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An exactly solvable variant of a mixed spin-(1/2,1) Ising-Heisenberg diamond chain is considered. Vertical
spin-1 dimers are taken as quantum ones with Heisenberg bilinear and biquadratic interactions and with single-ion
anisotropy, while all interactions between spin-1 and spin-1/2 residing on the intermediate sites are taken in the
Ising form. The detailed analysis of the T = 0 ground-state phase diagram is presented. The phase diagrams have
been shown to be rather rich, demonstrating a large variety of ground states: a saturated one, three ferrimagnetic
ones with magnetization equal to 3/5, and another four ferrimagnetic ground states with magnetization equal to
1/5. There are also two frustrated macroscopically degenerated ground states that could exist at zero magnetic
filed. Solving the model exactly within a classical transfer-matrix formalism we obtain exact expressions for all
thermodynamic functions of the system. The thermodynamic properties of the model have been described exactly
by exact calculation of the partition function within the direct classical transfer-matrix formalism.
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I. INTRODUCTION

Lattice models of quantum magnetism continue to be the
focus of attention of theoretical condensed matter physicists.
Besides being of great practical importance connected with
the description of magnetic and thermodynamic properties of
real magnetic materials, this research area is also attractive
from the general statistical mechanics and strongly correlated
system theory points of view, especially when one deals
with an exactly solvable strongly interacting many-body
system. The diamond chain is a one-dimensional lattice
spin system in which the vertical spin dimers alternate
with single spins (see Fig. 1). This model with S = 1/2
is believed to describe the magnetic lattice of the mineral
azurite, Cu3(CO3)2(OH)2, which is famous for its deep blue
pigmentation.1–4 Theoretical research on various aspects of
diamond chain physics has received much attention during
recent years.5–16 Diamond chain and especially diamond
chain with mixed (S,S/2) spin are shown to have very
rich ground-state phase diagrams with Haldane and several
spin-cluster states, which are a tensor product of exact local
eigenstates of cluster spins.5,6 Many other issues of diamond
chain physics have been investigated theoretically during
recent years including Dzyaloshinskii-Moriya term influence
on magnetization processes,7 multiple-spin-exchange effects,8

magnetization plateaus,9,10 magnetocaloric effect,11 etc. Very
recently another interesting feature of diamond chains, the
possibility of localized magnon excitations, also has been
investigated.12

An especially important issue is the effect of frustration,
which is rather strong in an antiferromagnetic diamond chain
because of triangular arrangement of the sites. Variants of
frustrated recurrent lattices with a diamond plaquette have
been studied in Refs. 17 and 18. However, a diamond chain
is not integrable in general. Thus, the exact analysis of
the dynamic and especially thermodynamic properties of a
diamond chain is a very complicated issue. Nevertheless, one
can consider various exactly solvable variants of spin systems

possessing a diamond chain topology of interaction bonds
with a simplified structure of interactions.13–16 The diamond
chain with only an Ising type of interaction has been exactly
solved within classical transfer-matrix technique in Ref. 13,
revealing the rich structure of a T = 0 ground-state phase
diagram. Yet other exactly solvable diamond chains have been
considered in Refs. 14–16,19, where vertical spin dimers have
been taken as quantum ones with XXZ interaction, while
interaction between spins localized on vertical dimer sites
and spins from the single sites alternating with them is of
an Ising type. Mapping the system into a single Ising chain
within iteration-decoration transformation,20–22 the authors
gave a complete description of the ground-state properties, a
T = 0 ground-state phase diagram, as well as thermodynamic
functions for all values of vertical dimer spins magnitude S.
In a very recent paper the diamond chain with XX interaction
has been considered in the Jordan-Wigner formalism.19

