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Majorana surface states of superfluid 3He A and B phases in a slab
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Motivated by experiments on the superfluid 3He confined in a thin slab, we design a concrete experimental
setup for observing the Majorana surface states. We solve the quasiclassical Eilenberger equation, which is
quantitatively reliable, to evaluate several quantities, such as local density of states (LDOS), mass current for
the A phase, and spin current for the B phase. In connection with realistic slab samples, we consider the upper
and lower surfaces and the side edges including the corners with several thicknesses. Consequently, the influence
on the Majorana zero modes from the spatial variation of the l vector for the A phase in thick slabs and the
energy splitting of the zero-energy quasiparticles for the B phase confined in thin slabs are demonstrated. The
corner of slabs in the B phase is accompanied by the unique zero-energy LDOS of corner modes. On the basis
of the quantitative calculation, we propose several feasible and verifiable experiments to check the existence
of the Majorana surface states, such as the measurement of specific heat, edge current, and anisotropic spin
susceptibility.
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I. INTRODUCTION

Majorana quasiparticles (QPs) and Majorana fermions have
attracted much attention in the wide research field, ranging
from high-energy physics to low-temperature physics of
ultracold atomic gases,1,2 and for the application to topological
quantum computations.3 The Majorana QP and Majorana
fermionic operator are defined by γ † = γ and �† = �,
respectively, which imply that the particle and antiparticle are
identical. It has been proposed that the Majorana nature brings
new physics, such as non-Abelian statistics of vortices in chiral
superfluids4 and Ising-like spin dynamics for time-reversal
invariant superfluids.5–7 The Majorana nature itself is an
intriguing subject for further studies.

Candidate systems that exhibit the Majorana nature are
quite rare, e.g., spin-triplet superconductors or superfluids,
p-wave Feshbach resonated superfluids,1,2 fractional quantum
Hall systems with 5/2 filling,8,9 interfaces between a topo-
logical insulator and an s-wave superconductor,10 and s-wave
superfluids with particular spin-orbit interactions.11

Spin-triplet superconductors or superfluids satisfy the
following Bogoliubov–de Gennes equation with the wave
function ϕn and the energy En:∫

d r2Ĥ(r1,r2)ϕn(r2) = Enϕn(r1). (1)

The eigenstates yield one-to-one mapping between the positive
energy states ϕE and the negative energy states ϕ−E = τ̂xϕ

∗
E

owing to the symmetry Ĥ = −τ̂xĤ∗τ̂x , where τ̂x is the Pauli
matrix in the particle-hole space. The symmetry of the wave
function leads to the relation of the Bogoliubov QP operator
γE = γ

†
−E . Therefore the Bogoliubov QP with zero energy is

the Majorana QP, γ
†
0 = γ0. Zero-energy bound states of the

QPs appear whenever the underlying potential for the QPs
changes its sign. The situation appears at edges, surfaces,
or vortices with odd integer winding numbers, where the
QPs have zero-energy Andreev bound states. For the edge
or surface, the Majorana fermion surface state �† = � exists
as well as γ

†
0 = γ0.9,12

Among known possible spin-triplet superconductors13–16

UPt3, UGe2, and URhGe, Sr2RuO4 is a prime candidate
of chiral spin-triplet superconductors. The precise pairing
symmetry, however, has not yet been identified and has been
under intense discussion. A px + ipy scenario is reexamined
from various aspects.17 Obviously, we want to experiment with
more candidate materials for observing the Majorana nature.

The superfluid 3He consists of spin-triplet Cooper pairs.18

For the 3He there is a huge amount of experimental data by
intensive researches for long years.19 There are two stable
phases, ABM (A) and BW (B) phases, for the superfluid 3He
in a bulk without a magnetic field. The A phase is stabilized in
narrow regions at high temperatures and high pressures while
the B phase is stabilized in other wide regions within the
superfluid phase. The order parameter (OP) of the A phase has
point nodes toward the l vector, which signifies the direction
of the orbital angular momentum, or orbital chirality, whereas
the B phase has a full gap. The Majorana natures for the
A and B phases differ due to the topology of the gap on
the Fermi surface.20 Time-reversal symmetry is also different
for the A and B phases. Since up-up and down-down spin
Cooper pairs have the same chirality for the A phase, the
time-reversal symmetry is broken and net mass current flows
along the boundary or the edge. In contrast, since up-up and
down-down spin Cooper pairs have the opposite chirality, the B

phase is a time-reversal invariant. Instead of the mass current
canceled by up-up and down-down spin Cooper pairs, the
spin current flows. The difference of time reversal symmetry
between the A and B phases is analogous to the difference
between the quantum Hall state and the quantum spin Hall
state.21

Our aim is to propose a concrete experimental design to de-
tect the Majorana nature based on quantitative calculations and
understand systematically how to observe the Majorana nature
in the superfluid 3He A and B phases. The quantitative cal-
culations are performed by quasiclassical theory which yields
information of QPs. The quasiclassical theory is valid when
�/EF � 1, where � is superfluid gap and EF is the Fermi
energy. Since �/EF ∼ 10−3, the theory is appropriate for the
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superfluid 3He.22 The quasiclassical framework is well estab-
lished within the weak-coupling limit. The superfluid 3He at
the lower pressure can be described within the weak-coupling
scheme23 without delicate strong-coupling corrections.

In the slab geometry, both the A and B phases are
stabilized by changing thickness and temperature even at zero
pressure.24,25 Therefore we can deal with the A and B phases
by the quasiclassical theory within the weak-coupling limit.
Here, we introduce several systems of the slab geometry.
According to Bennett et al.,26 the superfluid 3He is confined
in a thin slab box with a thickness D = 0.6 μm and an area
of the base 10 mm × 7 mm. The thickness is of the order
of 10ξ0 at P = 0, where ξ0 is the coherence length at T = 0.
At ISSP, University of Tokyo,27 sample disks with thickness
D = 12.5 μm, which is of the order of the dipole coherence
length, and diameter 3 mm are used. The ISSP group can rotate
the sample disks with the highest speed in the world and inves-
tigates half-quantum vortices. At RIKEN,28 the interdigitated
capacitors are used for making a film of the superfluid 3He.
The group can control thicknesses of the film from 0.3 to 4 μm.

