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Bound states of two spin-1
2 fermions in a synthetic non-Abelian gauge field
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We study the bound states of two spin- 1
2 fermions interacting via a contact attraction (characterized by a

scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge
field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three
coupling parameters (λx,λy,λz). For a generic gauge field configuration, the critical scattering length required for
the formation of a bound state is negative, i.e., shifts to the “BCS side” of the resonance. Interestingly, we find
that there are special high-symmetry configurations (e.g., λx = λy = λz) for which there is a two-body bound
state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained
for such configurations have nematic spin structure similar to those found in liquid 3He. Our results show that
the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian
gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
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I. INTRODUCTION

Quantum emulation experiments with cold quantum
gases1–3 and optical lattices hold the promise of providing
clues to understanding many outstanding issues of quantum
condensed matter physics such as high-temperature supercon-
ductivity, the quantum hall effect, etc., and the high-energy
physics of strongly coupled gauge theories.4 While this has led
to a flurry of activity, many experimental challenges remain
in the way of redemption of this promise. Particular among
them are the problem of entropy removal and the creation of
magnetic (gauge) fields.

Realization of magnetic fields has been achieved by
rotation;5 however, attaining magnetic fields corresponding
to quantum hall regimes has serious experimental chal-
lenges. There have been many theoretical suggestions for
the generation of artificial gauge fields,6–9 both Abelian and
non-Abelian. Recently Spielman and co-workers10,11 used
Raman coupling between hyperfine states to produce synthetic
gauge fields. They studied Bose condensates of 87Rb atoms
and investigated the punching in of vortices when a U(1)
gauge field corresponding to a magnetic field is tuned.
Depending on the degeneracy of the lowest Raman coupled
states, one can also generate non-Abelian gauge fields. The
condensation of bosons in non-Abelian fields have been
investigated.12,13

These developments provide us the motivation to study
fermions in non-Abelian gauge fields. The simplest in this
class is the case of spin- 1

2 particles coupled to an SU(2)
gauge field. Study of such systems within the cold atoms
context will enable experimental realization and under-
standing of fermionic Hamiltonians with spin-orbit inter-
actions that can lead to interesting topological phases of
matter.14,15

Readers who wish to obtain a qualitative understanding of
our work may read Sec. II where we state our problem and
summarize our results, followed by Sec. V which discusses
the significance of these results. Sec. III contains details of our
calculations, and Sec. IV provides a qualitative discussion of
the physics of our results.

II. STATEMENT OF THE PROBLEM AND SUMMARY OF
RESULTS

We consider spin- 1
2 fermions moving in a three-dimensional

continuum in a non-Abelian gauge field. The simplest realiza-
tion of this is described by the Hamiltonian

HGF =
∫

d3r �†(r)

[
1

2

(
pi1 − A

μ

i τμ
)(

pi1 − Aν
i τ

ν
)]

�(r),

(1)

where �(r) = {ψσ (r)},σ =↑ , ↓ is a two-component spinor
field (spin quantization along z axis), pi is the momentum
operator (i = x,y,z), 1 is the SU(2) identity, τμ are Pauli spin
operators (μ = x,y,z), and A

μ

i describe a uniform gauge field.
We work with units where the mass of the fermions and h̄ are
unity. Indeed even a uniform non-Abelian field leads to inter-
esting physics,12 an example of which we demonstrate in this
paper.

Motivated by the recent experiments mentioned above, we
consider non-Abelian gauge fields of the type A

μ

i = λiδ
μ

i

which leads to a generalized Rashba Hamiltonian describing
an anisotropic spin-orbit interaction

HR =
∫

d3r�†(r)

(
p2

2
1 − pλ · τ

)
�(r),

(2)
pλ = λxpxex + λypyey + λzpzez.

Here an inconsequential constant term has been dropped.

The gauge coupling strength is λ =
√

λ2
x + λ2

y + λ2
z , and the

vector λ ≡ λλ̂ = λxex + λyey + λzez defines a gauge field
configuration (GFC).