Considering the mixed-spin chains (or other one-
dimensional spin systems with more complicated geometry)
with Ising and Heisenberg bonds (or even just Ising counter-
parts of the known quantum spin models) one can achieve
a twofold goal: to construct an exactly solvable lattice spin
model that allows one to obtain an analytic expression for all
thermodynamic functions of the model, and to get approximate
models that can be useful for understanding the properties of
underlying purely quantum models.14–16,23–29 Exact thermo-
dynamic solutions of such models even can shed light on
the properties of real magnetic materials. For instance, for
alternating spin chains, even the simplest models with only an
Ising interaction can reflect the underlying magnetic behavior
of the corresponding Heisenberg counterpart at least in a
qualitative way;30,31 moreover, some exactly solvable models
with Ising and Heisenberg bonds can also provide a satisfactory
quantitative picture.29 Very recently, the synthesis of the
novel class of trimetalic 3d-4d-4f coordination polymers has
been reported. One of them, a one-dimensional coordination
polymer compound containing 3d (Cu2+), 4d (Mo5+), and
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FIG. 1. The diamond chain with Ising and Heisenberg bonds.
Solid bold lines denote XXZ quantum bonds; dotted lines correspond
to Ising interactions. Large (small) circles denote S (σ ) spins.

4f (Dy3+) ions, is shown to exhibit the properties of a
one-dimensional magnet with Ising and Heisenberg bonds.32,33

The appearance of Ising interactions between magnetic ions
in this compound is connected with the extremely anisotropic
properties of Dy3+ ground states (g‖ = 19.6, g⊥ ≈ 0). Thus,
the interactions of Dy3+ with the surrounding Cu2+ and
Mo5+ ions are, to the great extent, of Ising type, involving
spin projection along the dysprosium anisotropy axis, while
the interaction bonds Cu2+—Mo5+ correspond to Heisen-
berg interaction.32,33 Recently, the theoretical calculations of
the magnetic properties of the corresponding coordination
polymer compound have been performed in Ref. 33 using
the transfer matrix method. Though the aforementioned one-
dimensional coordination polymer system is not exactly the
Ising-Heisenberg diamond chain considered in the present
paper, this discovery of novel classes of magnetic materials
makes the investigation of exact solutions of spin chains with
Ising and Heisenberg bonds important from a practical point
of view as well.

In this paper we consider mixed spin-(1,1/2) diamond chain
with Ising and Heisenberg bonds that extends the system
considered in Ref. 16 by including a biquadratic term for
S = 1 XXZ dimers and single-ion anisotropy. Biquadratic
terms are usually originated from the spin-lattice coupling
in the adiabatic phonons approximation34 but also can be
considered as the effect of quadrupole interaction between
the spins. We do not make any assumption about the origin of
biquadratic terms, considering them as a part of the general
Hamiltonian. The model allows one to calculate the partition
function and, thus, all thermodynamic quantities exactly
within classical transfer-matrix formalism.35 We present the
analysis of T = 0 ground-state phase diagrams and plot the
curves of magnetization processes for finite temperatures,
demonstrating magnetization plateaus at M = 1/5 and 3/5
in the units of saturation magnetization.

The paper is organized as follows. In Sec. II we formulate
the model and present its eigenvalues. In Sec. III we describe
possible ground states of the system and present the ground-
state phase diagram. In Sec. IV we present its exact solution
and discuss the magnetization and thermodynamics properties
of the model. Finally in Sec. V a short summary is given.

II. THE MODEL AND ITS EXACT SOLUTION

Let us consider the system of vertical S = 1 spin dimers
with Heisenberg XXZ bilinear and biquadratic interactions
and uniaxial single-ion anisotropy. These dimers are assem-
bled to the chain by alternating with Ising spins σ , so that each
spin S in a certain dimer interacts to both its left and right Ising
spins via an Ising-type interaction (see Fig. 1). So we have

the so-called diamond chain with S = 1 Heisenberg dimers
and σ = 1/2 Ising spins between them. The corresponding
Hamiltonian is the sum over the block Hamiltonians:

H =
N∑

i=1

[
Hi − h2

2
(σi + σi+1)

]
,

Hi = J (Si1 · Si2)� + K(Si1 · Si2)2
� + D

[(
Sz

i1

)2 + (
Sz

i2

)2]
+ J0(σi + σi+1)

(
Sz

i1 + Sz
i2

) − h1
(
Sz

i1 + Sz
i2

)
, (1)

where N is the number of the unit cells (blocks with two spin-1
and one spin-1/2), while i corresponds to the particles at the
i-cell. J is the coupling constant of bilinear XXZ interaction
between Heisenberg spins, which we assume to be of the
following form:

(Si1 · Si2)� = �
(
Sx

i1S
x
i2 + S

y

i1S
y

i2

) + Sz
i1S

z
i2, (2)

whereas K denotes the biquadratic XXZ interaction term, D

means the single-ion anisotropy, and J0 is the purely Ising
interaction term. Here h2 and h1 are the external magnetic
field acting on σi and Si respectively.