Under those experimental situations, we consider the
surface states from not only the upper and lower surfaces
in a slab but also the side edges including the corners, and
we evaluate the dependence of the Majorana state on the
thickness of a slab. By the quasiclassical calculation, we show
the “Dirac valley” [Fig. 1(a)] for the A phase at the side
edges. In a thick slab, we consider the kz component of the
OP, which was neglected in the previous work29 since the
l vector was assumed to be perpendicular to the thin slab.
Several groups have demonstrated that the Majorana fermion
surface state has the dispersion of E = (�/kF )

∣∣k‖
∣∣ with the

surface perpendicular to the z axis in the B phase, where kF is
the Fermi wave number and k‖ = (kx,ky).5–7 This implies that
the surface state consists of a single Majorana cone. We show
the Majorana cone [Fig. 1(b)] by the quasiclassical calculation
for a thick slab and investigate the variation of the dispersion
by the thickness of a slab [Fig. 1(c)]. The zero-energy state at
the corner is also discussed.

The arrangement of this paper is as follows: In Sec. II, we
formulate the quasiclassical theory based on the quasiclassical
Green’s function which gives quantitative information of QPs.
We explain numerical methods in Sec. III, which is supple-
mented by the symmetry considerations of the quasiclassical
Green’s function given in the Appendix. In Secs. IV and V for
the A and B phases, we show results of the spatial structures of
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FIG. 1. (Color online) Stereographic views of typical dispersion
relation. (a) Dirac valley for the A phase in a thin slab D = 8ξ0 at the
left side edge “L” and the right side edge “R.” (b) Majorana cone for
the B phase in a thick slab D = 30ξ0 at the upper or lower surface.
(c) Split Majorana cone for the B phase in a thin slab D = 14ξ0 at
the upper or lower surface. The units of energy and wavelength are
πkBTc and kF , respectively.

the OP, the current distribution, and the local density of states
(LDOS) for QPs, which relates to the Majorana modes. In
Sec. VI, we discuss the difference of the Majorana zero modes
in the A and B phase and propose several experimental designs
to observe the Majorana nature. In addition, we discuss the
Majorana zero mode in the stripe phase. The final section is
devoted to a summary.

II. QUASICLASSICAL THEORY AND
ORDER PARAMETERS

We start with the quasiclassical spinful Eilenberger
equation,30 which has been used for studies of the superfluid
3He.25,31,32 The low-energy excitation modes at the surface are
discretized in the order of �/(kF L),12 where L is the length of
the system. If L is a macroscopic length, which is much larger
than k−1

F , the low-energy excitation modes at the surface can
be regarded as continuous spectra. Because there is the exact
zero-energy excitation at the surface of the superfluid 3He A

phase12,29 and B phase,5–7 the quasiclassical theory can be
used to discuss the Majorana QP.

The quasiclassical Green’s function ĝ(k,r,ωn) is calculated
using the Eilenberger equation

− ih̄v(k) · ∇ĝ(k,r,ωn)

=
[(

iωn1̂ −�̂(k,r)

�̂(k,r)† −iωn1̂

)
,̂g(k,r,ωn)

]
, (2)

where the “ordinary hat” indicates the 2 × 2 matrix in spin
space and the “wide hat” indicates the 4 × 4 matrix in particle-
hole and spin spaces. The quasiclassical Green’s function is
described in particle-hole space by

ĝ(k,r,ωn) = −iπ

(
ĝ(k,r,ωn) if̂ (k,r,ωn)

−if̂ (k,r,ωn) −ĝ(k,r,ωn)

)
, (3)

with the direction of the relative momentum of a Cooper pair
k, the center-of-mass coordinate of a Cooper pair r , and the
Matsubara frequency ωn = (2n + 1)πkBT . The quasiclassical
Green’s function satisfies a normalization condition ĝ2 =
−π2 1̂. The Fermi velocity is given as v(k) = vF k on the
three-dimensional Fermi sphere.

We solve Eq. (2) by the Riccati method.25,33,34 We intro-
duce Riccati amplitude â = (1̂ + ĝ)−1f̂ and b̂ = (1̂ + ĝ)−1f̂

related to particle- and holelike projections of the off-diagonal
propagators, respectively. Equation (2) can be rewritten as
Riccati equations

h̄v(k) ·∇â(k,r,ωn) = �̂(k,r) − â(k,r,ωn)�̂(k,r)†â(k,r,ωn)

− 2ωnâ(k,r,ωn),

−h̄v(k) ·∇b̂(k,r,ωn) = �̂(k,r)† − b̂(k,r,ωn)�̂(k,r)b̂(k,r,ωn)

− 2ωnb̂(k,r,ωn). (4)

The equations are solved by integration toward k for â(k,r,ωn)
and toward −k for b̂(k,r,ωn). From the Riccati amplitude, the
quasiclassical Green’s function is given as

ĝ = −iπ

(
(1̂ + âb̂)−1 0

0 (1̂ + b̂â)−1

)(
1̂ − âb̂ 2iâ

−2ib̂ −(1̂ − b̂â)

)
.

(5)

094510-2



MAJORANA SURFACE STATES OF SUPERFLUID 3He . . . PHYSICAL REVIEW B 83, 094510 (2011)

The self-consistent condition for the pair potential �̂(k,r)
is given as

�̂(k,r) = N0πkBT
∑

−ωc�ωn�ωc

〈V (k,k′)f̂ (k′,r,ωn)〉k′, (6)

where N0 is the density of states in the normal state, ωc

is a cutoff energy setting ωc = 40πkBTc with the transition
temperature Tc in a bulk, and 〈· · ·〉k indicates the Fermi
surface average. The pairing interaction V (k,k′) = 3g1k · k′

for Cooper pairs with an orbital angular momentum L = 1,
where g1 is a coupling constant. In our calculation, we use a
relation

1

g1N0
= ln

T

Tc

+ 2πkBT
∑

0�ωn�ωc

1

ωn

. (7)

Spin-triplet OP is defined by a vectorial notation

�̂(k,r) = (iσ̂ σ̂y) · �(k,r), (8)

with the Pauli matrix σ̂ in spin space. The complex vector � is
perpendicular to the spin S of a Cooper pair, namely, � · S =
0. The � can be expanded in orbital momentum directions,

�μ(k,r) = Aμi(r)ki, (9)

where Aμi(r) is a complex 3 × 3 matrix with a spin index μ

and an orbital index i. The repeated index implies summation
over x, y, and z.

This paper is discussed for the chiral state in the A phase,
polar state, B phase, and planar state. Symbolic descriptions
of the OP in their state are the following: For the chiral state,

� = dz(kx + iky), (10)

for the polar state,

� = dzkx, (11)

for the B phase,

� = dxkx + dyky + dzkz, (12)

and for the planar state,

� = dxkx + dyky, (13)

where the d vector is perpendicular to the spin of a Cooper
pair. The d vector and the momentum direction are permitted
to rotate spherically in the spin and momentum space,
respectively.

