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We analyze the charge and spin transport through a ballistic ferromagnet/insulator/superconductor junction
by means of the Bogoliubov–de Gennes equations. For the ferromagnetic side we assume that ferromagnetism
may be driven by an unequal mass renormalization of oppositely polarized carriers, i.e., a spin bandwidth
asymmetry, and/or by a rigid splitting of up- and down-spin electron bands, as in a standard Stoner ferromagnet,
whereas the superconducting side is assumed to exhibit a d-wave symmetry of the order parameter, which can
be pure or accompanied by a minority component breaking time-reversal symmetry. Several remarkable features
in the charge conductance arise in this kind of junction, providing useful information about the mechanism of
ferromagnetism in the ferromagnetic electrode, as well as of the order-parameter symmetry in the superconducting
one. In particular, we show that when a time-reversal symmetry-breaking superconductor is considered, the use
of the two kinds of ferromagnet mentioned above represents a valuable tool to discriminate between the different
superconducting mixed states. We also explain how this junction may mimic a switch able to turn on and off a
spin current, leaving the charge conductance unchanged, and we show that for a wide range of insulating barrier
strengths, a spin-bandwidth asymmetry ferromagnet may support a spin current larger than a standard Stoner
one.
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I. INTRODUCTION

Transport in itinerant ferromagnet/insulator/super-
conductor (F/I/S) junctions is a fundamental issue in
condensed matter physics for its deep implications in
electronics and spintronics,1 and for the opportunity it
offers to test the physical properties of ferromagnetic and
superconducting materials via point contact2,3 or scanning
tunneling4,5 measurements. Moreover, this type of hybrid
structure may serve as a playground for a wealth of
interesting quantum-mechanical effects pertaining to the
interplay between spin and charge degrees of freedom. In
fact, beyond the possibility of a direct estimation of the
gap magnitude in conventional superconductors, tunneling
conductance measurements offer the opportunity to probe
also the superconducting order parameter symmetry in
unconventional superconductors. This property has made this
kind of measurement fundamental in finding clues about the
symmetry of the new families of superconductors recently
discovered, for which there is a general consensus that they
cannot be considered as conventional. For example, one of the
strongest evidences supporting d-wave symmetry for high-Tc

cuprates is the zero-bias conductance peak (ZBCP) revealed
in ab-plane tunneling conductance from normal metals.6

In some cuprates, such as, for instance, YBa2Cu3O7−δ ,7,8

the existence of a subdominant component in the order
parameter possibly breaking time-reversal symmetry is still a
matter of debate and, in this respect, exploiting the interplay
between magnetism and superconductivity in tunneling
experiments is one of the standard routes to investigate
this issue. Generally, by using a ferromagnetic electrode in
tunneling experiments it is possible to change the relative
contributions of up and down electrons to the total density
of states or, in the half-metal limit, to isolate a single spin
channel.

To interpret the large amount of tunneling experiments
performed on F/I/S junctions involving an unconventional
superconductor,9–16 fundamental theories of transport, such
as, in particular, the one by Blonder, Tinkham, and Klapwijk
(BTK),17 have been suitably extended to take into account all
possible symmetries of the superconducting order parameter.
In this context, the ferromagnetic electrode has been predom-
inantly described within the Stoner model, relying on the
assumption that the bands associated with the two possible
electron spin orientations have identical dispersion, but are
rigidly shifted in energy by the exchange interaction. However,
the Stoner model may prove to be insufficient to describe
real ferromagnets because many terms deriving from Coulomb
repulsion are eliminated from the full Hamiltonian, although
in some situations their contribution can be important.18,19

The complexity of ferromagnetism in metals is testified
by the wide range of manifestations it exhibits in nature. As
relevant examples of this variety, we mention the ferromag-
netic transition metals Fe, Co, and Ni and their alloys,20 weak-
metallic ferromagnets such as ZrZn2

21,22 and Sc3In,23,24 colos-
sal magnetoresistance manganites such as La1−xSrxMnO3,25