In order to solve this model, first, we need to diagonalize the
block Hamiltonian for arbitrary ith block. Nine eigenvalues of
Hi , λn(σi,σi+1), n = 1, . . . ,9 can be found analytically, which
can be written as

λ1,2 = J + K + 2D ± 2[−h1 + J0(σi + σi+1)],

λ3,4 = �(J + �K) + D ± [−h1 + J0(σi + σi+1)],

λ5,6 = −�(J − �K) + D ± [−h1 + J0(σi + σi+1)], (3)

λ7 = −J + K + 2D,

λ8,9 = −J + (1 + 4�2)K + 2D

2
± 1

2
R,

where for simplicity R denotes the following expression:

R =
√

8�2(J − K)2 + (J − K − 2D)2. (4)

The eigenvectors of block Hamiltonian Hi up to the
inversion of all spins are

|v2〉 = |1,1〉, ⇒ λ1,λ2,

|v1,s〉 = 1√
2

(|1,0〉 + |0,1〉), ⇒ λ3,λ4,

|v1,a〉 = 1√
2

(−|1,0〉 + |0,1〉), ⇒ λ5,λ6, (5)

|v0,a〉 = 1√
2

(−| − 1,1〉 + |1, − 1〉), ⇒ λ7,

|v0,±〉= 1√
2 + c2±

(|−1,1〉+c±|0,0,〉+|1, − 1〉), ⇒λ8,λ9,

where 1, 0, and −1 in first (second) place stand for the Sz = 1,
0, and −1 states for first (second) spin in vertical dimer, and
the following notation is adopted:

c± = 1

2�

(
1 + 2D ± R

K − J

)
. (6)

The first eigenvectors of the dimer defined as |v2〉 corre-
spond to the parallel ordered spins with magnetization per site
ms = 1, the eigenvector |v1,s〉 and |v1,a〉 corresponds to sym-
metric and antisymmetric state vector, respectively, whereas
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|v0,a〉 is an antisymmetric state vector with magnetization
ms = 0; finally, |v0,±〉 are the symmetric eigenvectors with
magnetization ms = 0.

The remaining eigenvectors of the eigenvalues λ2, λ4, and
λ6 can be obtained using the spin inversion.

A. Special case K = J

At the special value K = J the Sz
tot = 0 sector of the

block Hamiltonian undergoes qualitative changes that can
be obtained by substituting carefully the K = J value into
the general solution presented in Eq. (5). This should be
considered as a consequence of the special symmetry of the
Hamiltonian for these values of parameters, more precisely, the
fact that the operator (S1 · S2)� + (S1 · S2)2

� can be represented
in terms of permutation operators P12. In this case the
eigenstates |v0,a〉 and |v0,±〉 of the Hamiltonian reduce to the
following ones:

|v0,a〉 = 1√
2

(|1, − 1〉 − | − 1,1〉), ⇒ λ7 = 2D,

|v0,+〉 = |0,0〉, ⇒ λ8 = 2J�2,

|v0,−〉= 1√
2

(|1,−1〉+| − 1,1〉), ⇒ λ9=2(J�2 + D). (7)

Note that a straightforward substitution in Eq. (6) could
yield an undefined coefficient of the eigenstates.