By using the self-consistent quasiclassical Green’s func-
tion, the mass and spin currents are calculated by

j (r) = mN0πkBT
∑

−ωc�ωn�ωc

〈v(k) Im [g0(k,r,ωn)]〉k, (14)

jμ
s (r) = h̄

2
N0πkBT

∑
−ωc�ωn�ωc

〈v(k) Im
[
gμ(k,r,ωn)

]〉k,

(15)

respectively, where m is the mass of the 3He atom and gμ is
a component of the quasiclassical Green’s function ĝ in spin
space, namely,

ĝ =
(

g0 + gz gx − igy

gx + igy g0 − gz

)
.
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FIG. 2. (Color online) (a) A schematic configuration of a slab with
thickness D along the z direction and macroscopic length L along the
x direction. We consider a cross section A (0 � x � L,0 � z � D).
(b) Indexes of positions in the cross section A. We label (x,z) = (0,0),
(0,D/2), (0,D), (L/2,0), and (L/2,D/2) as “1,” “2,” “3,” “4,” and
“5.” Paths z = 0, z = D/2, z = D, and z = 0.5ξ0 along the x axis
are labeled as “I,” “II,” “III,” and “IV.”

LDOS for energy E is given by

N (r,E) = 〈N (r,E,k)〉k
= N0

〈
Re

[
g0(k,r,ωn)|iωn→E+iη

]〉
k
, (16)

where η is a positive infinitesimal constant and N (r,E,k) is the
angle-resolved LDOS. Typically, we choose η = 0.003πkBTc.
For obtaining g0(k,r,ωn)|iωn→E+iη, we solve Eqs. (4) with
η − iE instead of ωn under the pair potential obtained self-
consistently.

III. SYSTEM GEOMETRY AND NUMERICAL METHODS

We consider a cross section A of a slab with a thickness
of D along the z direction and a macroscopic length of
L along the x direction, shown in Fig. 2(a). It is as-
sumed that the quasiclassical Green’s function and OP are
homogeneous along the y direction. We also assume that
the surfaces of the slab are specular, where specularity is
controlled by coating the surface with 4He atoms.35 Under
the boundary condition, the quasiclassical Green’s function
or the Riccati amplitude changes only the direction of the
relative momentum by mirror reflection at a surface Rsurf ,
namely, ĝ(k,Rsurf,ωn) = ĝ(k,Rsurf,ωn) or â(k,Rsurf,ωn) =
â(k,Rsurf,ωn) and b̂(k,Rsurf,ωn) = b̂(k,Rsurf,ωn), where k =
k − 2n(n · k) with a unit vector n, which is perpendicular to
the surface.

We solve Eqs. (4) by the numerical integration toward the
k direction for â and toward the −k direction for b̂ from the
surface to the position r . Since â(k,Rsurf,ωn) = â(k,Rsurf,ωn),
the initial value of â at a surface Rsurf is determined by the
numerical integration toward the k direction from the other
surface to Rsurf . Eventually, we have to solve the numerical
integration along the sufficiently long path by changing the
direction from k to k at the surface so that the integration
path gives the same value of â under arbitrary initial values,
and also b̂. Since the integration path changes the direction
at the surface, simple calculation is difficult. For overcoming
the difficulty, we exploit that the change in the direction of the
integration path from k to k can be regarded as the change
in the relative momentum of the pair potential from k to k.
For example, we can substitute −Aμx for Aμx in the pair
potential instead of the reflection of the integration paths at a
surface x = 0. Similarly for the other surfaces, we can integrate
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Eqs. (4) along the straight long paths in the region connected
to the antiperiodic pair potential infinitely.

We calculate the quasiclassical Green’s function in a range
−L/2 � x � L/2 and −D/2 � z � D/2 instead of a cross
section A (0 � x � L,0 � z � D) to reduce computational
time. We show the reduction method in the Appendix in
addition to other reduction methods with the symmetry of
the quasiclassical Green’s function.

IV. A PHASE

We discuss here the situation in which the thickness of a slab
D is changed, where the A and B phases are stable in thin and
thick slabs, respectively.25 We present the calculated results of
OP, LDOS, and mass current for the A phase and spin current
for the B phase at T = 0.2Tc. In each phase, the results depend
on the thickness D. The length of the cross section A is taken
as L = 40ξ0 throughout the paper where the OP is recovered
to the bulk value at the center of the system. Note that the
following results are unchanged for the length L longer than
40ξ0. In addition, we consider the low pressure limit P → 0
within the weak-coupling limit. The spatial positions of the
results are indicated by the indexes in Fig. 2(b). In this section
and next section, we use the units ξ0 = h̄vF /2πkBTc, πkBTc,
and N0 for length, energy, and LDOS, respectively.

The bulk of the A phase is in the chiral state. The OP in the
chiral state is described by19

Aμi = dμ(m + in)i ,

where the m vector and the n vector are perpendicular to each
other. The l vector, which signifies the orbital chirality, is
defined as l ≡ m × n. At the edge of a slab, since the normal
orbital component to the edge vanishes, the polar state will be
realized. The OP in the polar state is described by19

Aμi = dμmi,

where we regard the n vector as perpendicular to the edge.

In a slab cell used by Bennett et al.26 where the thickness
is 0.6 μm ≈ 8ξ0, it is expected that the A phase is stable
at T = 0.2Tc.36 Since the thickness D is much shorter than
the dipole coherence length ∼1000ξ0, the d vector, which
characterizes the spin state of the OP in the A phase, points
to the z direction in the absence of a magnetic field as long
as the l vector is parallel to the z axis. The l vector is parallel
to the z axis everywhere except near the side edges at x = 0
and x = L in the slab shown in Fig. 2. The length scale of
the spatial variation of the l vector is short, whose order is
the coherence length. On the other hand, the d vector cannot
vary spatially since the order of the length scale is the dipole
coherence length. The d vector is spatially uniform even under
a magnetic field.37 In this paper, we fix the direction of the
d vector to the z axis.

A. D = 8ξ0: Thin slab for A phase

For D = 8, the OP is described by �z(k,x) = Azx(x)kx +
Azy(x)ky , where the relative phase between Azx and Azy is
π/2. The OP is uniform along the z direction and varies along
only the x direction. Since the slab is thin, the kz component
of the OP is suppressed. Note that the uniformness along
the z direction and the suppression of the kz component are
not suppositions like in the previous work,29 but results by
the self-consistent calculation. The profile of the OP along
the x axis is shown in Fig. 3(a). Because of the specular
boundary condition, the kx component perpendicular to the
edge becomes zero at x = 0 and x = L. In contrast, the parallel
ky component is enhanced by compensating for the loss of the
kx component at the edge, where the polar state is realized.
The kx component increases and the ky component decreases
toward the bulk region around x = L/2; thus the chiral state
with kx + iky is attained. We can construct the l vector as li ≡
−iεijkA

∗
zjAzk/|�|2, where εijk is the totally antisymmetric

tensor and |�|2 = A∗
ziAzi is the squared amplitude of the OP.

