
PHYSICAL REVIEW B 83, 094431 (2011)

Quantum quenches, thermalization, and many-body localization
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We conjecture that thermalization following a quantum quench in a strongly correlated quantum system is
closely connected to many-body delocalization in the space of quasi-particles. This scenario is tested in the
anisotropic Heisenberg spin chain with different types of integrability-breaking terms. We first quantify the
deviations from integrability by analyzing the level spacing statistics and the inverse participation ratio of
the system’s eigenstates. We then focus on thermalization, by studying the dynamics after a sudden quench of
the anisotropy parameter. Our numerical simulations clearly support the conjecture, as long as the integrability-
breaking term acts homogeneously on the quasiparticle space, in such a way as to induce ergodicity over all the
relevant Hilbert space.
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I. INTRODUCTION

The understanding of ergodicity and thermalization in
quantum systems is one of the most intriguing problems in
quantum physics. Starting with the 1929 paper of John von
Neumann,1 various attempts have been made toward the char-
acterization of ergodic behavior in quantum systems2–5 and the
establishment of a link with the notion of quantum chaos.4,5

Theoretical interest in these issues resurfaced periodically6

until very recently, when an experimental study of the non-
equilibrium dynamics of a quasi-one-dimensional condensate
clearly demonstrated the lack of thermalization/ergodicity
in a quantum many-body system.7 The attribution of this
observation to quantum integrability generated a lot of interest
on its connections with ergodicity and thermalization in
strongly-correlated quantum systems.8,9

The simplest setting to study the relaxation of many-body
systems is to consider an abrupt change in time of one of
the control parameters, i.e., a quantum quench. At long times
after the quench, the lack of thermalization in an integrable
system can be seen as a consequence of the sensitivity to
the specifics of the initial state encoded in the values of the
constants of motion.8 This lead to the proposal of describing
the time-averaged steady state reached after a quench by
keeping track of the initial value of all the constants of motion
through a generalized Gibbs ensemble,8 whose conditions of
applicability and drawbacks have been extensively tested.9 In
turn, if the system is far enough from the integrable limit,
thermalization is generally expected to occur, as numerically
confirmed in many circumstances.10–12

This qualitative picture, although very appealing, leaves a
number of important questions unanswered. It is not yet clear
what is the nature of the integrable/non-integrable transition.
Moreover, as it is shown in Ref. 13, it appears that even an
integrable system could look “thermal”, -depending on the
observable which is analyzed. Operators which are non-local
in the quasi-particles of the system may behave thermally,
while local operators do not. How does one reconcile all these
observations under a unifying framework?

The purpose of this paper is to show that the underly-
ing mechanism governing the thermalization of many-body
systems (and its relation to integrability) is that of many-
body localization in Fock space.14–16 We organize the paper
as follows. In Sec. II, after explaining in details the key
concept of many-body localization, we discuss qualitatively
our conjecture on thermalization following a quantum quench,
i.e., on the role played by many-body localization. The model
under investigation is then introduced in Sec. III. In the
following sections we discuss our results: first of all we
address the spectral properties of the model and use them to
characterize the localized and delocalized regimes (Sec. IV);
we then focus on the quench dynamics, providing evidence
of the connection between delocalization and thermalization
according to standard statistical mechanics predictions (Sec.
V). Finally, in Sec. VI we draw our conclusions.

II. MANY-BODY LOCALIZATION AND
QUANTUM QUENCHES

In this section we discuss a qualitative scenario connecting
the physics of thermalization after a quantum quench to the
phenomenon of many-body localization. In order to do so, let
us first review a few basic facts about many-body localization,
as originally discussed in the context of transport of interacting
electrons in random potentials.14,16 In the absence of electron-
electron interactions, the physics of disordered electron sys-
tems can be understood in terms of the standard Anderson
localization phenomenology: extended wave functions corre-
spond to finite zero-temperature conductivity while localized
states correspond to vanishing conductivity. The Anderson
localization-delocalization transition is therefore naturally
associated with a metal-insulator quantum phase transition.
Notice that since localized and extended states cannot mix in
the spectrum, the latter is a sequence of bands of extended and
localized states separated by mobility edges.