III. GROUND-STATE PHASE DIAGRAMS

Let us describe the possible T = 0 ground states of the chain
under consideration and the corresponding energies per block.
Generally speaking, there are 9 × 2 = 18 possible ground
states for each block. However, if one restricts one’s self to
the ground states that are equivalent up to the inversion of all
spins, one will arrive at the following spin configurations. The
fully polarized state (M = 1) is

|SP〉 =
N∏

i=1

|v2〉i ⊗ |↑〉i , εSP = J + K + 2D + 2J0 − 5

2
H,

(8)

where |↑〉i(|↓〉i) stands for the up(down) state of the σ spin in
the ith block. Hereafter, we also put h1 = h2 = H . The next
sector of ground states contains three different ferrimagnetic
spin configurations with the value of magnetization equal to
3/5 (M = 3/5):

|F1〉=
N∏

i=1

|v2〉i ⊗ |↓〉i , εF1=J+K+2D − 2J0−3

2
H,

|F2〉=
N∏

i=1

|v1,s〉i ⊗ |↑〉i ,

εF2=�(J+�K)+D+J0−3

2
H, (9)

|F3〉 =
N∏

i=1

|v1,a〉i ⊗ |↑〉i ,

εF3 = −�(J − �K) + D + J0 − 3

2
H.

There are also another four ferrimagnetic ground states with
M = 1/5:

|F4〉 =
N∏

i=1

|v1,s〉i ⊗ |↓〉i ,

εF4 = �(J + �K) + D − J0 − 1

2
H,

|F5〉 =
N∏

i=1

|v1,a〉i ⊗ |↓〉i ,

εF5 = −�(J − �K) + D − J0 − 1

2
H,

(10)

|F6〉 =
N∏

i=1

|v0,a〉i ⊗ |↑〉i ,

εF6 = −J + K + 2D − 1

2
H,

|F7〉 =
N∏

i=1

|v0,−〉i ⊗ |↑〉i ,

εF7 = 1

2
[−J + (1 + 4�2)K + 2D − R] − 1

2
H.

When no external magnetic field is applied, there is also
the possibility of frustrated ground-state formation, in which
the orientation of σ spins in each block is not defined. In this
case all σ spins become decoupled and behave like free spins.
There are two frustrated ground states:

|FR1〉 =
N∏

i=1

|v0,a〉i ⊗ |ξ 〉i , εFR1 = −J + K + 2D,

|FR2〉 =
N∏

i=1

|v0,−〉i ⊗ |ξ 〉i , (11)

εFR2 = 1

2
[−J + (1 + 4�2)K + 2D − R].

Here |ξ 〉i stands for an arbitrary value of the σ spin in the
ith block. Thus, for H = 0 if the S = 1 dimer has Sz

tot = 0,
then its neighboring σ spins become decoupled, which results
in macroscopic nonzero entropy S/N = log 2 for each of the
frustrated ground states of Eq. (11). Applying a magnetic
field one removes the twofold macroscopic degeneracy driving
|FR1〉 and |FR2〉 ground states into |F6〉 and |F7〉, respectively.
Nevertheless, in some papers the two last nondegenerated
ground states of Eqs. (10) are mentioned as frustrated
ones.14–16

Hereafter, to discuss the phase diagrams we will consider
the external magnetic field as h1 = h2 = H . It is also conve-
nient to present all parameters as units of |J |. Thus, we define
κ = K/|J |, j0 = J0/|J |, δ = D/|J |, and h = H/|J |. In Fig. 2
one can see four ground-state phase diagrams plotted in the
(κ ,h) plane demonstrating a vast variety of ground states for
fixed values of δ and j0. These plots summarize the effect of
the biquadratic term. The equations of phase boundaries for
J > 0, � = 2, j0 = 0.5, and δ = 0.5 [Fig. 2(a)] are

between F7 and SP, h = 1
4 [6−15κ+

√
κ2+32(κ−1)2],

between F7 and F3, h = 1
2 [−2−9κ+

√
κ2+32(κ−1)2],

(12)
between F3 and SP, h = 4 − 3κ.
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FIG. 2. Ground-state phase diagrams in the (κ ,h) plane demon-
strating the effect of a biquadratic term. Here κ = K/|J | and
h = H/|J |. The values of all other parameters, j0 = J0/|J |,
δ = D/|J |, are fixed as follows: j0 = 1/2,δ = 1/2. Left panels (a)
and (c) correspond to the antiferromagnetic Heisenberg interaction
J > 0; right panels (b) and (d) to the ferromagnetic one J < 0. In
upper panels (a) and (b) � = 2 has been taken, while in lower panels
(c) and (d) one can see phase diagrams for the isotropic case � = 1.
At H = 0 the F6 and F7 ground states in all four panels passed to the
corresponding frustrated phases FR1 and FR2, respectively. So the
lines corresponding to H = 0 ground states below F6 and F7 should
be understood as belonging to frustrated ground states corresponding
to disordered configuration of σ spins.