The l vector points to the z direction in the bulk region and
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FIG. 3. (Color online) Calculated results for the A phase with D = 8. Profiles of OP (a) and mass current jy (b) along the x axis. (c) LDOS
N (E,x) at “2” and “5” defined in Fig. 2(b). (d) Zero-energy LDOS N (E = 0,x) from the edge at x = 0 to the bulk at x = L/2. Angle-resolved
LDOS N (E,x = 0,θ ) with φ = 0◦ (e) and N (E,x = 0,φ) with θ = 90◦ (f). The peak energy of angle-resolved LDOS at the side edges as a
function of kz for ky = 0 (g) and as a function of ky for kz = 0 (h), where “L” (“R”) is for the left (right) edge. In this and the following figures,
the units of length, energy, and Aμi , LDOS, and wavelength are ξ0, πkBTc, N0, and kF , respectively.
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vanishes at the edge. Since the chiral state is realized except
at the edge, the Majorana fermion edge state �† = � exists at
the side edges.9,12

The mass current jy(x) is shown in Fig. 3(b). The mass
current flows circularly along the side edge of the slab.
Experimental values23 are used as coefficients of Eq. (14)
so that a quantitative value of the mass current is obtained.
By applying a magnetic field perpendicular to a slab, we
can produce a spin imbalance due to the Zeeman shift
between the up-up spin pairs and the down-down spin pairs.
This results in a net spin current in addition to the mass
current.

Figure 3(c) shows LDOS at edge x = 0 (position “2” in
Fig. 2) and bulk x = L/2 (“5”). It is clearly seen from line
“2” for x = 0 that the LDOS with a substantial weight appears
at zero energy, corresponding to the Majorana edge mode,
because the distance L between the edges is macroscopic.9,12

This implies that the LDOS is expressed as N (E,x = 0) =
N (E = 0,x = 0) + αE2 in the vicinity of E = 0. The first
term comes from the Majorana edge mode, and the second
term comes from the point node of the chiral state in the
bulk A phase. The peak at E ≈ 0.65 comes from the gap of
the chiral state in the bulk and the peak at E ≈ 0.8 comes
from the gap of the polar state at the edge. The LDOS at
x = L/2 (line “5”) shows a typical behavior of the point node
spectrum, namely, N (E,x = L/2) ∝ E2. In Fig. 3(d) we show
the extent of the Majorana edge mode at E = 0 toward the bulk
from the edge at x = 0, which spreads over the order of 5ξ0.
The spectrum of the edge gradually changes into the bulk
spectrum.

The LDOS N (r,E) is obtained by averaging the angle-
resolved LDOS N (r,E,k) on the Fermi surface, which has the
peak at the energy of the surface Andreev bound state. The
dispersion relation of the surface Andreev bound state can be
evaluated by following the peak in each momentum direction.
The angle-resolved LDOS N (E,x = 0,θ ) with φ = 0◦ and
N (E,x = 0,φ) with θ = 90◦ are shown in Figs. 3(e) and 3(f),
respectively, where θ is the polar angle from the kz axis and φ is
the azimuthal angle from the kx axis on the three-dimensional
Fermi sphere. The angles and momentum directions have
the relations tan θ = √

k2
x + k2

y/kz and tan φ = ky/kx . The
angle-resolved LDOS is symmetric between 0◦ � θ � 90◦ and
180◦ � θ � 90◦, and between −90◦ � φ � 90◦ and 270◦ �
φ � 90◦. The zero-energy peaks of the angle-resolved LDOS
appear if φ = 0◦ except for θ = 0◦. The zero-energy peaks
come from the zero-energy Andreev bound state of QPs at the
edge. The QPs without the ky component have the zero-energy
Andreev bound state because they feel the π phase shift of the
pair potential for the relative momentum from (kx,ky = 0,kz)
to (−kx,ky = 0,kz). This is clear from the Eilenberger equation
(2) since the quasiclassical Green’s function ĝ(k) depends on
only the k component of the pair potential kx + iky . The angle-
resolved LDOS is asymmetric with respect to E = 0 [Fig. 3(f)]
because the superfluid state in the A phase has the chirality.20

The asymmetric angle-resolved LDOS is related to the mass
current.

The peak energy of angle-resolved LDOS at the side edges
as a function of kz for ky = 0 and as a function of ky for
kz = 0 is shown in Figs. 3(g) and 3(h), respectively. It is found
that the energy is dispersionless along the kz axis and two

FIG. 4. (Color online) The OP for the A phase with D = 14.
(a) Amplitude of each component. Profiles of each component along
“I” (b) and along “II” (c). (d) Orientations of l-vector texture in the
x-z plane of a slab.

linear dispersions appear near E = 0 along the ky axis, where
each dispersion comes from the left (x = 0) and right (x = L)
edges. Since the directions of the mass current are different
for both edges, the linear dispersions have the opposite slope.
The linear Dirac dispersions continue along the kz direction
and form a “Dirac valley.’ The results are consistent with the
strict quantum level structures of the Majorana fermion edge
state by Bogoliubov–de Gennes equation.29

B. D = 14ξ0: Thick slab for A phase

In a thick slab, the kz component of the OP is induced. For
D = 14, the kz component appears near the edges at x = 0
and x = L to avoid the polar state except at z = 0 and z = D,
shown in Figs. 4(a)–4(c). The OP is described by �z(k,r) =
Azx(r)kx + Azy(r)ky + Azz(r)kz, where the phases of Azz and
Azx are the same and the relative phase between Azz and Azy

is π/2. Since the thickness of D = 14 is small, the Azz does
not recover the bulk value of Azx at the side edges x = 0 and
x = L along z = D/2 [Fig. 4(c)]. As similarly at the edges
z = 0 and z = D, the l vector is perpendicular to the edges
at x = 0 and x = L by the induced kz component, shown in
Fig. 4(d).

The mass current jy(r) is shown in Fig. 5(a), and its profiles
along “I” (z = 0), “II” (z = D/2), and “III” (z = D) are shown
in Fig. 5(b). The mass current flows clockwise relative to the
local l-vector direction. The jy from the l vector in the bulk
region flows to the negative (positive) y direction at x = 0
(x = L). At the side edges, since the l vector points to the neg-
ative x direction, the jy from the edges flows to the negative and
positive y directions in z < D/2 and z > D/2, respectively.
Therefore the edge mass current is strengthened in z < D/2
(z > D/2) and weakened in z > D/2 (z < D/2) at edge x = 0

094510-5



Y. TSUTSUMI, M. ICHIOKA, AND K. MACHIDA PHYSICAL REVIEW B 83, 094510 (2011)

FIG. 5. (Color online) Calculated results for the A phase with D = 14. (a) Mass current jy(r) in the x-z plane. (b) Profiles of the mass
current jy(r) along paths “I,” “II,” and “III.” (c) LDOS N (E,r) at “1,” “2,” “3,” and “5.” (d) Zero-energy LDOS N (E = 0,r) along “I,” “II,”
and “III.” Angle-resolved LDOS N (E,r,θ ) with φ = 0◦ at “1” (e), “2” (f), and “3” (g). (h) Peak energy of angle-resolved LDOS as a function
of kz for ky = 0 at “1.”

