + q̂), (27)

U12 ≡ UJ [P1(�) + P2(�)],

where the particle-particle susceptibility

Pa(�) ≡
∫

d2q

(2π )2

2f (εq,a) − 1

i� − 2εq,a

∼ ρ ln

[
EF − δa

�

]
+ O(�) (28)

is a momentum-independent constant which diverges log-
arithmically at low energies. Despite this divergence, the
second-order contributions to Uα are unimportant, since they
do not enter the gap equation for any m �= 0, and any s-wave
solution is already killed by the first-order terms proportional
to U .

For m > 0 and even, the effective intraband interaction
depends only on the interaction V and is nonzero only for
the larger Fermi surface, whereas the interband interaction
depends both on V and J :

g̃
(m)
1,1 = 0,

g̃
(m)
2,2 = −2V 2ρ

∫
dθ

2π
χ1,1[2kF2| sin(θ/2)|] cos(mθ ),

(29)

g̃
(m)
1,2 = 2V Jρ

∫
dθ

2π
χ1,2(kθ ) cos(mθ ),

kθ = kF2

√
(1 − η)2 + 4η sin2(θ/2).

The explicit expression for the interband susceptibility χ1,2(q)
is derived in the Appendix. Since the m = 0 eigenvalues
are always positive, the dominant singlet instability is in the
d-wave (m = 2) channel. The quantity g̃

(2)
2,2 is obtained by

computing

g̃
(2)
2,2 = −2V 2ρ2

∫ π

−π

dθ

2π
dθ

Re
√

sin2 θ
2 − η2

sin θ
2

cos (2θ )

= −V 2ρ2η(η − 1)(η2 + η − 1). (30)

The interband interaction g̃
(2)
1,2 is also obtained using Eq. (26):

g̃
(2)
1,2 = −V Jρ2

2π
�(η), (31)

where, for 0 � x < 1,

�(x) = πx4 + 2 sin−1 x

x2
− 2

√
1 − x2

x
. (32)

This function is discussed in detail in the Appendix. An
important property of �(x) is that it is a monotonically
increasing function of x for 0 � x < 1 (see Fig. 3). Therefore,
the effective interband scattering grows with η. The pairing
strength in the d-wave channel is obtained from these quanti-
ties via

λ(2)(η) = g̃
(2)
2,2

2
− 1

2

√(
g̃

(2)
2,2

)2 + 4
(
g̃

(2)
1,2

)2
. (33)

Having derived closed-form expressions for the p-wave
and d-wave pairing strengths, we can construct the phase
diagram, shown in Fig. 1. The phases are labeled according
to the symmetry of the most negative eigenvalue, so the
phase boundaries are the lines at which λ(2) = λ(1) < 0.
Since the d-wave and p-wave eigenvalues are both negative
for all 0 � η � 1, where one phase is stable, the other is
metastable. It would require different methods of analysis
to completely characterize the phase competition. However,
in weak coupling, the phase with the larger |λm| has an
exponentially larger Tc, and so gaps the entire Fermi surface
at temperatures far above the putative transition temperature
of the subdominant phase. Thus, a BCS mean-field treatment
of this problem would suggest that at low temperatures, there
is a direct, first-order transition, or at most an exponentially
narrow region of phase coexistence between the extremal pure
d-wave and p-wave phases.

Since the pair-hopping term only affects spin-singlet su-
perconductivity, and since |λ(1)| > |g̃(2)

2,2|, it follows that for

ρ V

ρ 
J

0 0.1 0.2
0

0.2

0.4

0.2 0.4 0.6

0.2

0.4

0.6

η

ρ 
J

0 0.5 1
0

1

2

η

λ/
(ρ

 V
)2

0 0.5 1
0

1

2

η

λ/
(ρ

 V
)2

p−wave
d−wave

d−wave d−wave

p−wave

J=0.2VJ=0

p−wave

(b)

(c)

(a)(a)

(d)