The rest of the phase boundaries in this case are either
horizontal or vertical lines in the (κ , h) plane. F5 and F3 as well
as F6 and F1 are separated by the h = 1 line, while the phase
boundary between F5 and F6 as well as between F3 and F1 is
the vertical line situated at κ = 2/3. Ground states F7 and F5
are separated by the line κ = 1/12(−17 + √

337) ≈ 0.113 13.
For the case of antiferromagnetic Heisenberg interaction

between S = 1 spin (J < 0) presented in Fig. 2(b) the
equations of the phase boundaries are

between F7 and SP,

h = 1
4 [−15κ +

√
32(κ + 1)2 + (κ + 2)2],

between F7 and F2,

h = 1
2 [−4 − 9κ +

√
32(κ + 1)2 + (κ + 2)2], (13)

between F2 and SP, h = 2 − 3κ,

between F4 and F1, h = 1 − 3κ.

The boundary between F1 and saturated ground state SP is
the straight line h = 2. Horizontal line κ = 0 separates F4
and F7 as well as F1 and F2. In order to demonstrate the
significant role of exchange anisotropy � we plotted also
the ground-state phase diagrams for the isotropic case � = 1
[Fig. 2(c) and 2(d)] for antiferromagnetic and ferromagnetic J ,
respectively. One can see the simplification of the ground-state
phase diagram via the disappearance of two ground states
presented in the anisotropic case � = 2 [Fig. 2(a) and 2(b)].
So for J > 0 one can find, besides SP, only F3, F5, and F7

and for J < 0 only F1 and F7 ground states, respectively.
The equation of phase boundaries for antiferromagnetic J ,
isotropic � = 1, and j0 = 0.5, δ = 0.5 are

between F7 and SP,

h = 1
4 [6 − 3κ +

√
8(κ − 1)2 + κ2],

(14)
between F7 and F3,

h = 1
2 [−κ +

√
8(κ − 1)2 + κ2].

Ground states F3 and SP are separated by the horizontal line
h = 3; another two straight lines appear between F3 and F5
and F7 and F5 at h = 1 and κ = 1/7, respectively. In the
case of ferromagnetic J and the isotropic exchange interaction
presented in Fig. 2(d) one can see only three possible ground
states: F1, F7, and SP. Here the horizontal line h = 2 separates
F1 and SP, while other two phase boundaries are given by

between F7 and SP,

h = 1
4 [6 − 3κ +

√
8(κ + 1)2 + κ2],

(15)
between F7 and F1,

h = 1
2 [2 − 3κ +

√
8(κ + 1)2 + κ2].

In order to summarize the effects of the Ising coupling J0

we plotted two other ground-state phase diagrams presented
in Fig. 3. Here the left panel shows ground-state boundaries
in the (j0, h) plane for fixed values of δ, κ , and �, while the
right panel demonstrates the phase boundaries for fixed δ,h,
and � in the (κ ,j0) plane. For the sake of brevity we just list
the equation of phase boundaries. For the left panel:

between F3 and SP, h = 23

8
+ j0,

between F3 and F7, h = 1

2

(√
11

2
− 3

4

)
+ j0,

between F3 and F5, h = 2j0,

-3 -2 -1 0 1 2 3
Jo/J

0

1

2

3

4

5

H
/J

-4 -2 0 2 4
K/J

-4

-2

0

2

4

Jo
/J

SP

F1

F3

F5

F7

SP

F1

F5

F3

F7

(a) (b)

FIG. 3. Ground-state phase diagrams demonstrating the influence
of J0. Here � = 1/2 and δ = 1. (a) The ground-state phase diagram in
the (j0,h) plane for a fixed value of biquadratic interaction κ = 1/2;
(b) the ground-state phase diagram in the (κ , j0) plane for a fixed
value of magnetic field h = 1.
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between F5 and F1, h = 23

8
− j0, (16)

between F1 and SP, h = 4j0,

between F7 and F5, j0 = 1

2

(√
11

2
− 3

4

)
,

between F3 and F1, j0 = 23

24
.