(x = L). The symmetry of the mass current between z < D/2
and z > D/2 is broken despite the symmetry of the OP.

Figure 5(c) shows LDOS at (x,z) = (0,0), (0,D/2), (0,D),
and (L/2,D/2). At (0,0) and (0,D) (lines “1” and “3”), there
are the zero-energy LDOS and a small peak at a low energy
indicated by the arrow in Fig. 5(c). Although l vector points
to the edge, the zero-energy LDOS also exists at (0,D/2)
(line “2”). Lines “1” and “3” are slightly decreased and
increased, respectively, in low energy from the small peak
as energy increases. Line “2” is almost constant in low energy.
The LDOS (lines “1,” “2,” and “3”) are enhanced sharply near
E ≈ 0.5. The LDOS at (L/2,D/2) (line “5”) shows the typical
spectral behavior of the point node. In Fig. 5(d) we show the
extent of the zero-energy edge mode toward the bulk from the
edge at x = 0. The amounts of the zero-energy LDOS at x = 0
along z = D/2 and z = D (lines “II” and “III”) are smaller
than that along z = 0 (line “I”). The extent of the zero-energy
LDOS along “III” is of the order of 5ξ0 as in the thin slab
D = 8; however, the zero-energy LDOS along “I” and “II” are
more widely extended.

The angle-resolved LDOS N (E,r,θ ) with φ = 0◦ at
(0,0), (0,D/2), and (0,D) are, respectively, displayed in
Figs. 5(e)–5(g). The zero-energy peaks of the angle-resolved
LDOS appear except for θ = 0◦. The peaks of the line θ = 0◦
at the finite low energy appear from the upper and lower
surfaces because the kz component of the pair potential is
nonvanishing. Since thickness D = 14 is small, the original
zero-energy peak of θ = 0◦ perpendicular to the upper and
lower surfaces is split into the finite-energy peaks, which is
discussed particularly for the B phase in next section. The
splitting peaks at (0,0) are shown in Fig. 5(h) only at kz = ±1
for ky = 0. The finite-energy peaks compose the small peak
of the LDOS in lines “1” and “3” in Fig. 5(c). Since position
(0,D/2) is apart from the upper and lower surfaces, the energy
peaks of θ = 0◦ are small. Consequently, the peak of the LDOS
at low energy is not clear [line “2” in Fig. 5(c)]. The point
nodes of the OP near the side edges have a tilt to the x direction
according to the l vector, or the antinodes of the OP lie to some

angles from the kz axis. Thus the incident QPs from (0,0) with
low angles from the kz axis do not feel the clear small gap in
the vicinity of the point nodes. For instance, the line θ = 30◦
in Fig. 5(e) should be compared with that in Fig. 3(e) for
the thin slab D = 8. Therefore the gaplike LDOS enhanced
sharply near E ≈ 0.5 appears [line “1” in Fig. 5(c)]. On the
other hand, the incident QPs from (0,D) with low angles from
the kz axis are reflected at the edge and regarded as with low
angles from the −kz axis. Since the QPs feel the small gap in
the vicinity of the point nodes, they have the clear peaks in
the angle-resolved LDOS [Fig. 5(g)]. Therefore the LDOS is
slightly increased in low energy as energy increases [line “3”
in Fig. 5(c)]. Since the QPs at (0,D/2) have the two kinds of
the characteristic momentum, the LDOS is almost constant in
low energy [line “2” in Fig. 5(c)].

The LDOS at the side edge is different and depends on the
thickness of the slab. In the thin slab (D = 8), the l vector
points to the z direction everywhere and the LDOS is N (E) =
N (0) + αE2 in low energy. In contrast, in the thick slab
(D = 14), the l vector points to the x direction near the
side edge and the LDOS is N (E) = N (0) + Ngap(E), where
Ngap(E) is almost zero in low energy and increases sharply
near E ≈ 0.5 like the LDOS with the full gap state. The edge
mass current varies along the side edge in the thick slab, which
is also a great difference with the thin slab.

Note that the A phase is metastable in the slab with D = 14
at T = 0.2Tc in the weak-coupling limit for P → 0.36 In the
same slab, the A phase is stabilized at T = 0.9Tc;36 however,
the l vector points to only the z direction, because the kz

component is absent, owing to the longer coherence length
at higher temperature. The mechanism is similar in that the
A phase is more stable than the B phase, which has the kx ,
ky , and kz components, in a thin slab at low temperature.
The calculated results shown in this subsection is not in
free-energy minimum at P = 0; however, the strong-coupling
effect by pressure stabilizes the A-phase texture. Thus the
above characteristics from the texture will be observed at finite
pressure.
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V. B PHASE

The B phase is stable when the thickness of a slab is larger
than ≈13ξ0 at T = 0.2Tc.36 The OP of the B phase is described
by19

Aμi = Rμi(nd ,θd )

⎛⎜⎝Axx 0 0

0 Ayy 0

0 0 Azz

⎞⎟⎠,

where Rμi(nd ,θd ) is a rotation matrix with a rotation axis
nd and a rotation angle θd about nd . The rotation matrix
gives the relative angle between the orbital momentum and
the direction along which the spin of a Cooper pair is zero.
The spin state is stable by the dipole-dipole interaction when
θd = θL ≡ cos−1(−1/4) and nd is perpendicular to the surface
in the absence of a magnetic field.19 If the thickness of a
slab is much smaller than the dipole coherence length, nd is
locked to the z axis. Thus we derive Axx(r), Ayy(r), and Azz(r)
with the uniform rotation matrix R(z,θL). Note that the three
components have the same phase.

At the surface of a slab, since the normal component to the
surface of the orbital state vanishes, the planar state will be
realized. The OP in the planar state is described by19

Aμi = Rμi(nd,θd )

⎛⎜⎝Axx 0 0

0 Ayy 0

0 0 0

⎞⎟⎠,

where we regard the z axis as perpendicular to the edge. If
θd = 0, the OP can be written by other descriptions as

�↑↑(k) = −�p√
2

(kx − iky), �↓↓(k) = �p√
2

(kx + iky),

where �↑↑ = −(�x − i�y)/
√

2, �↓↓ = (�x + i�y)/
√

2,
and �p = Axx = Ayy . Therefore in the planar state, Sz =
+1 spin state has Lz = −1 orbital angular momentum and
Sz = −1 spin state has Lz = +1 orbital angular momentum.