ρV=0.1η=0.5

FIG. 1. (Color online) Phase diagram of a 2DEG having two
subbands. (a) Phase diagram for fixed η ≡ kF1/kF2 = 0.5 as a
function of the dimensionless couplings ρV and ρJ . U does not
enter the problem except in that it is responsible for the suppression
of s-wave pairing. (b) Phase diagram for fixed ρV = 0.1 as a function
of η and ρJ . (c) The dimensionless strength of the pairing interaction
in the p-wave (solid line) and d-wave (dashed line) channels for fixed
J = 0. (d) Same as (c), but for J = 0.2V.
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J = 0, the p-wave solution always remains the favored ground
state, as can be seen from Fig. 1(a). However, as the interband
scattering is enhanced, the d-wave pairing strength grows.
Since the interband scattering increases monotonically as a
function of both η and J , it is seen that for sufficiently large
values of either parameter the p-wave superconductivity gives
way to a d-wave ground state. In Figs. 1(c) and 1(d), we show
how the magnitude of λ(1) and λ(2) depend on η, from which
one can see that Tc is maximal in the p-wave channel when
η = 0.5. However, when J �= 0, the d-wave channel grows
monotonically with η and ultimately overtakes the p-wave
pairing strength as η → 1. Note, however, that η can never
equal unity in this context, since it is determined by the
thickness of the quantum well.

V. DISCUSSION

We have obtained analytical expressions for various un-
conventional superconducting ground states of a clean 2DEG
in the presence of weak, short-ranged repulsive interactions.
Ultimately, to make contact with experiments involving real
2DEGs, we must take into account the Coulomb interactions.
In the small rs limit, the Coulomb interactions are sufficiently
well screened that it may be reasonable to treat them as
weak and short-ranged (a diagrammatic approach to the full
Coulomb problem in 3D at small rs was explored in Ref. 17,
but there are many subtleties which make this hard to extend).
We thus imagine we can relate the physical problem to a
problem with short-ranged interactions and speculate on two
ways in which unconventional superconductivity could be
found in the 2DEG in physically realizable semiconductor het-
erostructures. (We shall present more complicated examples
in a forthcoming publication.11)

In the first scenario, an in-plane magnetic field is applied
to partially polarize the 2DEG in a narrow quantum well. This
system is predicted to exhibit p-wave pairing with a transition
temperature which is nonmonotonic in the magnetic field.
The optimal transition temperature is obtained for a magnetic
field at which the ratio of the distinct spin Fermi momenta
is η = 1/2. In the second scenario, the 2DEG is confined to
a relatively broad quantum well, and the density is tuned to
the range in which two transverse subbands are occupied. For
fixed total electron density, the ratio, η2, of densities in the
two subbands increases with increasing thickness w of the
quantum well. When this ratio is small, a p-wave ground state
arises, with a Tc that rises sharply with increasing η so long
as η < 1/2. However, this gives rise to a d-wave ground state
above a certain critical thickness.

Insight into the dependence of V/J on the thickness,
w, is obtained by considering the Coulomb interactions.
A simple estimate shows that for kF w � 1, V ∼ e2/kF

and J ∼ V (wkF ). Therefore, for thicker quantum wells, J

becomes increasingly important and favors d-wave pairing
whereas thinner quantum wells should exhibit p-wave pairing.
Depending on the ratio of V/J , the optimal Tc occurs either
for η ≈ 1/2 (p wave) or for the largest possible η (d wave).
In both cases, Tc ∼ EF exp [−α/(ρV )2], where α is an O(1)
constant. We have found that for d-wave superconductivity in
the two-subband system, values as low as α ∼ 1 are within
reach.

Three practical considerations warrant mention. Due to
the unconventional nature of the superconductvity, it is very
fragile to even weak quenched disorder. Therefore, the results
presented here are likely to be realized only in the purest
samples with mean free paths exceeding the Fermi wavelength
by several orders of magnitude. Furthermore, for small rs , the
plasma frequency is small compared to the Fermi energy, i.e.,
ωp ∼ √

rsEF , so even if it is reasonable to treat the interactions
as short ranged at low energies, this approximation is certainly
not valid all the way to the Fermi energy. Finally, since the
transition temperatures are exponentially low in the effective
interactions, ultimately the superconductivity studied here is
likely to be observable only in the regime rs ∼ 1, where the
long-range character of the Coulomb interaction may not be
negligible, and where, even for short-range interactions, a well-
controlled solution to the problem is unfeasible. We therefore
are forced to rely on the hope that the asymptotic results
smoothly extrapolate to the intermediate coupling regime,
where it is conceivable that these states can be observed in
experiment.