and rare-earth hexaborides such as EuB6.26,27 Therefore, when
theoretically modeling F/I/S junctions, it may be important
to assume for the magnetism in the F electrode microscopic
scenarios other than the Stoner one. Among them, of peculiar
interest is a form of itinerant ferromagnetism driven by
a gain in kinetic energy deriving from a spin-dependent
bandwidth renormalization, or, equivalently, by an effective
mass splitting between up- and down-spin carriers.28–33 The
interplay of superconductivity with this kinetically driven
ferromagnetism has been recently shown to originate dif-
ferent features compared to the Stoner case, concerning the
phenomena of coexistence, proximity, and transport. More
precisely, we have studied the occurrence of the coexistence of
ferromagnetism and s-wave singlet superconductivity within
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a model where the magnetic moments are due to a kinetic
exchange mechanism, and we have shown that the depaired
electrons play a crucial role in the energy balance, and
that when their dynamical effect is such that to undress
the effective mass of the carriers which participate in the
pairing, a coexisting ferromagnet-superconducting phase can
be stabilized.34 Then, we have exactly solved an extended
version of the reduced BCS model for particles that get paired
in the presence of a polarization arising from spin-dependent
bandwidths and we have calculated the ground-state phase
diagram in the full parameter space of the pair coupling and
the bandwidth asymmetry as a function of filling for different
types of spectrum topologies.35 We have also investigated the
proximity effect within a junction made of an unconventional
superconductor and a ferromagnet in the clean limit with
high-barrier transparency, and we have shown that the two
above-mentioned mechanisms for ferromagnetism lead to
different features as concerns the formation at the interface
of dominant and subdominant superconducting components
as well as their propagation in the ferromagnetic side.36

Finally, a F/I/S ballistic junction with a conventional s-
wave superconductor has been used to distinguish whether
itinerant ferromagnetism in the F electrode is due to exchange
splitting or to spin-dependent mass renormalization of up-
and down-spin electrons.37 We have also shown that under
appropriate conditions the spin-dependent conductance of
minority carriers can be larger than for majority carriers below
the energy gap �0, and lower above it, suggesting that the
junction, in a suitable range of microscopical parameters, may
work as a spin-filtering device.38

In this work we carry out the investigation of the interplay
between different types of ferromagnetism and superconduc-
tivity analyzing charge and spin transport through a ballistic
F/I/S junction where various unconventional symmetries for
the superconducting electrode are considered. The problem
is handled by solving the Bogoliubov–de Gennes (BdG)
equations39 within an extended Blonder-Tinkham-Klapwijk
approach, here formulated for a two-dimensional F/I/S junc-
tion. As it is well known, this method has been generalized in
the last years to take into account higher dimensionalities,
anisotropic forms of the superconducting order parameter,
different Fermi energies for the two sides of the junction,
and a spin–flip interfacial scattering.40–52 We investigate the
behavior of the charge and the spin conductance, revealing
several noteworthy features arising from the interplay between
unconventional superconductivity and each of the two kinds
of ferromagnetism specified above. The differences emerging
in the two cases are shown to provide relevant indications
on the physical properties of the materials constituting both
the ferromagnetic and the superconducting electrode of the
junction. Moreover, we also show that the behavior of the
charge conductance in the case of pure d-wave materials is
different from that found when a minority component breaking
time-reversal symmetry (BTRS) is also present. In this case,
the new features emerging around zero-bias voltage exhibit
a different behavior depending on whether a Stoner or a
mass mismatch ferromagnet is considered, thus providing a
clear indication on the nature of the microscopic mechanism
underlying ferromagnetism in the F layer. We would like to
notice that our assumption of a bulk character of these BTRS

components is justified by the two-dimensional character of
the junction that we analyze. Indeed, with this two-dimensional
geometry, a nodeless broken time-reversal symmetry state
may appear throughout the S side of the junction, and this
is consistent with the BTRS dx2−y2 + is or dx2−y2 + idxy

combinations here assumed.
We also report on the effect of the mass asymmetry

on spin conductance for conventional and unconventional
superconducting electrodes and we show that under specific
conditions the mass mismatch greatly enhances spin current,
so that a spin-bandwidth asymmetry ferromagnet can lead to
a spin current much larger than the one produced by a Stoner
ferromagnet, at the same polarization. Hence, we explain how
a F/I/S junction can work as a switch able to turn on and off a
spin current, leaving the charge current unchanged.

The paper is organized as follows. In Sec. II we formulate
the microscopic model and the related method of solution.
In Sec. III we present the results, discussing them in three
different Subsections concerning: (A) the magnetization in
the ferromagnetic side, (B) the charge conductance through
a junction with a superconductor having a pure dx2−y2 -wave
symmetry or a broken time-reversal symmetry of dx2−y2 + is

or dx2−y2 + idxy type, and (C) the spin conductance through a
junction with conventional and unconventional superconduc-
tors. Finally, Sec. IV is devoted to the conclusions.