A. D = 30ξ0: Thick slab for B phase

We consider that the thickness of a slab is much longer than
the coherence length, namely, the thickness can be regarded
as macroscopic for the OP, and much shorter than the dipole
coherence length. The requirement is satisfied for a thickness
of D = 30. It is clearly seen that the component of the OP
perpendicular to the edge becomes zero in Fig. 6(a). The polar
state ky occurs at the corner “1” (x = 0,z = 0). The planar
state kx − iky for the up-up spin Cooper pairs and kx + iky

for the down-down spin Cooper pairs is attained in the middle
region around “4” (x = L/2,z = 0), shown in Fig. 6(b). The
planar state ky ± ikz is realized at the side edge “2” (x = 0,

z = D/2) and the OP is recovered to the bulk value of the
B phase around “5” (x = L/2,z = D/2), shown in Fig. 6(c).
At all edges (x = 0, x = L, z = 0, and z = D), the Majorana
fermion edge state exists.5–7

The spin currents jx
sy(r), jz

sy(r), j
y
sx(r), and j

y
sz(r) are

shown in Fig. 7(a). Since the spin current flows in the three-
dimensional real space, we show the schematic flow of the spin
current in Fig. 7(b). The spin current for the i component of
spin turns around the i axis. This is understandable as follows:

FIG. 6. (Color online) The OP for the B phase with D = 30.
(a) Amplitude of each component. Profiles of each component along
“I” (b) and along “II” (c).

Since the up-up spin Cooper pairs have negative chirality and
the down-down spin Cooper pairs have positive chirality, the
z component of the spin current turns around the z axis.
Other components are also understood in the same manner.
Note that the schematic flow in Fig. 7(b) is derived from Aii

before rotation by R(z,θL). The rotation axes for the x and y

component of the spin current are changed correspondingly.
Figure 8(a) shows the LDOS. It is seen that only the line “1”

(x = 0,z = 0) has the zero-energy LDOS from the zero-energy

FIG. 7. (Color online) (a) The spin current for the B phase with
D = 30. The unit of the spin current is 10−9 J/m2. (b) A schematic
flow of the spin current for Sx , Sy , and Sz components.
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FIG. 8. (Color online) The LDOS for the B phase with D = 30.
(a) LDOS N (E,r) at “1,” “2,” “4,” and “5.” (b) Zero-energy LDOS
N (E = 0,r) along “I,” “II,” and “IV” (z = 0.5). The peak energy of
angle-resolved LDOS as a function of ky for kz = 0 and as a function
of kz for ky = 0 at “2” (c), and as a function of kx for ky = 0 and as a
function of ky for kx = 0 at “4” (d). (e) and (f) are the same plots as
(c) and (d), but at “1.”

Andreev bound state of QPs without the ky component. Lines
“2” and “4” (x = 0,z = D/2 and x = L/2,z = 0) are almost
the same and show the linear relation N (E,r) ∝ E near E = 0,
which reflects the surface Andreev bound states.38,39 Line “5”
(x = L/2,z = D/2) corresponds to the bulk LDOS where the
full gap is expected. In Fig. 8(b) we show the extension of the
zero-energy state toward the middle from the edge at x = 0.
The zero-energy LDOS of line “I” (z = 0) reduces sharply
approaching the middle region from the edge. It is found that
the value N (E = 0,x = 0) in line “IV” (z = 0.5) is much
smaller than that of line “I.” Line “II” along z = D/2 shows
the absence of the zero-energy LDOS. Therefore we conclude
that the zero-energy LDOS is localized at the corner of the
order of ξ0. The peak energy of the angle-resolved LDOS is
shown in Fig. 8(c) for the side edge and Fig. 8(d) for the lower
surface. Figure 8(c) shows a function of ky for kz = 0 and a
function of kz for ky = 0 at “2” (x = 0,z = D/2). Figure 8(d)
shows a function of kx for ky = 0 and a function of ky for
kx = 0 at “4” (x = L/2,z = 0). These show that the side edge
and lower surface have the same dispersion relation for low
energy. The linear dispersion forms the Majorana cone at the
surface.5

The peak energy of the angle-resolved LDOS at corner (0,0)
is shown in Figs. 8(e) and 8(f). The energy is dispersionless
along the kz and kx axes for ky = 0. The Dirac-valley-type
dispersion is composed of the zero-energy LDOS at the corner
[line “1” in Fig. 8(a)]. This is different from the Majorana cone
at the surface.
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FIG. 9. (Color online) The same as in Fig. 8, but for the B phase
with D = 14.

B. D = 14ξ0: Thin slab for B phase

We consider D = 14 in thickness of a slab, which is the
critical thickness for stabilizing the B phase below which the
stripe phase becomes stable.36 Since the thickness is short,
the kz component of the OP cannot completely recover the bulk
value. Except that the kz component is reduced, the qualitative
features of the OP and the spin current are the same in the case
of D = 30; however, the LDOS shows a different spectrum.

Figure 9 shows the LDOS and the peak energy of the angle-
resolved LDOS, which are compared with those in Fig. 8.
The differences between them are the following: Since the
thickness of the slab is short, line “5” for the center (x =
L/2,z = D/2) has the spectrum from the full gap and the linear
relation near E = 0, shown in Fig. 9(a). The latter comes from
the contributions extending from the upper and lower surfaces.
Line “2” for the side edge (x = 0,z = D/2) in Fig. 9(a) has the
small peak at E ≈ 0.35 composed of the deformed Majorana
cone in 0.5 ≈ |kz| ≈ 0.7, shown in Fig. 9(c), because the QPs
with the kz component reflect that the kz component of the OP
does not recover the bulk value. The peak energy at “4” for the
lower surface in Fig. 9(d) implies that the lowest energy of the
Majorana cone is lifted from zero because of the tunneling of
the zero-energy modes bound at two surfaces corresponding
to the upper and lower surfaces. For the same reason, the
zero-energy modes at the corner is split for kz = ±1 in
Fig. 9(e) and for ky = 0 or kx = 0 in Fig. 9(f). By the energy
splitting, the zero-energy LDOS is slightly reduced; however,
the extension of the zero-energy state is the same for the thick
slab D = 30, shown in Fig. 9(b).