With these caveats, we turn to the most uncertain part of the
discussion, and make the following crude quantitative estimate
of Tc based on our calculations: We identify V with the Fourier
transform of the Coulomb interaction evaluated at kF , i.e.,
V ≈ e2π/kF , from which it follows that ρV ≈ (rs/4). Since
we are going to extrapolate to rs ∼ 1 in any case, we simply
ignore subtleties associated with the small value of ωp. Then,
Tc ∼ EF exp[−α(4/rs)2], where, for optimal circumstances,
α ≈ 1.
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APPENDIX: PERTURBATION THEORY

In this section, we derive the perturbative expansion of the
effective interaction in the Cooper channel for the problems
studied in the main text. Due to the presence of multiple
bands, adopting a more compact notation enables us to treat
all of the above problems in a unified fashion. We consider a
Hamiltonian of the form

H = H0 + H1,

H0 =
∑
k,a

εk,ac
†
k,ack,a, (A1)

H1 =
∑

k1,k2,k3

∑
a,b,c,d

Vab,cdc
†
k1,a

c
†
k2,b

ck3,cck4,d ,

where k4 = k1 + k2 − k3. The Latin subscripts denote a col-
lective set of “band indices” which label the energy eigenstates.
In the problem of partially polarized Fermi surfaces, they
simply label the majority and minority spin bands. In the
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problem of multiple subbands in a quantum well, it indexes
the subbands, and in the problem involving Rashba spin-orbit
coupling, the Latin index refers to the positive and negative
helicity subband. The bare interaction H1 is to be interpreted
as a matrix; its rows labels the outgoing states and its columns
label the incoming states.

Higher-order scattering processes are derived using di-
agrammatic perturbation theory in the usual manner.16 In
addition to integrating over the internal momenta, the band
indices of any internal line are also summed over, weighted by
the appropriate component of the interaction vertex, as will be
made clear from the examples below.

The primary quantity of interest here is the two-particle
scattering amplitude in the Cooper channel, denoted �(k,q),
which is the amplitude for scattering a pair of electrons
with momenta ±k into a pair with momenta ±q. If the
system at hand possesses inversion symmetry (so that the
kinetic energy consists of terms that are even powers of
momentum), superconducting states can be classified as being
even or odd parity states; the former include (e.g., s-wave,
d-wave, etc.), and the latter include (p-wave, f -wave, etc.)
instabilities are perfectly decoupled from one another. If, in
addition to inversion symmetry, spin-rotation symmetry is also
preserved, then the scattering amplitudes in the singlet channel
consist of processes in which the incoming electrons have
opposite spin polarizations, whereas in the triplet channel,
they have identical spin polarizations. On the other hand,
when inversion symmetry is broken by the presence of Rashba
spin-orbit coupling, there is no sharp distinction between even-
and odd-parity pairing. However, since the Rashba coupling
breaks the twofold degeneracy of single-particle states at each
momenta, there is pairing between states of opposite helicity
(i.e., opposite momenta and opposite in-plane component of
the spin).

Figure 2 shows the lowest-order Feynman diagrams which
contribute to �(k,q). Generally, all of these diagrams con-
tribute both in the singlet and triplet channels. The diagrams

(1) (2a) (2b)

(2c) (2d) (2e)

k, a

−k, a −q, b

q, b

FIG. 2. Diagrams which contribute to V (k,q), shown to quadratic
order in the interactions. Each of the incoming quasiparticles has
momentum ±k and band index a. The outgoing electrons have
momentum ±q, and are in band b (with the exception of the first
diagram, the momenta and band indices of each diagram are not
shown). Both intraband and interband scattering processes contribute
to the effective interaction.

are each equivalent to

1 : Vbb,aa,

2a :
∑

c

Vbb,ccVcc,aa

∫
p

Gc(−p)Gc(p),

2b :
∑
c,d

Vbc,adVdb,ca

∫
p

Gc(p)Gd (p + k + q),

(A2)
2c :

∑
c,d

Vbc,adVdb,ac

∫
p

Gc(p)Gd (p + q − k),

2d :
∑
c,d

Vbd,caVbc,ad

∫
p

Gc(p)Gd (p + k − q),

2e : −
∑
c,d

Vbd,caVcb,ad

∫
p

Gc(p)Gd (p + k − q),

where ∫
p

≡
∫

dωpd2p

(2π )3
(A3)

and

G(p) = 1

iωp − ε p
(A4)

is the single-particle Green function of the noninteracting
system. We next apply this general formalism to the three
problems studied in this paper.