The nature of the spectrum and of the eigenstates can
change drastically if electron-electron interactions are taken
into account. In particular, it has been recently shown14 that
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even when all single-particle states are localized, the presence
of electron-electron interactions and inelastic collisions can
result in an insulator-to-metal transition as the temperature
of the system is raised above a certain critical value Tc.
Such a phase transition can be thought of as a many-body
localization-delocalization transition, occurring at the level
of many-body eigenstates.14,16 Indeed, the presence of the
many-body localization transition at finite temperature implies
the existence of a many-body mobility edge at an energy
scaling extensively with system size and separating localized
many-body states, at low energies, from extended many-body
states, at higher energies.14

Many-body localization is a rather general concept which
does not necessarily refer to real space. A standard example in
this sense comes from the physics of quasi-particle relaxation
in quantum dots. Here the concepts of localization and
delocalization find their natural applicability in Fock space,
where all many-body eigenstates are defined.16 Similar ideas
were also employed to analyze the mixing of vibrational modes
due to anharmonicity in molecules.17 Along these lines, it
was recently realized18–20 that the many-body localization-
to-delocalization transition discussed above should be deeply
connected to the main subject of this work, the physics of
integrability-breaking. More specifically, let us think of an
integrable model (having well-defined quasi-particles) as a
multidimensional lattice in which each point, identified by
the occupations n(k) of the various quasi-particle modes,
represents an eigenstate |�α〉 = |{nα(k)}〉 (see Fig. 1). The
space of these states (the quasi-particle space) is an obvious
generalization of the standard Fock space. As long as states
are localized in quasi-particle space,21 one expects the system
to behave as integrable: any initial condition spreads into
few sites, maintaining strong memory of the initial state. On
the other hand, once a strong enough integrability-breaking

FIG. 1. (Color online) A cartoon of the quasi-particle space.
For an integrable model all states, represented by the occupations
of quasi-particles {n(k)}, are localized. An integrability-breaking
perturbation introduces hopping matrix elements V among different
sites, which hybridize, provided |E({n′(k)} − E({n′′(k)}| � V . For
strong perturbations this may lead to delocalization of wave functions
among all points in quasiparticle space in a microcanonical energy
shell.

perturbation hybridizing the various states |nα(k)〉 is applied,
a consequent delocalization in quasi-particle space will occur
(see Fig. 1). A tendency toward ergodicity is expected in this
case.

In this paper we aim at establishing a close connec-
tion between the physics of the localization-delocalization
transition/crossover, occurring in quasi-particle space in the
presence of an integrability-breaking term, and the physics of
thermalization. In order to do so, we focus on a specific class
of non-equilibrium protocols on which thermalization can be
studied, the so-called quantum quenches. In the present context
they are defined through the time-dependent Hamiltonian

H(t) ≡ H0[g(t)] + Hib , (1)

where:

g(t) =
{

g0 for t < 0
g for t � 0 . (2)

The time-dependent part of the Hamiltonian H0[g(t)] is
integrable, while Hib is the integrability-breaking term. We
then ask ourselves the following question: what are the
characteristics that many-body eigenstates should have in
order for the system to thermalize and behave ergodically?

The answer to an analogous question for semiclassical
quantum chaotic systems was conjectured by Berry in 1977
(Ref. 22) and later employed by Srednicki to discuss ther-
malization in a (non-integrable) gas of interacting particles.5

Inspired by these seminal papers, we propose that for generic
many-body systems thermalization will occur whenever the
eigenstates of the system become diffusive in microcanonical
shells defined in quasi-particle space. These diffusive states
correspond to the intuitive expectation that in an ergodic
state any initial state is allowed to diffuse into all states
in a micro-canonical energy shell, generating a cascade of
all possible lower energy excitations.23 The purpose of the
remaining sections is to test this proposal on the dynamics of
a concrete integrable model.

III. THE MODELS

In order to corroborate the scenario proposed above, we now
study in detail the dynamics after a quench of an anisotropic
Heisenberg chain subject to various forms of integrability-
breaking perturbations. The anisotropic Heisenberg (XXZ)
spin-1/2 chain is defined by:

H0(Jz) =
L−1∑
i=1

[
J

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + Jzσ
z
i σ z

i+1

]
, (3)

where σα
i (α = x,y,z) denote the spin-1/2 Pauli matrices

on site i, J denotes the coupling strength, and Jz denotes
the z-anisotropy intensity. Units of h̄ = kB = 1 are used
throughout the paper; J = 1 is taken as the energy scale.
This Hamiltonian is integrable by the Bethe ansatz, and
exhibits two gapped phases, ferromagnetic (Jz < −1) and
antiferromagnetic (Jz > 1), separated by a critical region
−1 � Jz � 1, with Jz-dependent critical exponents24 and
quasi-long-range-order in the xy spin-plane.
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As for the integrability-breaking perturbation, we consider
different cases, with or without disorder terms in the Hamilto-
nian, which can be expressed in the form:

Hib =
∑

i

�iOi , (4)

where �i is the amplitude (possibly site-dependent) of an
additional few-body term Oi . This few-body term may act on
a single site i (e.g., onsite magnetic field), or on a few sites
centered around i (e.g., nearest or next-to-nearest neighbor
couplings). In particular, we break integrability by adding: (I)
a random magnetic field in the z-direction; (II) random Jz

couplings; (III) random or (IV) uniform next-nearest neighbor
zz couplings, according to:

Hib =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
∑L

i=1 hiσ
z
i (I),

�
∑L−1

i=1 hiσ
z
i σ z

i+1 (II),

�
∑L−2

i=1 hiσ
z
i σ z

i+2 (III),

�
∑L−2

i=1 σ z
i σ z

i+2 (IV).

For cases (I)-(II) and (III) integrability-breaking is induced by
the disorder, hi ∈ [−1,1] being random numbers, while in case
(IV) disorder is not invoked. In general, disordered systems
allow for a better statistical analysis, due to the possibility
of averaging over randomness. One might argue that such
averages are strictly required in order to reproduce our findings
about thermalization. This is not the case, since we have
found analogous qualitative conclusions in all the four cases
discussed above: integrability-breaking is the only crucial
requirement for our mechanism of thermalization to set in.

We first address the spectral properties of the model, and
subsequently consider a sudden quench of the anisotropy
parameter Jz ≡ g. The total magnetization Sz = ∑

i σ
z
i is a

conserved quantity, hence we restrict to the sector Sz = 0.
Nonetheless, due to the involvement in such non-equilibrium
dynamics of a considerable part of the spectrum, standard (both
analytic and numerical) renormalization group techniques are
eventually doomed to failure. We therefore resort to exact
numerical diagonalization of systems with up to 16 spins.

While the zero-temperature phase-diagram in the presence
of disorder is well established,25 the high-temperature phase-
diagram has been conjectured to be composed of two phases,
a non-ergodic many-body localized phase (in real space) at
� > �crit, and an ergodic one at � < �crit; in the case (I),
�crit ∼ 6 − 8 at Jz = 1 (in our units).18,19 The results presented
below indicate the presence of a second non-ergodic localized
phase (in quasi-particle space) for � close to zero that crosses
over to the ergodic phase upon increasing �. The fate of this
crossover in the thermodynamic limit and the eventual value
of the critical �∗ are yet to be determined.26

We start by characterizing deviations from integrability in
terms of the many-body level statistics and of the properties of
the eigenstates. A well-defined transition from Poisson (inte-
grable) to Wigner-Dyson statistics (non-integrable) is closely
associated to the localized/diffusive character of eigenstates
in quasi-particle space. Using this characterization, we then
show that the non-thermal-to-thermal transition in the dy-
namics is directly connected to the localization/delocalization

transition in quasi-particle space. In particular, by looking
at the asymptotics of spin-spin correlation functions, we
discuss how thermalization is linked to the emergence of
diffusive eigenstates in quasi-particle space. This also allows
us to discuss, in a broad context, the relationship between
the locality of observables in quasi-particle space and the
corresponding behavior.

IV. SPECTRAL PROPERTIES

Let us first concentrate on the spectral properties of the
Hamiltonian for a given value of the anisotropy g = Jz. In
the following we show data for Jz = 0.5. We have explicitly
checked that, changing Jz to a different value within the critical
region of the XXZ model (|Jz| � 1), does not qualitatively
affect the scenario discussed and our conclusions.