C. Dependence of the energy splitting on the thickness

The lowest energy of the Majorana cone at the lower surface
is lifted more from zero energy as the thickness is shorter. If
the thickness is macroscopically long, the zero-energy modes
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FIG. 10. (Color online) Calculated results for the B phase at
“4.” (a) The peak energy of angle-resolved LDOS as a function
of kx for ky = 0 and as a function of ky for kx = 0 with sev-
eral thicknesses D = 30, 12, and 8. (b) The dependence of the
energy splitting on the thickness. The dashed line is proportional
to exp(−D/3ξ0).

appear, shown in the left panel of Fig. 10(a) for the B phase
at “4” (x = L/2,z = 0) with D = 30. When the thickness
is short, the zero-energy modes bound at two surfaces are
hybridized with each other. They form the symmetric and
antisymmetric states with the opposite sign energy E+ and E−,
respectively, where |E+| = |E−| = Esplit. The representative
dispersion relation with D = 12 is shown in the middle panel
in Fig. 10(a). In the case of more shorter thickness, the B phase
becomes the planar phase, which is metastable against the
A phase, because the kz component of the OP vanishes. Since
the Fermi surface has the point nodes toward the direction of
kx = ky = 0, the angle-resolved LDOS toward the direction
corresponds to that of the normal state without the peak
energy. We show the dispersion relation with D = 8 except
point kx = ky = 0 in the right panel in Fig. 10(a). There is
a difference between the dispersion relations for D = 12 and
D = 8 also in long wavelengths, which are curved and linear,
respectively.

The dependence of the energy splitting on the thickness
is shown in Fig. 10(b). The energy splitting has the relation
Esplit ∝ exp(−D/3ξ0), where 3ξ0 is the effective coherence
length. The exponential suppression is similar to the energy

splitting of the Majorana zero-energy modes bound at two
vortices in a chiral p-wave superfluid.40,41

VI. DISCUSSION

A. Majorana zero modes in the A and B phases

In the A phase, which has point nodes, since the zero-
energy QPs appear on the line ky = 0 in momentum space,
the zero-energy QPs are dispersionless along the kz direction
[Fig. 3(g)]. Therefore the dispersion of the QPs forms the Dirac
valley and the zero-energy LDOS spreads over the order of 5ξ0

from the side edge [Figs. 3(c) and 3(d)]. In contrast, since the
OP in the B phase has a full gap on the Fermi surface, only
the QPs with the momentum perpendicular to the edge are the
zero-energy Majorana QPs. Therefore the dispersion of the
QPs forms the Majorana cone [Figs. 8(c) and 8(d)]. However,
at the corner, the dispersion of the QPs forms the Dirac valley
and the zero-energy LDOS spreads over the order of ξ0. Types
of dispersion relations for the A and B phases are summarized
in Table I.

The spin degeneracy of the QPs is also different between
the A and B phases. In the A phase, since the up-up and
down-down spin Cooper pairs have the same chirality, the
low-energy QPs have the degenerate branch of dispersion at
the edge [Fig. 3(h)]. In the B phase, since the up-up and
down-down spin Cooper pairs have the opposite chirality, the
low-energy QPs have two branches of dispersion at the edge
[Fig. 8(c)]. This difference manifests itself in the edge current,
namely, the mass current in the A phase [Fig. 3(b)] and the
spin current in the B phase (Fig. 7).

B. Stripe phase

We discuss the Majorana zero modes at a domain wall
in the stripe phase.36 We take the thickness of a film along
the z direction and the modulation of the OP along the
x direction. In the stripe phase, the kz component of the OP
changes the sign at the domain wall perpendicular to the x

direction so that the pair breaking by the reflection at the
surface of the film is prevented. Then, the OP is described as
�right = (�‖kx,�‖ky,�⊥kz) to the right of the domain wall
and �left = (�‖kx,�‖ky, − �⊥kz) to the left of the domain
wall, where �‖ is finite everywhere and �⊥ vanishes at the
domain wall.

The QPs with the kz component across the domain wall
have the finite-energy Andreev bound states because they feel
the sign change of the kz component of the pair potential,

TABLE I. Types of dispersion relations at the upper or lower surface, side edge, and corner of a slab for the A and B phases. Dirac valley is
formed from linear dispersion from E = 0 along a certain momentum direction and dispersionless zero-energy modes along another momentum
direction in long wavelength. Majorana cone is formed from isotropic liner dispersion from E = 0 on the plane parallel to a surface in the
momentum space in long wavelength, where the zero mode is in a point on the Fermi surface. The mark × indicates absence of zero-energy
modes.

Upper or lower surface Side edge Corner

A phase thin slab (D = 8ξ0) × Dirac valley Dirac valley
thick slab (D = 14ξ0) × Dirac valley Dirac valley

B phase thin slab (D = 14ξ0) × Majorana cone Dirac valley
thick slab (D = 30ξ0) Majorana cone Majorana cone Dirac valley
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which is not the exact π -phase shift. In addition, since the
QPs with kz = 0 feel the full gap of the pair potential,
they are not excited in low energy. Therefore the Majorana
zero-energy QP is absent at the domain wall in the stripe
phase. The domain wall is qualitatively different from the
edge.

C. Experimental proposal

There are several experimental means to detect the
Majorana nature. Surface specific-heat measurement, which
was performed in connection with detection of the Andreev
surface bound state,42 resolves the side edge contribution
Csurface(T ) = γ T of the A phase in a thin slab at low
temperatures, where γ ∝ N (E = 0), because the bulk con-
tribution Cbulk ∝ T 3 which comes from point nodes where
N (E) ∝ E2 is distinguishable. Note that, in the A phase, the
contribution from the two upper and lower specular surfaces
in the slab geometry is the same as that from the bulk. Thus
the surface specific heat Csurface(T ) = γ T of the Majorana
QPs is distinctive. If the l vector direction is modulated near
the side edge, the LDOS at the surface is N (E) = N (0) +
Ngap(E). The surface specific heat from the LDOS is also
Csurface(T ) = γ T .

In the B phase, the zero-energy LDOS is localized at the
corner of the order of ξ0. The contribution from the corner
is interesting but smaller than that of the surface. Since we
will discriminate Cbulk ∝ T −3/2e−�/kBT from the gap � and
Csurface ∝ T 2 from the linear behavior of LDOS N (E,r) ∝ E

near E = 0, the Majorana fermion can be observed. In the slab
with short thickness where the zero-energy modes are split at
the upper and lower surfaces, the difference of the specific heat
from the surface and bulk will not be distinctive because the
gap structure and linear behavior of the LDOS coexist.