II. MODEL AND FORMALISM

The system under study is built up of two semi-infinite
layers connected by an infinitely thin insulating barrier
resulting in an interfacial scattering potential of the form
V (r) = Hδ(x). We choose an interface lying along the y

direction at x = 0 (see Fig. 1) so that the region x < 0 (from
now on the F side) is occupied by an itinerant ferromagnet
(a Stoner or a spin-bandwidth asymmetry ferromagnet, or a
combination of the two), while the region x > 0 (from now on
the S side) is occupied by a singlet superconductor (so there
is no need to specify the spin quantization axis). We point
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FIG. 1. (Color online) Scheme of the planar F/I/S junction
analyzed in the paper. Here, θσ , θσ̄ , and θ ′

σ are injection, Andreev
reflection, and transmission angles, respectively, for electrons and
quasiparticles with spin σ . β is the angle formed by the crystallo-
graphic a axis of a d-wave superconductor with the x axis.
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out that though in the following we refer to free particle-like
spectra of parabolic type for which the concept of bandwidth
is in principle ill defined, we nonetheless imagine to link this
description to some effective one-band tight-binding model,
allowing to relate the inverse of the mass of the carriers to
the width of the effective bands where itinerancy takes place.
In this way, a bandwidth asymmetry is generated by simply
assuming different values of the masses for up- and down-spin
electrons.

We describe the excitations propagating through the junc-
tion by means of the single-particle Hamiltonian

Hσ
0 = [−h̄2∇2/2mσ − ρσ U − EF ]�(−x)

+[−h̄2∇2/2m′ − E′
F ]�(x) + V (r) , (1)

where σ =↑ , ↓, mσ is the effective mass for σ -polarized
electrons in the F side, ρ↑(↓) = +1(−1), U is the exchange
interaction, EF is the Fermi energy of the ferromagnet, �(x)
is the unit step function, m′ and E′

F are the quasiparticles
effective mass and the Fermi energy for the superconductor,
respectively.

The BdG equations read as

(
Hσ

0 �

�∗ −Hσ̄
0

) (
uσ

vσ̄

)
= ε

(
uσ

vσ̄

)
, σ =↑ , ↓ , (2)

where σ̄ = −σ and (uσ ,vσ̄ ) ≡ 
σ is the energy eigenstate
in the electron-hole space associated with the eigenvalue ε

(excitation energies are measured from the Fermi level). Equa-
tions (2) admit an analytical solution in the approximation of a
rigid superconducting pair potential, i.e., �(r) = �(θ ′)�(x),
where θ ′ is the angular variable for the S side (see Fig. 1).
The Hamiltonian invariance under y-directed translations
permits to factorize the part of the eigenstate parallel to
the interface, i.e., 
σ (r) = eik‖·rψσ (x), reducing the effective
dimensionality of the problem.

Looking at Fig. 1, we observe that at the interface four
scattering processes are possible for an electron injected
from the F side with spin σ and momentum k+

σ (k+
σ =

[(2mσ/h̄2)(EF + ρσ U + ε)]1/2): (a) Andreev reflection (AR)
resulting in a hole with momentum k−

σ̄ (k−
σ̄ = [(2mσ̄/h̄2)(EF +

ρσ̄U − ε)]1/2) belonging to the opposite spin band and a
Cooper pair transmitted in the superconductor; (b) normal
reflection; (c) transmission as electron-like quasiparticle with
momentum k′+

σ (k′+
σ = [(2m′/h̄2)(E′

F +
√

ε2 − |�σ+|2)]1/2);
(d) transmission as hole-like quasiparticle with momen-
tum k′−

σ (k′−
σ = [(2m′/h̄2)(E′

F −
√

ε2 − |�σ−|2)]1/2), where
�σ± = |�σ±| eiφ±

σ is the pair potential felt by electron-like
(+) and hole-like (−) quasiparticles. We notice that the spin
dependence of �σ± comes out from the different trajectories
followed by up- and down-spin quasiparticles. Which of
these processes actually takes place depends on the energy,
momentum, and spin orientation of the incoming electrons,
as well as on the interfacial barrier strength, the polarization
in the F side and the symmetry of the superconducting order
parameter in the S side.

For standard low-biased F/I/S junctions, one has EF ,E′
F 	

(ε,|�|), so that one can apply the Andreev approximation53

and fix the momenta on the Fermi surfaces. In this case the

solutions of BdG equations for the two sides of the junction
can be written as

ψF
σ (x) = eikF

σ,xx

(
1
0

)
+ aσ eikF

σ̄ ,xx

(
0
1

)
+ bσ e−ikF

σ,xx

(
1
0

)
, (3)

ψS
σ (x) = cσ eik′F

σ,xx

(
u+

e−iφ+v+

)
+ dσ e−ik′F

σ,xx

(
eiφ−u−

v−

)
, (4)

where

u± =
√

ε ±
√

ε2 − |�σ±|2
2ε

,

v± =
√

ε ∓
√

ε2 − |�σ±|2
2ε

,

and the superscript F in the wave vectors denotes that they are
taken on the Fermi surfaces.