A. Level Spacing Statistics

The statistics of the energy levels represents a key feature
of the spectrum of a generic quantum system, since it is
a good indicator of the presence of integrability. Both in
semiclassical and in many-body systems, integrable systems
have levels that tend to cluster, eventually crossing when a
parameter in the Hamiltonian is varied. On the other hand,
in non-integrable systems the levels are correlated in such a
way as to avoid crossings. A quantitative way to characterize
these tendencies is through the level spacing statistics (LSS),27

i.e., the probability distribution P (s) that the energy difference
between two adjacent levels sn ≡ En+1 − En (normalized to
the average level spacing) falls in the interval [s,s + ds]. In a
typical integrable system one finds a Poissonian (P) LSS:

PP(s) = e−s . (5)

On the other hand, for non-integrable systems one expects ran-
dom matrix theory to apply, leading to a Wigner-Dyson (WD)
distribution, where level repulsion shows up in lims→0 P (s) ∼
sγ . More specifically, for systems such as the one considered
here, which preserve one anti-unitary symmetry (invariance
under time-reversal), the statistics is given by a Gaussian
orthogonal ensemble27 (GOE) (at low energy spacings one
has the characteristic behavior γ = 1):

PWD(s) = πs

2
e− πs2

4 . (6)

In our case the system undergoes a transition from
Poissonian [Eq. (5)] to Wigner-Dyson [Eq. (6)] LSS upon
increasing the non-integrable perturbation �, which for finite-
size systems takes the form of a smooth crossover. This can be
faithfully quantified by means of the level spacing indicator
(LSI) η:

η ≡
∫ s0

0 [P (s) − PP (s)] ds∫ s0

0 [PWD(s) − PP (s)] ds
, (7)

where P (s) is the probability distribution function of the level
spacing between neighboring levels, while s0 ≈ 0.4729 is the
first intersection point of PP(s) and PWD(s). The LSI is zero
for systems with a Poisson distribution PP of the spacings
and one if the distribution is Wigner-Dyson PWD. Below we
will study the LSI in two different ways: (i) as a function
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of the energy eigenvalues in individual microcanonical shells
[ηw(E)], using Eq. (7) with P[E,E+W ](s) as the level statistics
computed in the energy window [E,E + W ]; (ii) cumulatively
[ηc(E)], as a function of the energy eigenvalues below a given
threshold, with P[E0,E](s) as the level statistics of eigenvalues
with excitation energy less than E, with respect to the ground
state energy E0.

1. Results for the LSI

The LSS in the XXZ model with an integrability-breaking
perturbation has been the subject of various studies in the
literature.28,29 Here we are not interested in a complete
characterization of it, but rather in elucidating under which
conditions, and in which regions of the energy spectrum,
the model behaves according to the WD statistics, i.e., η ≈
1 according to our definition. We point out that the WD
distribution of Eq. (6) is obtained for non-integrable systems
with only a time-reversal symmetry. In all our simulations we
considered open boundary conditions, fixed the sector of zero
magnetization, and added a very small magnetic field on the
first site of the chain, in such a way as to work in a subspace
without any other unwanted symmetry.

All the four types of integrability-breaking perturbation
behave quite in the same way, the only difference being for case
(IV), where fluctuations are more consistent, due to the absence
of disorder averaging (to reduce fluctuations, one should
consider energy spectra of larger systems; however, the exact
diagonalization technique intrinsically imposes severe size
limitations). As an explicative example, in Fig. 2 we plot both
ηw(E) and ηc(E) for the XXZ model with a random z-field, (I)
(left panels), and with random Jz couplings, (II) (right panels).
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FIG. 2. (Color online) Level spacing indicator for the XXZ
model (3) with non-integrable perturbations (I) (left panels) and (II)
(right panels). The upper frames show ηw(E), while the lower ones
display ηc(E). Data are for L = 14 sites with different values of the
integrability-breaking perturbation �. The LSI ηw(E) is evaluated
in a microcanonical shell of width W = 2. Averages are performed
over 103 disorder instances. In order to exactly recover Poisson and
GOE statistics in the two integrable and non-integrable limits, we
performed an unfolding of the energy spectrum for each instance,
according to standard techniques adopted in quantum chaos.27

We observe that, fixing the system size, if � is progressively
increased, the value of η also increases, until it reaches, in
the middle of the energy band, a value close to 1 (for � ∼ 1,
in our units and at L = 14). For � � 1, η decreases again
toward small values, since for � 
 Jz the system turns into a
trivial classically integrable model.29 Only in the middle of the
spectrum the system appears to exhibit level repulsion, while
this is not the case in the low- or high-energy spectrum.28

This is more evident from the cumulative LSI ηc; here one
can notice that, for sufficiently strong perturbations and at low
energies, ηc is an increasing function of E, until it saturates
around its maximal value.