For right panel:

between F7 and SP,

j0 = −1

4
[1 +

√
2(κ − 1)2 + (κ + 1)2],

between F7 and F3,

j0 = 1

2

[
2 − 3

2
κ −

√
2(κ − 1)2 + (κ + 1)2

]
,

between F7 and F5,

j0 = 1

2

[
− 3

2
κ +

√
2(κ − 1)2 + (κ + 1)2

]
, (17)

between F7 and F1,

j0 = 1

4
[3 +

√
2(κ − 1)2 + (κ + 1)2],

between SP and F3, j0 = −3

2

(
1 + 1

2
κ

)
,

between F3 and F5, j0 = 1

2
,

between F5 and F1, j0 = 3

2

(
1 + 1

2
κ

)
.

Another two ground-state phase diagrams demonstrating the
influence of single-ion anisotropy are presented in Fig. 4. The
left (right) panel exhibits phase boundaries for h = 1, j0 = 1,
and � = 0.5 (κ = 0.5), respectively. The phase boundaries
for the left [in the (δ,κ) plane] and right [in the (δ,�) plane]
panels, respectively, are

between F1 and F7, δ = −3(2 + 2κ − κ2)

4(2 + κ)
,

between F1 and F5, δ = 1

4
(2 − κ),

(18)
between F5 and F7,

δ = 1

2
(1 − κ +

√
2 + 10κ + 1/4κ2),

and

between F1 and F4, δ = 1
2 (� + 1)2, (19)

between F1 and F5, δ = 1
2 (� − 1)2,

between F7 and F4,

δ = 1
2 (1/2 −

√
9/4 + �4 − 4�3 + 5�2 − 6�), (20)

between F7 and F5,

δ = 1
2 (1/2 +

√
9/4 + �4 + 4�3 + 5�2 + 6�).

Finally, the zero-field ground-state phase diagram is presented
in Fig. 5. The phase diagram exhibits the appearance of two
frustrated ground states at a zero magnetic field. We choose
δ = 0 and a rather small value of biquadratic interactions
κ = 0.1. The equations for the phase boundaries are

between F1 and F5, J̃ = 1 − K̃(1 − �2)

1 + �
,

between F1 and FR2, J̃ = 1, (21)

between FR2 and F5, J̃ = 1 + K̃(1 − �2)

1 − �
,

between F5 and FR1, J̃ = 2� − 1 + �(1 + �)(1 + 2�)K̃ + [1 + �(1 + �)K̃]
√

1 + 8�2

2�(1 + �)
; (22)

here J̃ = J/J0 and K̃ = K/J0.

IV. EXACT SOLUTION AND THERMODYNAMICS

The present model could be solved exactly using
the known decoration transformation earlier presented by
M. E. Fisher,20,21 and recently generalized for arbitrary spin
interactions,22 where one maps the partition function of
the system to the partition function of a one-dimensional
Ising model, writing the relations for the entries of the
transfer matrix and thus obtaining the relations between model
parameters and that of an Ising chain. But here we implement
a direct transfer matrix calculation without any account of
the solution of an Ising chain. Therefore let us consider the

following partition function of the system, which can be
represented as

Z =
∑

σ

SpS exp(−βH)

=
∑

σ

N∏
i=1

exp

[
β

h2

2
(σi + σi+1)

]
Z(σi,σi+1), (23)

where β as usual is inverse temperature and the partial partition
function for one dimer is introduced:

Z(σi,σi+1) = Spi exp(−βHi)

=
9∑

n=1

exp[−βλn(σi,σi+1)]. (24)
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FIG. 4. Ground-state phase diagrams demonstrating the effect of
single-ion anisotropy. Here h = 1, j0 = 1. (a) The ground-state phase
diagram in the (κ , δ) plane for a fixed value of exchange anisotropy
� = 1/2; (b) the ground-state phase diagram in the (�,δ) plane for a
fixed value of biquadratic interaction κ = 1/2.