We now describe the interaction between fermions by a
contact attraction model in the singlet channel16

Hυ = υ

2

∫
d3rS†(r)S(r), (3)

where S†(r) is the singlet creation operator, and υ is the bare
contact interaction. The theory described by the Hamiltonian
H = HR + Hυ requires an ultraviolet momentum cutoff 	.
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FIG. 1. (Color online) (a) Two-body phase diagram in the gauge-field configuration (GFC) space described in Eq. (2). Lines in dark blue
(along the axes) correspond to extreme prolate (EP) GFCs, dark green (along 45◦ to the axes on the coordinate planes) correspond to extreme
oblate (EO) GFCs, and the red line (along the body diagonal) corresponds to spherical (S) GFCs. The wings in violet hue correspond to
oblate GFCs. For the oblate, including EO GFCs, and the S GFCs, a bound state is obtained for any scattering length i.e., asc = 0−. Regions
with a blue hue, including the axes (EP), correspond to GFCs that require a nonzero critical scattering length for the formation of a bound
state. (b) Critical scattering length along the path EP-S-EO as shown in (a). For the EP GFCs, the symmetry of the bound-state wave function
corresponds to an extended Balian-Werthamer (BW) state with a biaxial nematic spin order, while that in the EO state corresponds to an
extended Anderson-Brinkman-Morel (ABM) state with a uniaxial nematic spin order. The state evolves smoothly from a biaxial nematic to a
uniaxial nematic passing through the S configuration where the bound state is rotationally symmetric.

The bare contact interaction parameter υ is 	 dependent and
satisfies the regularization relation 1

υ
+ 	 = 1

4πas
, where as

is the s-wave scattering length in the absence of the gauge
field (“free vacuum”). It is well known17 that for a pair of
spin- 1

2 fermions in free vacuum, there is no bound state when
as < 0 (conventionally called the BCS side), and a bound
state develops when 1/as = 0 (resonance), and for as � 0
(Bose-Einstein condensation or BEC side), the binding energy
Eb = 1

a2
s
. This result embodies the fact that a critical attraction,

characterized by the critical scattering length asc, is needed to
obtain a two-body bound state in the three-dimensional free
vacuum where 1/asc = 0.

In this paper we address the question of how a uniform
gauge field described by Eq. (2) affects the nature of the bound
state of two fermions interacting via Eq. (3). To this end, we
obtain the “phase-diagram” of the two-fermion problem in the
GFC space described by the parameters λx,λy,λz of Eq. (2),
by studying the bound state as a function of the free-vacuum
scattering length as .

GFCs can be conveniently classified as being prolate when
two of the λs are equal and smaller than the third, oblate when
two of the λs are equal and larger than the third, spherical (S)
when all three λs are equal, and generic when no two λs are
equal. Our main findings are summarized in Fig. 1. We show
that for prolate and generic GFCs, the critical scattering length
asc required for the bound-state formation is negative, i.e.,
shifts to the BCS side. However, for oblate and spherical GFCs
asc vanishes, i.e., there is a bound state for any scattering length
[see Fig. 1(b)]. The key difference between the oblate and
spherical cases is the size of the binding energy of the bound
state. In the deep BCS side, for oblate gauge fields, the binding
energy depends exponentially on as and λ, while for spherical
gauge fields, an algebraic dependence is obtained. Evidently,
these results of the two-body problem suggest that many-body
physics of fermions, in particular, the crossover from the BCS

regime to the BEC regime, will be spectacularly affected by the
presence of a non-Abelian gauge field. Moreover, our results
below indicate that the superfluid obtained at low temperatures
will also have additional spin nematic order induced by the
gauge field.

III. TWO-BODY PROBLEM IN PRESENCE OF
NON-ABELIAN GAUGE FIELDS

For any GFC, the single-particle states are described by the
quantum numbers of momentum k and helicity α (which takes
on values ±):

|kα〉 = |k〉 ⊗ |α k̂λ〉, (4)

where |k〉 is the usual plane-wave state, and |α k̂λ〉 is the spin-
coherent state in the direction α k̂λ, with kλ defined analogous
to pλ of Eq. (2). The two helicity bands disperse as

εkα = k2

2
− α|kλ|. (5)

The full two-body Hamiltonian H generically has only two
symmetries: global translation and time reversal. Therefore,
the only good quantum number is the center of mass mo-
mentum of the two particles. We shall focus attention on
states with zero center of mass momentum, and perform a
T -matrix analysis17 in the relative-momentum and helicity
bases. The components of the T matrix have the matrix
structure Tββ ′(ω), where ω is the energy, and β,β ′ run
over (+ + , + −, − +, − −), the helicity indices of the two
fermions. Since the interaction is only in the singlet channel,
it follows that components with indices (+ − , − +) vanish.
This analysis, along with the regularization discussed earlier,
readily provides the condition for bound-state formation

1

4πas

= 1

2V

∑
kα

(
1

E − 2εkα

+ 1

k2

)
, (6)
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where V is the volume of space under consideration. Isolated
poles of the T matrix, which correspond to bound states, are
obtained by finding the roots E of Eq. (6). We shall now
present results for particular GFCs including the nature of the
bound-state wave functions.