The boundary conditions at the interface allow for the
calculation of the probability amplitude coefficients aσ , bσ ,
cσ , dσ for the four scattering processes. We have

ψF
σ (0) = ψS

σ (0), (5a)

mσ

m′
duS

σ

dx

∣∣∣∣
x=0

− duF
σ

dx

∣∣∣∣
x=0

= 2H mσ

h̄2 uS
σ (0), (5b)

mσ̄

m′
dvS

σ̄

dx

∣∣∣∣
x=0

− dvF
σ̄

dx

∣∣∣∣
x=0

= 2H mσ̄

h̄2 vS
σ̄ (0) . (5c)

Equation (5) show that the mass asymmetry explicitly
renormalizes the interface barrier strength H , giving rise to
a dependence of this quantity on the spin of the carriers.
This effect, which under suitable conditions leads to a
different behavior of these carriers across the barrier, allows
to infer that the presence of spin-dependent electron masses
in Eq. (5) may mimic a spin-active barrier, in the sense
that electrons with opposite spin feel different values of the
barrier height. A junction with a mass mismatch ferromagnet
can thus induce an effective spin-active interfacial effect,
which for specific choices of H has been shown to produce
a minority-spin charge-conductance component higher than
the corresponding majority-spin one.38 The dimensionless
parameter Z = 2m′Hπ2/(h̄2k′

F ) everywhere in the following
will conveniently characterize the strength of the interfacial
scattering.

The charge and spin differential conductances at T = 0 and
energy ε, i.e., at bias voltage V = ε/e, e being the electron
charge, are calculated from the ratio between the charge and
spin fluxes across the junction and the incident fluxes at
that bias. They can be easily obtained from the probabilities
associated with the four processes listed above,41 and for each
spin channel they can be written as

Gσ (ε,θ ) = Pσ

(
1 + kF

σ̄ ,x

kF
σ,x

|aσ (ε,θ )|2 − |bσ (ε,θ )|2
)

, (6)

�σ (ε,θ ) = Pσ

(
1 − kF

σ̄ ,x

kF
σ,x

|aσ (ε,θ )|2 − |bσ (ε,θ )|2
)

, (7)
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where θ is the angle formed by the momentum of the electrons
propagating from the F side with respect to the normal to the
interface (see Fig. 1), and the polarization Pσ = nσ /(n↑ + n↓)
is the fraction of electrons occupying the σ -spin band of the
metallic ferromagnet.

The measured conductances take contributions from a range
of angles determined by the experimental conditions. This
range is limited from above due to the conservation of the
momentum parallel component

kF
σ sin θ = kF

σ̄ sin θσ̄ = k′F sin θ ′
σ , (8)

where θσ̄ and θ ′
σ are AR and the transmission angles,

respectively, for electrons and quasiparticles with spin σ . From
this equation it is easy to verify the existence of critical angles
above which these processes are no more possible, resulting in
virtual AR41 and normal reflection, respectively. The angularly
averaged differential conductances for a given spin orientation
are then defined as41

〈Gσ (ε)〉 =
∫ θσ

C

−θσ
C

dθ cos θ Gσ (ε,θ )

/ ∫ θσ
C

−θσ
C

dθ cos θ, (9)

〈�σ (ε)〉 =
∫ θσ

C

−θσ
C

dθ cos θ �σ (ε,θ )

/ ∫ θσ
C

−θσ
C

dθ cos θ, (10)

where θσ
C is the critical angle for the transmission of σ -spin

electrons.
Finally, the net averaged charge and spin conductances are

respectively defined as

〈G(ε)〉 = 〈G↑(ε)〉 + 〈G↓(ε)〉, (11)

〈�(ε)〉 = 〈�↑(ε)〉 − 〈�↓(ε)〉 . (12)

III. RESULTS

The results here obtained for the F/I/S junction are grouped
in three following distinct Subsections concerning (A) the
magnetization in the F side, (B) the charge conductance for
a dx2−y2 -wave or broken time-reversal states associated with
dx2−y2 + is and dx2−y2 + idxy pairing symmetry superconduct-
ing electrode, and (C) the spin conductance for the above
choices of the order parameter and, for a comparison, for a
conventional s-wave superconducting side. To appreciate the
effect of mass asymmetry, we neglect Fermi energies mismatch
effects and fix EF = E′

F .