The observation of the edge mass current in the A phase,
which is intimately connected with the intrinsic angular
momentum,19 is also hopeful. The magnitude of the edge mass
current is unchanged in wider slabs than L = 40ξ0 for which
we have calculated. Considering the observation of the torque
from the edge mass current for a 10 mm × 7 mm × 0.6 μm slab
sample (Bennett et al.26 had been used) by a typical torsional
oscillator, the frequency shift from the edge mass current is of
the order of 10−23 Hz.43 The torque is too small to observe by
a torsional oscillator because the magnitude is ∼Nh̄, where
N is the total number of 3He atoms in the slab sample. We
have to consider other experimental methods. Also the edge
spin current in the B phase which flows three dimensionally
has been obtained quantitatively. The techniques to detect the
spin current is desired. The specific experimental proposal to
observe the edge current is a future problem.

The most direct evidence of the Majorana nature is derived
from the observation of the anisotropic spin susceptibility.
If we use the Majorana nature of the edge state in the
A phase, the local spin operators result in Sx ≈ Sy ≈ 0 and
only Sz parallel to the d vector remains nontrivial for T �
Tc.12 This predicts the Ising-like spin dynamics for the local
spin operator parallel to the d vector in the A phase as well as
that perpendicular to the edge in the B phase.5,7 This is in sharp
contrast to the susceptibility parallel to the d vector in the bulk
A phase, which is suppressed at low temperatures according

to the Yosida function. On the other hand, the susceptibility
perpendicular to the d vector still assumes the bulk value,
which is the same as it is in the normal state. The anisotropic
susceptibility has been discussed also by Shindou et al.44 and
has been calculated in the B phase by Nagato et al.7

QP scattering or QP beam experiments are extremely
interesting. They were performed in the past on 4He where
roton-roton scattering is treated45 and on the 3He B phase
where the surface Andreev bound state is investigated.46,47

Using this method, we may pick up Majorana QPs with
a particular wave number. Particularly in the A phase, the
Majorana QPs from the edge is separated from other QPs
from the nodal region.

Another option might be to use a free surface where the Ma-
jorana fermion surface state is formed. As shown by Kono,48

it can be detected through the excitation modes of the floating
Wigner lattice of electrons placed on the surface. We need a
special, but feasible, configuration of the experimental setups.

Note that the recent work of transverse acoustic impedance
measurements to detect the surface bound states in the
superfluid 3He will derive important information from the
Majorana QPs.49,50

VII. SUMMARY

We have designed a concrete experimental setup to observe
the Majorana nature at the surface in slab geometry. In
connection with realistic slab samples, we have considered
the upper and lower surfaces and the side edges including the
corners with several thicknesses. We have demonstrated that
the quasiclassical Eilenberger equation yields quantitatively
reliable information on physical quantities for the superfluid
3He A and B phases. Specifically, we have exhibited the
difference of LDOS between the A and B phases and evaluated
the mass current for the A phase and the spin current for the
B phase quantitatively. Then, we have shown the influence on
the Majorana zero modes from the spatial variation of the l

vector for the A phase in the thick slab and the energy splitting
of the zero-energy modes for the B phase confined in the thin
slabs. The corner of the slab in the B phase is accompanied by
the unique zero-energy LDOS of corner modes. In addition, we
have demonstrated the absence of the Majorana zero-energy
QP at the domain wall in the stripe phase. On the basis of the
quantitative consequences, it is proposed that the measurement
of the specific heat, the edge current, and the anisotropic
spin susceptibility provides feasible and verifiable experiments
to check the Majorana nature. The control on the thickness
of the slab is crucial to detect the Majorana surface states.
The experiment controlling the thickness of the film of the
superfluid 3He is interesting.28

ACKNOWLEDGMENTS

We thank T. Mizushima for helpful theoretical discussions,
and K. Kono, J. Saunders, and Y. Okuda for informative
discussions on their experiments. Y.T. acknowledges the
support of the Research Fellowships of the Japan Society for
the Promotion of Science for Young Scientists.

094510-10



MAJORANA SURFACE STATES OF SUPERFLUID 3He . . . PHYSICAL REVIEW B 83, 094510 (2011)

APPENDIX

We use the symmetry of the quasiclassical Green’s function
in Eilenberger equation (2) to reduce computational time.
If we replace Matsubara frequency ωn with −ω∗

n, the qua-
siclassical Green’s functions in particle-hole space have the
relations

ĝ(k,r, − ω∗
n) = −ĝ(k,r,ωn)†,

ĝ(k,r, − ω∗
n) = −ĝ(k,r,ωn)†,

f̂ (k,r, − ω∗
n) = f̂ (k,r,ωn)†,

f̂ (k,r, − ω∗
n) = f̂ (k,r,ωn)†, (A1)

where we describe the complex conjugate of the Matsubara
frequency explicitly because that is important when we
calculate LDOS. By the relations, we are allowed to sum only
the positive ωn to calculate self-consistent pair potential and
mass and spin currents.

If we reverse the sign of relative momentum k, the sign of
the spin-triplet components of the OP changes; on the other
hand, that of a spin singlet component of the OP does not
change. Specifically, general OP

�̂(k,r) =
(

�↑↑(k,r) �↑↓(k,r)

�↓↑(k,r) �↓↓(k,r)

)
has a relation �̂(−k,r) = −�̂T(k,r), where a superscript T

indicates the transposition of a matrix. Since the sign of the

Fermi velocity also changes, v(−k) = −v(k), the quasiclassi-
cal Green’s functions in particle-hole space have the relations

ĝ(−k,r,ω∗
n) = ĝ(k,r,ωn)∗,

ĝ(−k,r,ω∗
n) = ĝ(k,r,ωn)∗,

f̂ (−k,r,ω∗
n) = −f̂ (k,r,ωn)∗,

f̂ (−k,r,ω∗
n) = −f̂ (k,r,ωn)∗. (A2)

More reduction of computational time is possible by
using mirror operators which define Sx a ≡ (−ax,ay,az),
Sza ≡ (ax,ay, − az), and Sxza ≡ (−ax,ay, − az) with an ar-
bitrary vector a = (ax,ay,az). If the mirror operators act on
the center-of-mass coordinate of the pair potential under
the antiperiodic boundary condition mentioned in Sec. III,
�(k,Sr) = �(Sk,r), where S is one among Sx , Sz, and Sxz.
Since Sv · S∇ = v · ∇, the quasiclassical Green’s function
satisfies

ĝ(Sk,Sr,ωn) = ĝ(k,r,ωn). (A3)

Therefore the quasiclassical Green’s function and pair po-
tential are obtained self-consistently by numerical calculation
for only the positive Matsubara frequency and one-eighth of
the Fermi surface in the coordinate −L/2 � x � L/2 and
−D/2 � z � D/2 by the symmetry of the quasiclassical
Green’s function (A1)–(A3). The calculation for the real-
space coordinates is carried out by parallel computing with
OpenMP.
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