A. Extreme prolate (EP)

In EP GFCs, two of the gauge couplings vanish (say,
λx = λy = 0), while only one is nonzero (λz = λ). Such
configurations correspond to the axes marked in blue (along
the axes) in Fig. 1(a). These GFCs possess, in addition
to translation and time reversal, spatial and spin rotation
symmetries about the z axis. The one-particle dispersion (5),
for this case, provides the scattering threshold Eth = −λ2.
Defining the binding energy Eb = −(E − Eth), we find from
the solution of Eq. (6) that a bound state appears only for
positive scattering lengths (Fig. 2), with

Eb = 1

a2
s

, as > 0. (7)

The critical scattering length corresponds to resonance, i.e.,
1/asc = 0.

These results for Eb and asc are identical to those of the
two-body problem in free vacuum. There is, however, a crucial
difference. The wave function of the bound state in the absence
of the gauge field is a spin singlet. In an extreme prolate gauge
field, the bound-state wave function has two pieces,

�b ∝ ψs(r)| ↑↓ − ↓↑〉 + ψa(r)| ↑↓ + ↓↑〉, (8)

where ψs(r) = ∑
kα

cos k·r
2εkα−E

and ψa(r) = ∑
kα

α sin k·r
2εkα−E

are,
respectively, symmetric and antisymmetric functions of the
relative coordinate r . The first piece is a spin singlet, while the
second piece (which vanishes when λ → 0) has a triplet spin
wave function. This wave function corresponds to an extended
BW state18 of the B-phase of 3He with an additional singlet
piece. This state has a spin-nematic order19 corresponding
to a biaxial nematic, consistent with the symmetries of the
Hamiltonian.
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FIG. 2. (Color online) Binding energy Eb as a function of the
scattering length as for extreme prolate (EP), extreme oblate (EO)
and spherical (S) gauge field configurations. In the EP case, a bound
state is obtained only for 1/as � 0, while for the other two it is
obtained for every as . In the BCS side, Eb depends exponentially on
λas for the EO configurations, while it is a power law in the S case.

B. Extreme oblate (EO)

The EO configurations have one of the gauge couplings
equal to zero and the other two equal and nonzero, and
they are marked by green lines (lines at 45◦ to the axes on
the coordinate planes) in Fig. 1. We consider the case with
λx = λy = λ√

2
,λz = 0. For EO GFCs, we have in addition to

translation and time reversal, a symmetry of global (spatial +
spin) rotation about the z axis generated by Jz = Lz + 1

2τz,
where Lz is the z component of the orbital angular momentum
operator. The solution of Eq. (6) provides an interesting result:
there is a bound state for any scattering length, negative or
positive, i.e., asc = 0−. For small negative as (BCS regime),
we obtain the binding energy (with respect to the scattering
threshold Eth = − λ2

2 ) as

Eb

λ2
=

∞∑
n=0

(−1)nan

(
4

e2
e

−2
√

2
λ|as |

)n+1

≈ 4

e2
e

−2
√

2
λ|as | , (9)

where an are positive rationals tending asymptotically to (4e)
n
2 ;

a0 = 1; a1 = 1; a2 = 7
4 ; a3 = 23

6 . Thus the binding energy is
exponentially small for small negative as . For small positive
as (BEC regime), we have

Eb

λ2
= 1

(λas)2
+ log 2√

2λas

+ 4 + log2 2

8
− (λas)2

12
+ · · · ,

(10)

which recovers the binding energy of 1/a2
s in the limit of free

vacuum (λ → 0). When 1/as = 0 (resonance), the binding
energy is determined solely by λ; we obtain, near resonance,

Eb

λ2
= C + 2

√
2C√

1 + 2C
1

λas

+ 4C(1 + C)

(1 + 2C)2

1

(λas)2
+ · · · , (11)

where C ≈ 0.381. The full evolution of the bound-state energy
as a function of the scattering length as is shown in Fig. 2.

The bound-state wave function, again, has two pieces

�b ∝ ψs(r)| ↑↓ − ↓↑〉 + ψa(r)| ↑↑〉 + ψ∗
a (r)| ↓↓〉,

(12)

where ψs(r) = −∑
kα

cos k·r
2εkα−E

, and ψa(r) = i
∑

kα
αe−iφk sin k·r

2εkα−E
,

φk is the angle made by kxex + kyey with the x axis. The
first piece is orbitally symmetric [ψs(r)] spin singlet (the
first term), and the second piece (next two terms) consists
of an antisymmetric orbital wave function [ψa(r)] and a spin
structure corresponding to that of the ABM state18 in the
A-phase of 3He. This state has uniaxial nematic order.