At this stage one can easily observe that the structure of the
system implies the possibility of introducing the decoration-
iteration transformation;20,22 however, we prefer to perform a
direct transfer matrix calculation.25–28

Then, the partial partition function (24) corresponding to
one block can be easily expressed in the following form:

Z(σi,σi+1) =
2∑

n=0

Zn cosh {βn[h1 − J0(σi + σi+1)]} ,

Z0 = eβ(J−K−2D) + 2eβ 1
2 [J−(1+4�2)K−2D] cosh

(
βR

2

)
,

(25)
Z1 = 4e−β(�K+D) cosh(β�J ),

Z2 = 2e−β(J+K+2D).

0 5 10 15 20

Δ

0

0.5

1

1.5

2

J/
Jo

F1

FR1

FR2

F5

FIG. 5. Zero-field ground-state phase diagram drawn in the (�,
J/J0) plane for fixed D = 0 and small values of K/J0 = 0.1. The
frustrated ground states are exhibited.

After that, one can represent the partition function (23) in a
similar form to the partition function of a chain with classical
two state variables on each site:

Z =
∑

σ

N∏
i=1

T (σi,σi+1) = SpTN = 
N
1 + 
N

2 , (26)

where 
1,2 are two eigenvalues of the transfer-matrix T, which
takes the following form:

T =
(

eβ
h2
2 Z+ Z0

Z0 e−β
h2
2 Z−

)
, (27)

where

Z± = Z(±1/2, ± 1/2),

Z0 = Z(1/2, − 1/2) = Z(−1/2,1/2). (28)

Then, calculating the eigenvalues and taking thermodynamic
limit, when only the largest eigenvalue survives, one arrives at
the following expression for the free energy per block:

f = − 1

β
log

{
1

2

[
eβ

h2
2 Z+ + e−β

h2
2 Z−

+
√

(eβ
h2
2 Z+ − e−β

h2
2 Z−)2 + 4Z0

2
]}

. (29)

As soon as the free energy per block is calculated, one can
obtain analytic expressions for all thermodynamic function.

A. Magnetization and quadrupole moment

Magnetic quantities can be obtained using the free-energy
expression obtained in (29). Therefore the magnetization of
the spin S can be expressed as

MS = 1

2NZ
∑

σ

SpS

[
N∑

i=1

(
Sz

i1 + Sz
i2

)
e−βH

]

= −1

2

(
∂f

∂h1

)
β,h2,D

, (30)

while the magnetization of spin σ reads as

Mσ = 1

N/2Z
∑

σ

SpS

(
N∑

i=1

σie
−βH

)
= −2

(
∂f

∂h2

)
β,h1,D

.

(31)

Thus the total magnetization is given by

M = 1
5Mσ + 4

5MS. (32)

Figure 6(a) displays the plot of magnetization as a function
of biquadratic interaction term K in units of J , for fixed values
of H/J = 3, T/J = 0.15, � = 2, and J0/J = 0.5. Here one
can see the plateaus for different values of J ; these plateaus
occur as expected at 1/5 and 3/5. The plots of magnetization
processes (M versus H ) for the system under consideration are
presented in Fig. 6(b). Here the values of parameters are fixed
as K/J = 0.5, T/J = 0.15, � = 1, and the value of D/J

varies from −1 to 1. Here we show two plateaus at 0.2 and
0.6. Thermal behavior of magnetization at the fixed external
field is presented in Fig. 6(c), where the following values
of parameters are assumed: H/J = 4, � = 1.4, D/J0 = 1,
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FIG. 6. (a) Magnetization as a function of K/J , for H/J = 3.0, T/J = 0.15, � = 2, and J0/J = 0.5. (b) Magnetization as a function of
H/J , for K/J = 0.5, T/J = 0.15, � = 1, and J0/J = 0.5. (c) Magnetization versus temperature T/J , for J0/J = 0.5, H/J = 4, � = 1.4,
and D/J = 1.

and J0/J = 0.5, where we display the competition effect
between ferromagnetic state SP and ferrimagnetic state F1 with
magnetization M = 3/5, when temperature increases. Close
to zero temperature one obtains three well-defined values
for the magnetization, which are in accordance with plateaus
displayed in Fig. 6(a) and 6(b).