A. Magnetization

The spin-bandwidth asymmetry in the F side directly affects
the density of states per spin orientation, and consequently the
net polarization. Given the single-particle Hamiltonian (1),
we find that in the two-dimensional case the ground-state
magnetization M ≡ P↑ − P↓ is given by

M2D = (X + 1)Y

X(Y − 1) + Y + 1
− 1 − X

X(Y − 1) + Y + 1
, (13)

where X = U/EF and Y = m↑/m↓. Equation (13) correctly
reduces to known results for a pure Stoner ferromagnet when
Y → 1.42 On the other hand, when Y → 0(∞) we precisely

reproduce the half-metal limit M → −1(1). For a fixed value
of the exchange splitting, the mass mismatch enhances the
net polarization for m↑ > m↓ (Y > 1) and hinders it the other
way around (Y < 1). The situation is illustrated in Fig. 2,
where the density plot of the magnetization at T = 0 in
the (m↑/m↓, U/EF ) parameter space is shown for one-,
two-, and three-dimensional ferromagnets, together with three
isomagnetization curves plotted to clarify the magnetization
trend. Each point corresponds to a different realization of the
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FIG. 2. (Color online) Density plot of the ground-state magne-
tization as a function of the mass mismatch and the normalized
exchange interaction, for one-, two-, and three-dimensional ferro-
magnetic electrodes. As shown in the legend on the right, lighter color
regions are associated with higher values of the magnetization. For
clarity, only three isomagnetization curves are plotted in all panels,
corresponding to M = 0.25 (solid line), M = 0.50 (dashed line),
and M = 0.75 (dotted line). In the middle panel, referring to the
dimensionality considered in this paper, we depict six representative
points: A and B correspond to two different microscopic states with
the same macroscopic magnetization M = 0.25, A representing a
standard Stoner ferromagnet (m↑/m↓ = 1), and B a purely spin-
bandwidth asymmetry ferromagnet (U/EF = 0). The same holds for
the (C,D) and (E,F) couples of points, referring to higher values of the
magnetization (M = 0.50 and M = 0.75, respectively). The values
assumed by the microscopic parameters in the above mentioned six
states are summarized in Table I.
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ferromagnetic order in the sense that the relative weights of
the exchange splitting and the mass mismatch are determined
by the coordinates of that point, while the value of M is
fixed along the isomagnetization curves (the solid, dashed and
dotted lines of Fig. 2). We see that though the qualitative
behavior is independent on the dimensionality, for the chosen
band dispersion in the ferromagnet, one always finds M3D >

M2D > M1D when evaluated for the same m↑/m↓ and U/EF

values.

B. Charge Transport

We have analyzed F/I/S conductance spectra in two
dimensions in the entire parameter space, excluding the regions
corresponding to M < 0 (indicated in black in Fig. 2) since
they are mirror images of those with positive M , assuming that
m↑/m′ = m′/m↓ for Y > 1. We notice that with this choice
critical angles for AR and transmission exist only for majority
electrons. In the following subsections we discuss the results
for the six representative points highlighted in Fig. 2, which
correspond to a pure Stoner ferromagnet (STF), i.e., m↑/m↓ =
1, and a pure spin-bandwidth asymmetry ferromagnet (SBAF),
i.e., U/EF = 0, for three different values of the magnetization
M = 0.25,0.50,0.75 (the corresponding values of m↑/m↓ and
U/EF are reported in Table I). F/I/S conductance spectra
will be shown for various symmetries of the superconducting
order parameter, emphasizing the differences in transport
between STF/I/S and SBAF/I/S junctions. We finally notice
that spectra change continuously as one moves along an
isomagnetization curve from a point corresponding to a STF
to a point corresponding to a SBAF.

1. F/I/dx2− y2 junction

It is well known54,55 that in N/I/S junctions involving
a normal metal and a dx2−y2 superconductor, a zero-bias
conductance peak (ZBCP) develops in the tunneling limit, this
peak becoming narrower and narrower as increasing values
of the interfacial barrier strength are considered. This ZBCP
is the consequence of the presence of an Andreev bound
state56 (ABS) at the Fermi energy, induced by the change
in sign of the pair potential across line nodes. It implies that
electron-like and hole-like quasiparticles specularly reflected
at the interface always find the “right” sign of the pair potential
to be Andreev reflected. In this case the ABS is at the same
energy for every quasiparticle trajectory, i.e., for every angle
θ . When the normal metal in the junction is replaced by
a STF, the ZBCP is lowered because of the presence of

TABLE I. Values of the normalized exchange interaction U/EF ,
the mass mismatch m↑/m↓, and the magnetization M for the six
illustrative points displayed in the middle panel of Fig. 2.

U/EF m↑/m↓ M

A 0.25 1 0.25
B 0 5/3
C 0.50 1 0.50
D 0 3
E 0.75 1 0.75
F 0 7

the ferromagnetic polarization which inhibits ARs and can
be split in two subpeaks developing symmetrically at finite
energies,42,43 depending on interfacial scattering strength. The
splitting of the ZBCP is clearly visible in the angle-resolved
charge conductance, while in the angle-averaged one it is
distinguishable only for high magnetization. However, when
the interface barrier strength Z is reduced, this structure
becomes better defined since the two peaks get more separated,
though less pronounced.