C. Spherical (S)

This most symmetric GFC is characterized by λx = λy =
λz = λ√

3
and marked by the red line (along the body diagonal)

in Fig. 1(a). Apart from translation and time reversal, the S
GFC has global rotational symmetries about all three axes
generated by Ji = Li + 1

2τi . Again, we find that a two-body
bound state appears for any scattering length, i.e., asc = 0−.
Also, we obtain a closed-form expression for the binding
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energy (referred to the scattering threshold Eth = − λ2

3 ) for
any scattering length

Eb = 1

4

(
1

as

+
√

1

a2
s

+ 4λ2

3

)2

. (13)

An interesting aspect of this result is that, for a small negative
scattering length (BCS side), the bound-state energy depends
algebraically on as and λ,

Eb

λ2
≈

(
λas

3

)2

, (14)

i.e., a deeper bound state than the EP case is obtained (see
Fig. 2) in this case. For small positive as , the leading term in
the binding energy is that in the free vacuum. The bound state
is a J singlet and has the wave function

�b(r) ∝ e−√
Ebr

r

(
λ√
3Eb

sin
λr√

3
+ cos

λr√
3

)
| ↑↓ − ↓↑〉

+ i

[(√
Eb + 1

r

)
sin

λr√
3

− λ√
3

cos
λr√

3

]

× e−√
Ebr

√
Ebr

| ↑↓ + ↓↑〉r̂ ,

where the subscript r̂ on the second term indicates that the
spin quantization axis is along r̂ . The wave function is made
of two pieces. The first piece corresponds to a J = 0 state
constructed out of the L = 0 orbital state and a spin singlet,
while the second piece is a J = 0 state obtained by fusing
an L = 1 orbital state and a spin triplet state. Furthermore,
orbital wave functions of both pieces are nonmonotonic, i.e.,
they have spatial oscillations. This is because of the existence
of two length scales determined by Eb and λ. While the former
dictates the exponential decay of the wave function, the latter
determines the period of its spatial oscillation. This observation
also applies to the wave functions discussed above for the EP
and EO cases.

It is interesting to note how the bound state evolves as we
go from the EP to the EO GFC along the path in GFC space
indicated in Fig. 1(a). The prolate side of the path, which has a
biaxial nematic order, is separated from the oblate side with a
uniaxial nematic order by the spherical configuration. For the
spherical configuration the bound state is fully (spatial + spin)
rotationally symmetric.

D. Generic GFC

For a generic GFC, the critical scattering length for the
formation of a bound state can be expressed as

λasc = F(λ̂), (15)

whereF is a dimensionless number-valued function of the unit
vector λ̂. The function F has to be obtained numerically. We
find thatF is a nonpositive function, i.e., for a generic GFC, the
critical scattering length is negative, i.e., on the BCS side of the
resonance. In other words, the strength of the critical attraction
required to produce a two-body bound state is reduced by
the presence of a generic gauge field. Figure 1(b) shows the
evolution of asc along the great circle connecting the EP state

to the EO state for a fixed gauge coupling, illustrating that
prolate GFC has a negative asc, while any oblate GFC has a
vanishing asc. In summary, the two-body bound state appears
at resonance (1/asc = 0) for EP GFCs marked by the blue lines
(along the axes) in Fig. 1(a). For spherical GFCs marked by
the red line (along the body diagonal) and for oblate GFCs
marked by the planes bounded by the green (including EO)
lines (along 45◦ to the axes on the coordinate planes) and
the red line (along the body diagonal), asc vanishes, i.e., any
attractive interaction, however small, will force a bound state
for the two-body problem.

IV. QUALITATIVE DISCUSSION

We now discuss the physics behind these results. In the free
vacuum, a renormalization group analysis of the field theory
of the two-body problem with the contact interaction20,21

provides two fixed points. The first is a stable one at υ∗
F = 0

describing two free fermions, and the second, an unstable
one υ∗

R = −1 (in suitably chosen units) corresponding to the
resonance; see Fig. 3. In free vacuum, a contact interaction
parameter υ near υ∗

F flows toward υ∗
F and hence has similar

physics as two free fermions. This corresponds to the fact that
sufficiently strong attraction is required (υ < −1) to produce
a bound state. Consider now a situation with a υ near υ∗

F and a
nonvanishing spherical gauge field with a coupling strength λ.
We see immediately that the Rashba term described by the cou-
pling λ is a relevant operator and the flow takes the system away
from the free fixed point (see Fig. 3) suggesting that even a
small λ has a drastic effect on a system near the free fixed point.