B. Inverse participation ratio

After a spectral characterization of integrability through the
LSS, we come back to the characterization of the eigenstates.
In the region where a Poissonian LSS is observed, the
eigenstates are expected to be localized in quasiparticles
space, while if WD is seen, the eigenstates are expected to
be delocalized. The proper tool to quantitatively characterize
the properties of the eigenstates and their delocalization is
the so-called inverse participation ratio (IPR).27,30 The IPR
on a normalized pure state |ψ〉 is a basis-dependent quantity,
defined by:

ξ (|ψ〉) = 1

N

(
N∑

n=1

|〈n|ψ〉|4
)−1

, (8)

where {|n〉} is the reference basis of the Hilbert space. If a state
is a uniform superposition of nst basis states, the corresponding
contribution to ξ is of order nst.

We focus on the IPR of the system eigenstates, evaluated
on two types of basis: (i) the site (S) basis |nS〉 = |σ1 · · · σL〉
(σi = ±1), composed by the eigenstates of σ z

i , which is often
referred to as the “computational basis”; (ii) the integrable (I)
basis, composed by the eigenstates of the integrable model (3)
in the absence of the perturbation terms: � = 0. Analogously
to the LSI, we can compute the IPR over microcanonical shells
around a given energy value E. Notice that, if an eigenstate
is localized in quasi-particle space, we expect the inverse
participation ratio computed in the integrable basis to be ξI �
O(1). Conversely, if an eigenstate is a diffusive superposition,
with random phases and amplitudes, of N eigenstates similar
to those of the integrable model, then ξI � N . Below we will
use these facts to characterize localization and delocalization
in quasi-particle space.

1. Results for the IPR

In Fig. 3 we show the inverse participation ratio for the
XXZ model with the integrability-breaking terms (I) and (II)
(as for the LSI, results are not qualitatively different if different
perturbations are considered). Looking at the IPR in the site
basis (lower panels), as long as � is increased we observe
a general tendency to a localization (the IPR peak value
decreases). This is coherent with the fact that the states of
the computational basis are exactly the eigenstates of the
system for � 
 Jz. On the other hand, as depicted in the
upper panels, the IPR in the integrable basis behaves rather
differently. In particular, it provides a clear signature of the
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FIG. 3. (Color online) Inverse participation ratio for the XXZ
model (3) with non-integrable perturbations (I) (left panels) and (II)
(right panels). Data are for L = 14 sites and different values of the
perturbation strength �. The IPR is evaluated in a microcanonical
shell of width W = 2�, in the integrable (upper frames) basis and in
the site (lower frames) basis. Data are averaged over all the system
eigenstates in the appropriate energy window, and over 102 disorder
realizations.

fact that eigenstates delocalize with increasing values of the
disorder �.

In order to better understand the nature of the delocalization
induced by the integrability-breaking term, let us compare ξ

with the number of states N[E,E+W ] in the relevant microcanon-
ical shell [E,E + W ], where W ∼ V is the typical matrix
element of the integrability-breaking perturbation (V ≈ 2�

in this case). For small �, ξI  N[E,E+W ] (see Fig. 4, upper
panels), indicating that the eigenstates are still close to those
of the integrable system and the degree of delocalization of
the system is very low. On the contrary, when � � 1 (Fig. 4,
lower panels) we observe that ξI � N[E,E+W ]. In this case, the
perturbation is able to hybridize nearly all the quasiparticles
states within the microcanonical energy shell. As we will
see in the next section, this is the key ingredient for the
system to thermalize. Notice that in this context the low-lying
eigenstates are rather peculiar: this part of the spectrum, which
contains very few states as compared to the center, has closely
Poissonian statistics and is characterized by large fluctuations
of statistical quantities.