Now, let us investigate how this picture is modified when
a SBAF is taken into account. We remind the reader that,
when the superconducting electrode has d-wave symmetry,
the pair potential felt by electrons (+) and holes (–) is
�σ,± = �0 cos[2(θ ′

σ ∓ β)], where β is the angle formed by
the crystallographic a axis of the superconductor with the x

axis (see Fig. 1). We here fix β = π/4 to analyze a dx2−y2 -wave
superconductor with line nodes perpendicular to the interface.
In Fig. 3 we show the averaged differential conductance
spectra evaluated at the six points highlighted in Fig. 2 and
listed in Table I, in the limit of full transparency of the
barrier (left panel) and for an intermediate value of Z (right
panel). Comparing the behavior of a SBAF/I/dx2−y2 and a
STF/I/dx2−y2 junction, we find qualitative deviations in the
charge conductance which become more and more significant
as increasing values of the magnetization and of the barrier
strength are considered (see Fig. 3). It is found that with the
increase of the magnetization the ZBCP is lowered rapidly
and eventually smeared out in the STF case, whereas in the
SBAF case the ZBCP is more robust against the polarization
of the F side. The drop of the zero-bias conductance may be
attributed to the fact that for a given injection angle, when M

increases above a threshold, the AR processes for the incident
electron with spin up are suppressed and only the AR of
spin-down electrons contributes to the ZBCP. We point out
that this behavior can be rigorously proved considering that the
ABS amplitude decreases with increasing exchange field due
to the sensitivity of Andreev reflections to spin polarization,
represented in BTK-type models by a suppression in the
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FIG. 3. (Color online) Averaged differential conductance spectra
for a junction with a dx2−y2 -wave superconducting electrode, evalu-
ated in the states corresponding to the six points indicated in Fig. 2
and listed in Table I, in the metallic limit Z = 0 (left panel) and for
intermediate barrier transparency Z = 5 (right panel).
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Andreev term coefficient. This picture is slightly modified
when a SBAF is considered, since in this case the barrier,
according to Eq. (6), may be spin selective, assisting the
conductance of the two spin channels in a different way.
This effect results into a charge conductance always larger
than the one obtained in the corresponding STF case with the
same magnetization M . Finally, we notice that with increasing
Z, i.e., when we move from the metallic limit toward the
tunneling one, the averaged charge conductance here obtained
reproduces the well-known behavior previously reported in the
literature.40,41

2. F/I/S-BTRS junction

It is generally accepted that for many unconventional
superconductors a subdominant component of the order
parameter breaking time-reversal symmetry can be induced
whenever translational symmetry is broken, e.g., near surfaces,
interfaces, and vortices.60,61,64 For some materials, such as,
e.g., YBCO,8 there is controversy about the symmetry of the
secondary component, namely if the order parameter is of
the dx2−y2 + is- or dx2−y2 + idxy-wave type. Furthermore, the
splitting of the ZBCP, leading to the formation of symmetric
peaks at finite bias, has been interpreted7,57,62 as a signature
of the admixture of an imaginary pair potential component
with the dominant dx2−y2 -wave one, corresponding to a
time-reversal broken symmetry state.60,63 The peak splitting
reflects the fact that the zero-energy states are shifted by a
positive or negative amount due to the Doppler shift of a finite
vector potential, and the good agreement between theory and
experiments suggests that the existence of BTRS is a plausible
explanation for the origin of the peak splitting of the charge
conductance.

Thus, motivated by the fact that charge transport in
junctions with a superconducting electrode could be a valuable
probe of the order parameter symmetry, we compare here trans-
port through F/I/S junctions having dx2−y2 + is or dx2−y2 +
idxy BTRS states in the S side and a SBAF or a STF in the F
side. When the superconducting electrode has dx2−y2 + is- or
dx2−y2 + idxy-wave symmetry, the pair potential felt by elec-
trons (+) and holes (−) is �s

σ,± = �1 cos[2(θ ′
σ ∓ π/4)] + i�2

and �d
σ,± = �1 cos[2(θ ′

σ ∓ π/4)] + i�2 sin[2(θ ′
σ ∓ π/4)], re-

spectively. We have analyzed spectra for several values of
�1 and �2 but for brevity we show here the results only
for �1 ≈ 0.968�0 and �2 = 0.25�0. We notice that for this
choice of �1 and �2 the gap amplitude is �0 for θ ′ = π/4. In
Fig. 4 the averaged charge conductance is plotted considering
the two above-mentioned BTRS superconductors for a F/I/S
junction with a STF (left panel) and a SBAF (right panel),
for two representative values of the barrier strength Z and
for a magnetization M equal to 0.5. An inspection of this
figure suggests that, for high Z, the junction exhibits for both
kinds of ferromagnet a zero-bias charge response different
for the two BTRS states, implying that STF/I/S or SBAF/I/S
junctions are equally useful to discriminate between BTRS
order parameters involved in the S side. For completeness, it
is worth stressing that the charge conductance in the SBAF
case is always larger than the one obtained in the STF one,
the difference being only quantitative. In the low-barrier limit,
the spectra for the two BTRS states almost coincide for a
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FIG. 4. (Color online) Averaged differential conductance spectra
for a junction with a dx2−y2 + is (solid lines) and a dx2−y2 + idxy