A deeper understanding can be obtained by considering
the density of states g(ε) of a single fermion moving in a
gauge field, since it determines the density of states of two
non-interacting fermions with zero center of mass momentum.
One can easily obtain analytical expressions for the density of
states for the high-symmetry GFCs. The gist of those formulas
is that near the scattering threshold, for the high-symmetry
GFCs discussed above,

g(ε) ∼

⎧⎪⎨
⎪⎩

√
ε for EP,

λ(constant) for EO,

1√
ε

for S.

(16)

In all three cases g(ε) → √
ε as ε → ∞. It is therefore clear

that the infrared behavior of the density of states is behind
the results presented hitherto. This motivates us to construct a

FIG. 3. (Color online) Renormalization group flow diagram
(schematic) of the two-body problem. The point υ∗

F corresponds to the
free fixed point and υ∗

R to resonance in vacuum.20,21 The non-Abelian
gauge field is a relevant operator at these fixed points as indicated.
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model with density of states given by

g(ε) =
{√

2ε0

π2

(
ε
ε0

)γ

�(ε) if ε < ε0,√
2ε

π2 if ε � ε0,
(17)

where � is the unit step function, γ is an exponent that
determines the infrared behavior of g, and ε0 is an energy scale
(crudely equal to λ2) at which the density of states is restored to
that in the free vacuum. Note that γ = 1

2 ,0, − 1
2 qualitatively

reproduces, respectively, the density of states corresponding
to EP, EO, and S GFCs. We can readily calculate the critical
scattering length that obtains a bound state as√

2ε0asc = πγ

2γ − 1
�(γ ). (18)

We see immediately that asc vanishes whenever γ is non-
positive as is the case for the EO and S configurations. For
the EP configuration, the critical scattering length asc → −∞
consistent with the results presented earlier. For a generic GFC,
the infrared density of states has a narrow

√
ε regime, followed

by a regime with nearly constant density of states; this can
be modeled in this simple picture using a γ that satisfies
0 < γ < 1

2 , the precise value of γ being dependent on the
direction λ̂ in the GFC space. We find that asc is negative,
again, consistent with our calculations.

This simple analysis allows us to uncover the physics
behind the phase diagram of Fig. 1. Highly symmetric GFCs
drastically modify the low energy density of states owing to
the degeneracies induced in the resulting one-particle levels.
It is in this sense that the Rashba term is a relevant operator
as mentioned in the discussion above. For highly symmetric
GFCs, the enhanced density of states at low energies strongly
promotes bound-state formation in the presence of an attractive
interaction.

The particular type of nematic spin symmetry in the
bound state arises so as to optimize the kinetic energy. The
spin-orbit interaction mixes the singlet and triplet sectors of
the two-particle system, and the particular nematic symmetry
obtained in the bound state enables the orbital wave function
to sufficiently “sample” the attractive interaction at a minimal
cost in kinetic energy.

V. EXPERIMENTAL DIRECTIONS AND OUTLOOK

Our predictions can be readily tested by experiment. A clear
signature of the bound-state formation can be obtained from
the measurement of energy22 of the gas at high temperatures.
As suggested by Ho and Muller,22 a large value of the second
virial coefficient which characterizes the interaction energy
is obtained for an interacting Fermi gas in free vacuum near
resonance. Our results suggest that in the presence of a generic
gauge field, such large corrections to energy can be observed
on the BCS side, i.e., for negative scattering lengths near asc at
the onset of the bound state. The quantitative value of asc will
be affected also by the attraction in the triplet channel, but our
predictions can be tested qualitatively.

Our results suggest that the BCS-BEC crossover in the
presence of a non-Abelian gauge field will be drastically
altered and in particular the “crossover regime” should shift
to the BCS side for a generic GFC. There are many other
novel effects of the non-Abelian gauge field in the many-body
context such as transition in the topology of the Fermi surface
with increasing filling.23 Moreover, the two-body bound-state
wave functions provide a clue to the nature of the Cooper pair
wave functions. Clearly, this will lead to superfluid states with
interesting pairing wave functions (such as the extended BW
and ABM states found here with associated nematic orders)
and concomitant excitations.

The simple model we have presented in Sec. IV suggests
that our conclusions will also apply to systems with a larger
gauge group, such as SU(N ). Investigations along these lines
should lead to interesting new possibilities with cold atom
systems.
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