1. Partially polarized Fermi surfaces

Although this problem is rather simple, and the Feynman
rules for a single band system are sufficient, we will apply the
notation above to this problem. This will certainly prove to
be valuable in the more nontrivial examples studied thereafter.
The interaction vertex, in the basis (↑↑ , ↑↓ , ↓↑ , ↓↓), is

Vab,cd =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 U 0

0 U 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (A5)

Note that in this problem, there are no processes which scatter
two electrons from one Fermi surface, to two electrons in a
different Fermi surface. Therefore, �(k,q) is diagonal in the
band index—which is just a long-winded way of saying that
only equal spin pairing (i.e., spin-triplet pairing) can occur.
Indeed, the only diagram which contributes to the effective
interaction is 2e, which yields

�↑↑(k,q) = −U 2χ↓(k − q) + O(�0),
(A6)

�↓↓(k,q) = −U 2χ↑(k − q) + O(�0),

where

χσ (k) =
∫

p

Gσ (p)Gσ (p + k)

= −
∫

d2p

(2π )2

f (ε p+k,σ ) − f (ε p,σ )

ε p+k,σ − ε p,σ

(A7)

is the noninteracting susceptibility of each spin band.
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2. Multiple subbands in a 2DEG quantum well

For the problem involving two subbands in a quantum well,
we choose the basis to be (1σ1σ ′,1σ2σ ′,2σ1σ ′,2σ2σ ′) and

Vαβ,γ δ =

⎛
⎜⎜⎜⎝

Uσσ ′ 0 0 Jσσ ′

0 0 Vσσ ′ 0

0 Vσσ ′ 0 0

Jσσ ′ 0 0 Uσσ ′

⎞
⎟⎟⎟⎠ , (A8)

where

Uσσ ′ = U (1 − δσσ ′),

Jσσ ′ = J (1 − δσσ ′), (A9)

Vσσ ′ = V.

In this basis σ and σ ′ refer to the spins of the incoming electron
states. Since there is inversion and spin-rotational symmetry
in this problem, we can study the effective interaction in the
singlet (σ = −σ ′) and triplet (σ = σ ′) channels separately.
We shall refer to the effective interaction as �s(t), where the
subscript stands for singlet and triplet. Having specified the
spin polarizations of the electrons, �s(t) will still be a 2 × 2
matrix due to the presence of two subbands. We will denote
this as

�s(t)(ka,qb) =
(

�s(t)(k1,q1) �s(t)(k1,q2)

�s(t)(k2,q1) �s(t)(k2,q2)

)
(A10)

with the understanding that ka denotes momentum states
associated with band a.

Next, we state the contributions from each of the diagrams
in Fig. 2. First, in the singlet channel,

�s(1) =
(

U J

J U

)
,

�s(2a) =
(

U 2P1 + J 2P2 UJ (P1 + P2)

UJ (P1 + P2) U 2P2 + J 2P1

)
,

�s(2b) =
(

U 2χ1,1(k1 + q1) V Jχ1,2(k1 + q2)

V Jχ2,1(k2 + q1) U 2χ2,2(k2 + q2)

)
,

(A11)

�s(2c) =
(

0 V Jχ1,2(k1 − q2)

V Jχ2,1(k2 − q1) 0

)
,

�s(2d) =
(

0 V Jχ1,2(k1 − q2)

V Jχ2,1(k2 − q1) 0

)
,

�s(2e) = −
(

2V 2χ2,2(k1 − q1) 0

0 2V 2χ1,1(k2 − q2)

)
,

where

Pa =
∫

p

Ga(p)Ga(−p)

= ρa ln[A/�0] + O(�0),
(A12)

χa,b(k) =
∫

p

Ga(p + k)Gb(p)

=
∫

d2p

(2π )2

f (ε p+k,a) − f (ε p,b)

ε p+k,a − ε p,b

+ O(�0)

are the particle-particle and particle-hole susceptibilities,
respectively.