(dashed lines) superconducting electrode, evaluated at the points C
(STF, left panel) and D (SBAF, right panel) indicated in Fig. 2, in
the intermediate (Z = 5) and high transparency (Z = 1) regime. We
recall that the magnetization is M = 0.5 for both panels.

STF, while for a SBAF they are clearly more distinguishable.
Therefore, we can state that in the high transparency limit a
SBAF/I/S junction may be seen as a more powerful tool than a
STF/I/S one to discriminate between the two BTRS states. The
origin of the different behavior of the conductance at zero bias
for STF and SBAF electrodes lies in an ABS at zero energy
which is present in the case of dx2−y2 + idxy-wave symmetry
(only for particular angles65), but not in the dx2−y2 + is one. As
explained in Sec. II, this effect is clearly visible for a SBAF,
because this kind of ferromagnetic electrode introduces an
extra effective barrier which affects the charge transport of
the hybrid structure, actually pushing the junction toward the
tunneling regime where ABSs become the dominant channel
for transport.

C. Spin Transport

We have analyzed the averaged spin conductance 〈�(ε)〉
defined in Eq. (12), for the same unconventional pairing
symmetries taken into account in the previous subsection.
For comparison, we have also considered a superconducting
electrode characterized by a conventional s-wave pairing.
Although several choices of the magnetization M in the F
electrode and of the barrier strength Z have been considered,
in Fig. 5 we limit ourselves to the presentation of the spin
conductance curves in the case M = 0.75 and Z = 5 (lower
values of Z and M do not qualitatively alter our results). In
this figure solid and dashed lines refer to the case of a junction
with an STF and with a SBAF, respectively, the different
colors being associated with different superconducting order
parameter symmetries. For dx2−y2 -wave pairing, the spin
conductance is nonvanishing at every finite bias and its profile
exhibits, at low biases, the well-known V-shaped behavior
typically produced by the gapless excitations associated with
nodes of the order parameter. On the other hand, for the
two BTRS states considered here the spin conductance starts
being nonzero at a finite bias, corresponding to the energy
of the minority component breaking time reversal, and this
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FIG. 5. (Color online) Averaged differential spin-conductance
spectra evaluated at the points E and F reported in Fig. 2, for
unconventional superconducting electrodes.

activated behavior is related to the nodeless properties of
BTRS. Moreover, for the three kinds of unconventional pairing
symmetry considered here, the spin conductance for biases
lower than the energy gap �0 is always larger for a junction
with a STF than for a junction with a SBAF. Above �0 this
difference in magnitude gets appreciably larger, and for a given
kind of ferromagnet 〈�(ε)〉 becomes practically independent
on the specific pairing symmetry.

Figure 6 shows the relative gain in the spin conductance
of the SBAF contribution 〈�(F )〉 with respect to the STF one
〈�(E)〉, defined as ��(F |E) = (〈�(F )〉 − 〈�(E)〉)/〈�(E)〉,
as a function of the barrier height at a fixed bias ε/�0=1.01
immediately above the energy gap �0. For comparison, we

0.0 0.5 1.0 1.5 2.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0

s

dx2 y2
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dx2 y2 i dxy 0 1.01

Z 5

0 5 10 15 20 25 30
1.0
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1.0

Z
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FIG. 6. (Color online) Relative gain in spin conductance
of a SBAF with respect to a STF, ��(F |E) = (〈�(F )〉 −
〈�(E)〉)/〈�(E)〉, as a function of the barrier height Z, at a bias value
immediately above the energy gap �0, i.e., ε = 1.01�0. In the inset
we have plotted the spin averaged current for an s-wave electrode,
for the same choice of the parameters adopted in Fig. 5.