V. DYNAMICS AFTER THE QUENCH

It is now time to use the information we obtained about
spectral statistics and eigenstates to study the relation between
many-body localization and thermalization. We look at the dy-
namics following a sudden quench of the anisotropy parameter
g ≡ Jz from Jz0 at t � 0 to Jz �= Jz0 at t > 0, as described in
Eq. (2). As we did for the spectral properties, we will show
data for systems where the anisotropy is quenched toward
Jz = 0.5. Different values of such Jz do not qualitatively affect
the scenario. The system is initially prepared in the ground state
|ψ0〉 of H(Jz0), so that its (conserved) energy with respect
to the final Hamiltonian H(Jz) is E0 = 〈ψ0|H(Jz)|ψ0〉. For
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FIG. 4. (Color online) IPR in the integrable basis ξI at � = 0.1
(upper panels), and at � = 1 (lower panels), compared to the number
of states N in an energy window of width W = 2�. Results are
shown for the integrability-breaking terms (I) (left panels) and
(II) (right panels). Notice, however, that all other cases display an
identical qualitative behavior. In particular, the disorder is not required
to observe the hybridization of the quasiparticle states within the
microcanonical energy shell for the case of large �.

growing values of Jz0, the state |ψ0〉 tends toward the classical
antiferromagnetic Néel state, and E0/L saturates to a constant
value, slightly below the middle of the spectral band, thus
implying that a quench generally involves only a fraction of
the eigenstates of the final Hamiltonian.

A. Effective temperature

Contrary to local quenches, the work done on the system
by changing the anisotropy from Jz0 to Jz is extensive. It is
then interesting to ask, after a quench involving an extensive
injection of energy E0 − Egs ∝ L [Egs being the ground state
energy of H(Jz)], if the subsequent long-time evolution of the
system is effectively described by an equilibrium dynamics
governed byH(Jz). In view of a plausible equivalence between
a microcanonical (fixed E0) and a canonical equilibrium
description of such a long-time dynamics, it is meaningful
to define, as in previous instances,13 an effective temperature
Teff for the system out of equilibrium. We compute Teff by
equating the micro-canonical energy E0 = 〈ψ0|H(Jz)|ψ0〉 to
the canonical ensemble average

E0 ≡ 〈H(Jz)〉Teff = Tr [ρ(Teff)H(Jz)] , (9)

where ρ(Teff) is the equilibrium density matrix at temperature
Teff :

ρ(Teff) = e−H(Jz)/Teff

Tr[e−H(Jz)/Teff ]
. (10)

This temperature is eventually averaged over disorder realiza-
tions in the cases (I), (II), and (III).

In Fig. 5 we show the effective temperature as a function of
the initial value of the anisotropy for a system of L = 12
sites, quenched toward Jz = 0.5. As it is apparent, Teff is
monotonically increasing with |Jz − Jz0|. In the first three
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FIG. 5. (Color online) Effective temperature in the XXZ model
with an integrability-breaking perturbation, after a quench in the
anisotropy parameter toward a value of Jz = 0.5. The values of Jz0 in
the x-axis denote the initial anisotropies, and stand for different initial
conditions [that is, the ground states of the Hamiltonian H(Jz0)]. Data
are for L = 12 sites; in all panels, except the lower right one, averages
are performed over 200 disorder instances.

cases, the effective temperature saturates for large values
of Jz0, because the initial ground state |ψ0〉 tends toward
the antiferromagnetic Néel state (for Jz 
 1 and � � 1 the
effective temperature is around Teff ∼ 5, thus meaning that
the states probed are located in the lower central part of the
band).31

B. Thermalization of correlation functions

We are now ready to test the relation between delocalization
and thermalization after a quench by studying the long-time
asymptotics of two-spin correlators, constructed as expectation
values of

nα
k ≡ 1

L

L∑
j,l=1

e2πi(j−l)k/Lσα
j σ α

l , (α = x,z). (11)

In particular, we compare the expectation value in the
canonical ensemble at the corresponding Teff :

nα
Teff

(k) ≡ 〈nα
k 〉Teff = Tr

[
ρ(Teff) nα

k

]
, (12)

with the asymptotic value that is reached after the quench,
calculated from the diagonal ensemble:10

nα
Q(k) ≡ lim

t→∞〈ψ(t)|nα
k |ψ(t)〉 =

∑
i

|ci |2〈φi |nα
k |φi〉 , (13)

where |ψ(t)〉 = e−iH(Jz)t |ψ0〉 is the state of the system at time
t , while ci = 〈φi |ψ0〉 is the scalar product between the state
|ψ0〉 and the eigenstates |φi〉 of the final Hamiltonian H(Jz).

The observables we consider here correspond to two
completely different scenarios in terms of the system quasi-
particles, nx

k a local operator and while nz
k a non-local one.