In the triplet channel, only diagram 2e has a contribution
and �t (ka,qb) is diagonal in the subband index:

�t (k1,q1) = −U 2χ1,1(k1 − q1) − 2V 2χ2,2(k1 − q1),

�t (k2,q2) = −U 2χ2,2(k2 − q2) − 2V 2χ1,1(k2 − q2), (A13)

�t (k1,q2) = 0.

Having computed the effective interaction �s,t , we define the
quantity

gs,t (ka,qb) ≡
√

v̄f

vf (k̂a)
�(k̂a,q̂b)

√
v̄f

vf (q̂b)
, (A14)

which is also a matrix whose row and column indices are the
set of momentum states on the Fermi surface.

3. Some relevant integrals

In this section, we compute the particle-hole susceptibility
matrix of the two-subband problem:

χa,b(k) = −
∫

d2p

(2π )2

f (ε p+k,a) − f (ε p,b)

ε p+k,a − ε p,b

. (A15)

We let

εk,1 = εk,
(A16)

εk,2 = εk + �

and set � = (k2
F1 − k2

F2)/2m > 0 without loss of generality.
It follows that the intraband susceptibilities are

χaa(q) = 2
∫ kFa

0

kdk

(2π )2

∫ 2π

0

dθ

εq + kq cos θ/m
, (A17)

where kF1 = (2mμ)1/2 and kF2 = [2m(μ + �)]1/2. The inte-
grals are standard, resulting in the following:

χa,a = m

2π

[
1 − Re

√
q2 − (2kFa)2

q

]
(A18)

The interband susceptibility is

χ1,2(q) =
∫ kF1

0

kdk

(2π )2

∫ 2π

0

dθ

εq − � + kq cos θ/m

=
∫ kF2

0

kdk

(2π )2

∫ 2π

0

dθ

εq + � + kq cos θ/m
.

(A19)

These integrals are straightforward and they produce the final
result:

χ1,2(q) = −ρ

2

[
Re

√
q2[1 − λ(q)]2 − (2ηkF2)2

q

+Re
√

q2[1 + λ(q)]2 − (2kF2)2

q

−[1 + λ(q)] − |1 − λ(q)|] , (A20)
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where

η = kF1

kF2
,

(A21)

λ(q) = k2
F2

q2
(1 − η2).

The effective interband attraction g̃
s,m
1,2 in the singlet channel is

related to this susceptibility, as discussed in Sec. IV:

g̃
(s,m)
1,2 = 2V Jρ

∫
dθ

2π
χ1,2(kθ ) cos(mθ ),

(A22)
kθ = kF2

√
(1 − η)2 + 4η sin2(θ/2),

It is easy to show that the first two terms in Eq. (A20) do not
contribute to χ1,2(kθ ) since

√
k2
θ [1 − λ(kθ )]2 − (2ηkF2)2

kθ

= 2η

kθ

√
− sin2 θ (A23)

is purely imaginary for 0 � η � 1. Thus,

χ1,2(kθ ) = ρ

2
[1 + λ(kθ ) + |1 − λ(kθ )|]. (A24)

This in turn can be rewritten as

χ1,2(kθ ) = ρ

{
1, cos θ < η

(1−η2)
�2
θ

, cos θ > η,
(A25)

where �θ = kθ/kF2. The integration in Eq. (A22) is performed
in the complex plane defining z = −iθ . We find, for the d-wave
case (m = 2),

g̃
(s,2)
1,2 = −V Jρ2

2π
�(η), (A26)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

Φ
(η

)/
2

π

FIG. 3. The scaling function �(η) which determines the effective
interband interaction g̃

s,2
1,2.

where, for 0 � x < 1,

�(x) = πx4 + 2 sin−1 x

x2
− 2

√
1 − x2

x
(A27)

and �(1) = 0. The function �(x) is shown in Fig. 3.
It should be noted that �(x) is discontinuous at x =

1, which results from the singluar behavior of the inter-
band susceptibility in the limit where the bands become
degenerate:

lim
η→1

lim
q→0

χ1,2(q) = ρ
1 + η2

1 − η2
. (A28)

However, this feature does not have a physical consequence
since there is always a nonzero splitting between the bands
caused by the finite thickness of the semiconductor het-
erostructure.
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