have calculated the same quantity also for the case of a junction
with an s-wave superconductor (orange curve). We see that
for a barrier height Z lower than approximately 15 the gain
is positive only for an s-wave superconductor and it can be
as high as 100%. We have checked that this peculiar effect
is related to the presence of the superconducting electrode.
Indeed, analyzing the spin conductance in STF/I/N and
SBAF/I/N junctions, i.e., junctions where the superconductor
is replaced by a normal metal, we have found that in the
STF case the spin current is always greater than in the SBAF
one. Looking separately at Andreev and normal reflection
probabilities, we have verified that this extra spin current
can be ascribed to the fact that majority electrons coming
from a SBAF have a zero probability of being normally
reflected at the gap edge, while electrons coming from a
STF have a finite residual probability to undergo the same
process. For completeness, in the inset we have reported the
averaged differential spin conductance for a junction with an
s-wave superconductor in the two cases of a SBAF (dotted
line) and a STF (solid line), obtained for the same choice of
parameters adopted in Fig. 5. We see that 〈�(ε)〉 is always zero
below the energy gap; indeed in such situation the electrons
cannot enter the superconductor side as quasiparticles because
there are no quasiparticles states in the gap. Nevertheless, by
Andreev reflection, they can cross the interface and decay into
the Cooper pair condensate, thus preventing a spin-current
flow.

For spintronics applications, the ability to perform opera-
tions acting on spin currents but not on charge currents is in
general highly desirable. The results presented above allow
to individuate a particular situation where this is possible
using F/I/S junctions with a SBAF electrode. For an s-wave
superconductor in the case of a finite barrier strength, it has
been recognized that the charge conductance is peaked around
the gap edge.37,41,45 On the other hand, we have previously
shown that the spin current is zero below the energy gap �0

and rises abruptly just above it (inset of Fig. 6). If we then make
the voltage across the junction vary between two limiting bias
values ε1 < �0 and ε2 > �0 such that charge conductance
is the same, it is possible to turn from a situation where a
certain charge current is passing through the junction while
spin current is zero (ε = ε1), to a case where the spin current
is different from zero and the charge conductance remains
unaffected (ε = ε2). Since the upper bias ε2 below which the
switch state is “on” falls only slightly above �0, we expect
that the spin current through the device will be much greater
if it is generated by a SBAF rather than by a STF, given the
appreciable difference between the two cases visible in the
inset of Fig. 6.

IV. CONCLUSIONS

In this paper we have studied the conductance spectra
of ferromagnetic/insulator/superconductor hybrid structures,
developing an extension of the standard BTK approach to the
case of a ferromagnetic electrode exhibiting either a standard
Stoner exchange mechanism or a mass mismatch-driven ferro-
magnetism. We have investigated the effects induced by these
two different sources of magnetization comparing the averaged
charge and spin conductances of STF/I/S junctions (where only
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exchange splitting is present) and SBAF/I/S junctions (where
only mass mismatch is present), for various symmetries of
the order parameter in the superconducting electrode. Our
analysis has revealed several differences between the two
cases. For the charge conductance, we have found a narrower
and higher peak in the SBAF/I/dx2−y2 case compared to the
STF/I/dx2−y2 one, this finding being potentially useful for
the experimental detection of a mass mismatch contribution
to the magnetization.

Since the Andreev reflection is phase sensitive, the onset
and amplitude of Andreev bound states, manifesting them-
selves in the zero-bias conductance peak, is a signature of
the symmetry of the order parameter. For this reason, we
have also investigated the transport properties of a junction
with a superconductor exhibiting a broken time-reversal
symmetry of dx2−y2 + is or dx2−y2 + idxy type. In the high-
transparency limit, we have found a different behavior around
zero bias of SBAF/I/dx2−y2 + idxy and STF/I/dx2−y2 + idxy

junctions, such that the use of a SBAF allows to discrimi-
nate more efficiently between BTRS states with dx2−y2 + is

or dx2−y2 + idxy pairing symmetry than STF does. Indeed,
as previously discussed a SBAF ferromagnetic electrode
introduces an extra effective barrier which affects the charge
transport of the hybrid structure, driving the junction toward
a tunneling regime where ABS is the dominant channel for
transport.

As far as the spin transport is concerned, we have shown that
the averaged spin conductance in a STF/I/S junction is greater
than in a SBAF/I/S one for all the superconducting symmetries
analyzed here, except for the case of a conventional s-wave
superconducting electrode. We have also shown that a F/I/S
junction with an s-wave superconductor can work as a switch
able to turn on and off a spin current, leaving the charge current
unchanged. In particular, our results show that for a wide range
of interfacial barrier strengths, the spin current passing through
the junction when the state of the switch is “on” is larger if
the ferromagnetic electrode is a SBAF rather than a STF. This
relative increase in spin current can be very high, and for
particular values of the barrier strength a gain of up to 100%
can be reached.

Finally, we point out that the theoretical framework behind
the calculation presented in this paper is simple enough to
allow analytic solutions in the whole relevant parameter space.
We leave for future work more complex approaches able
to include the effect of spin-flip scattering, more realistic
band structures, nonequilibrium transport, as well as a self-
consistent treatment of the pair potential.

ACKNOWLEDGMENTS

We wish to thank sincerely Prof. Jacob Linder for useful
discussions.
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