We recall that, in this context, local and non-local operators
refer to the structure of their matrix elements on the basis of
quasi-particles: local means that the operator couples a finite
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FIG. 6. (Color online) Comparison between the diagonal (black
circle) and canonical (red squares) expectation value of the two-spin
correlation function nx(k) (upper panels) and nz(k) (lower panels) as
a function of the momentum k. Data are for a quench from Jz0 = 10
to Jz = 0.5 and two kinds of integrability-breaking perturbation [(I)
in the left panels, and (II) in the right panels], with disorder intensity
� = 0.4.

number of states, while non-local means that it couples all
states.13 While correlators in the x-direction are always well
reproduced by an effective thermal ensemble, correlators in
the z-direction appear to be more sensitive to the breaking of
integrability. This is seen quite clearly in Fig. 6, where we plot
the correlators nα

k averaged in the diagonal (black circles) and
in the canonical (red squares) ensembles, both along the x-axis
(upper panels) and along the z-axis (lower panels). The param-
eters are chosen in such a way as to have the system close to
integrability, with a significant delocalization in Fock space
still not present. Two different behaviors for nx(k) and nz(k)
are apparent, with differences clearly emerging at the peaks
k = π , where boundary effects are less pronounced. One can
qualitatively see that, while discrepancies between the two
ensembles are well visible in nz(k), they are suppressed in
nx(k). Therefore, in a quasi-integrable regime only nx behaves
thermally, while nz does not. As stated above, this reflects the
intrinsic difference between nonlocal and local operators with
respect to the quasiparticles, which emerges only for the cases
in which the system itself is not able to properly hybridize
the quasiparticle states within the microcanonical shell. Here
we stress, however, that the classification of the operators is
in general a subtle issue. In the model we considered in this
work, it has been possible by analyzing the XX limit (Jz = 0)
and the low-energy sector of the critical phase.32

A quantitative measure of the degree of thermalization is
given by the absolute discrepancy between the diagonal and
the canonical ensemble predictions:

δnα
k = ∣∣nα

Q(k) − nα
Teff

(k)
∣∣ . (14)

In order to elucidate the drastically different behavior between
integrable and non-integrable systems, in Fig. 7 we plot δnα

k at
the peak k = π where discrepancies are larger, as a function
of the disorder amplitude �. We observe that δnx

π is more

094431-6



QUANTUM QUENCHES, THERMALIZATION, AND MANY- . . . PHYSICAL REVIEW B 83, 094431 (2011)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

δn
π

δn
π

δn
π

δn
π

L = 8
L = 10
L = 12
L = 14

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1
αα

αα

0 0.5 1 1.5 2
Δ Δ

Δ Δ

0

0.2

0.4

0.6

0.8

1

ib

(I)

ib

(II)

ib

(IV)

ib

(III)

α = z

α = x

α = z α = z

α = z

α = x α = x

α = x

FIG. 7. (Color online) Discrepancies δnx
π (black circles) and δnz

π

(red squares) between the diagonal and the canonical ensemble
predictions, for a quench from Jz0 = 10 to Jz = 0.5. Data in the
upper left panel (I) are for different system sizes as depicted in the
caption, while in the other panels they are for L = 12. In the cases of
perturbations involving disorder, (I),(II), and (III), averages over 200
instances are performed.

than one order of magnitude smaller than δnz
π , indicating a

closely thermal behavior, while δnz
π shows a sharp decrease as

integrability is progressively broken by increasing �, toward
a minimum value at �̄. The scaling with the dimension L of
the chain, shown in the upper left panel of Fig. (7), confirms
our predictions. While the behavior of δnx

π is independent on
the system size, the decrease of δnz

π as a function of � is more
pronounced on increasing L. Due to the numerical limitations
of exact diagonalization, we cannot rule out the possibility that,
in the thermodynamic limit, the integrable to non-integrable
transition for low perturbation strengths occurs at �∗ = 0
in all the cases analyzed here, cases (I)-(IV). However, for
the considered sizes, we found that the local observable δnz

π

thermalizes the best at around �̄ ∼ 1 for model (I). It is
now crucial to observe that around this point, as noticed in
the previous sections, the diffusive nature of the eigenstates is
pronounced. The upper right and the lower left panels seem

to locate the optimal thermalization point for models (II) and
(III) at a slightly larger value of �, while the lower right
panel shifts it to slightly smaller values for model (IV). In all
cases it is, however, true that at these points ξ � N[E,E+W ],
making a direct connection between good thermalization and
the diffusive nature of the eigenstates. Notice also that, for
� � �̄, δnz

π necessarily has to increase again, in agreement
with the fact that � � �̄ is the point where the non-integrable
behavior is most pronounced and that for large values of �

the system tends toward another integrable limit.33 In analogy
with previous studies, the different sensitivity to integrability
of correlators in different spin directions can be qualitatively
understood as a consequence of the fact that σ z is a local
operator in quasi-particle space while σx is a non-local one.13

VI. SUMMARY

In conclusion, we discussed thermalization and
integrability-breaking in the dynamics after a quench of
a quantum XXZ Heisenberg spin chain in the presence of an
integrability-breaking term. We have shown that, if one wants
to know when and how an interacting many-body system
thermalizes, one should study the corresponding many-body
localization/delocalization transition in quasi-particle space.
Thermalization should occur when the relevant typical states
spread diffusively on an exponential number of states lying
in the microcanonical energy shell. We point out that our
picture is valid as long as the integrability-breaking term acts
homogeneously in the quasiparticle space, in such a way as
to induce ergodicity over all the relevant Hilbert space. For
generic dynamic systems there may be regions of the phase
space which are non chaotic, so that their quantum versions
produce entropy at a non-uniform rate given by the local
Lyapunov exponents.34 In this case more complex scenarios
for the approach to equilibrium may arise.
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(2008).
20V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007);

V. Oganesyan, A. Pal, and D. A. Huse, ibid. 80, 115104 (2009).
21Localization is intended in the space of quasi-particles, and not

necessarily in real space.

22M. V. Berry, J. Phys. A: Math. Gen. 10, 2083 (1977).
23Notice that in general it is possible to have non-ergodic, but extended

states (see references. 16 and references therein).
24F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
25C. A. Doty and D. S. Fisher, Phys. Rev. B 45, 2167

(1992).
26While for the parameters used in this paper the low-lying eigenstates

are localized in the thermodynamic limit, in the following we
consider systems sizes smaller than the localization length.

27F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin,
1991).

28M. Di Stasio and X. Zotos, Phys. Rev. Lett. 74, 2050
(1995).

29Y. Avishai, J. Richert, and R. Berkovits, Phys. Rev. B 66, 052416
(2002); K. Kudo and T. Deguchi, ibid. 69, 132404 (2004).

30W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola, Phys. Rev.
E 77, 021106 (2008); F. Dukesz, M. Zilbergerts, and L. F. Santos,
New J. Phys. 11, 043026 (2009).

31The situation is slightly different when a static next-to-nearest
neighbor coupling is added (lower right panel). In this case, for
large values of � and sufficiently large Jz0, Eq. (9) does not admit
a physically meaningful solution.

32N. Nagaosa, Quantum Field Theory in Strongly Correlated Elec-
tronic Systems (Springer-Verlag, Berlin, 1999).

33The raising of δnz
π for � � �̄ is apparent for the case (I), as shown

in the upper left panel of Fig. 7. For the other cases we do not show
pertinent data, as this is not the main point we are concerned with.

34D. Monteoliva and J. P. Paz, Phys. Rev. Lett. 85, 3373 (2000).

094431-8

http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.82.011604
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevLett.105.250401
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevB.82.144302
http://dx.doi.org/10.1103/PhysRevB.82.144302
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevB.77.064426
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.80.115104
http://dx.doi.org/10.1088/0305-4470/10/12/016
http://dx.doi.org/10.1103/PhysRevLett.47.1840
http://dx.doi.org/10.1103/PhysRevB.45.2167
http://dx.doi.org/10.1103/PhysRevB.45.2167
http://dx.doi.org/10.1103/PhysRevLett.74.2050
http://dx.doi.org/10.1103/PhysRevLett.74.2050
http://dx.doi.org/10.1103/PhysRevB.66.052416
http://dx.doi.org/10.1103/PhysRevB.66.052416
http://dx.doi.org/10.1103/PhysRevB.69.132404
http://dx.doi.org/10.1103/PhysRevE.77.021106
http://dx.doi.org/10.1103/PhysRevE.77.021106
http://dx.doi.org/10.1088/1367-2630/11/4/043026
http://dx.doi.org/10.1103/PhysRevLett.85.3373