As the system under consideration contains sites with
spin-1 one can define another important physical quantity,
the quadrupole moment, which can be obtained by the
thermodynamic relations as well:

Q = 1

2NZ
∑

σ

SpS

{
N∑

i=1

[(
Sz

i1

)2 + (
Sz

i2

)2]
e−βH

}

= 1

2

(
∂f

∂D

)
β,h1,h2

. (33)

Some properties of the quadrupole moment also will be
discussed due to the contribution of the biquadratic and
uniaxial single-ion anisotropy parameters.

In Fig. 7(a) the plots of the quadrupole moment as a function
of K/J for fixed values of H/J = 3, J0/J = 0.5, � = 2,
and T/J = 0.15 are presented for several temperatures. The
nontrivial and nonmonotone behavior of Q under variation of
K can be understood if one takes into account the appearance

of F7 and FR2 ground states in which the vertical quantum
dimer is in an |v0,−〉 eigenstate. Calculating the expectation
value for the operator Q for this state one obtains

〈v0,−|1

2

[(
Sz

1

)2 + (
Sz

2

)2]|v0,−〉 = 1

1 + 1
8�2

(
1 + 2D−R

K−J

)2 , (34)

which actually defines the low-temperature behavior of the
quadrupole moment. The quadrupole moment dependence of
the uniaxial single-ion anisotropy parameter D is illustrated in
Fig. 7(b), assuming H/J = 2, J0/J = −0.5, T/J = 0.1, and
� = 2. Similar to the case of the magnetization we obtain some
plateaus, but for higher values of D we have a decreasing curve
instead of plateaus (solid line). On the other hand, as soon as
the temperature increases, these plateaus obviously disappear.
In Fig. 7(c) we plot the quadrupole moment as a function of
the temperature for fixed values of J0/J = 0.5, D/J = 1.0,
H/J = 4, and � = 1.4, similar to the case of magnetization
[Fig. 6(c)], where the quadrupole moment leads to fixed values
at low temperature, which are related to the plateaus displayed
in Fig. 7(a) and 7(b), while at high temperature the average
quadrupole moment leads to 2/3, which corresponds to equal
probabilities for all three values of S = 1 spin.

FIG. 7. Quadrupole moment: (a) As a function of K/J , for H/J = 3, J0/J = 0.5, � = 2, and T/J = 0.15; (b) as a function of D, for
J/J0 = −0.5, T/J = 0.1, H/J = 2, and � = 2; (c) as a function of T , for J0/J = 0.5, D/J = 1.0, H/J = 4, and � = 1.4.

094430-7



ROJAS, DE SOUZA, OHANYAN, AND KHURSHUDYAN PHYSICAL REVIEW B 83, 094430 (2011)

V. CONCLUSION

We have considered an exactly solvable variant of a
diamond chain with mixed S = 1 and S = 1/2 spins. The
vertical S = 1 dimers are taken as quantum ones with
Heisenberg interaction, biquadratic interaction, and single-ion
anisotropy terms, while all interactions between S = 1 spins
and S = 1/2 spins residing on the intermediate sites are
taken in the Ising form. The system generalizes the model
of diamond chain with Ising and Heisenberg bonds considered
in Ref. 14. Our results supplement the previously obtained
ones for the case of S = 1 vertical XXZ dimers with only
bilinear Heisenberg interaction. Despite the common subject,
the solution method used in the present paper is different
from that of Ref. 14. The authors of Ref. 14 work with the
decoration-iteration transformation,20,21 mapping the partition
function and thermal averages to the partition function and
thermal averages of the Ising chain. Exploiting then the
known exact results of an Ising chain and using numerical
solutions of the decoration-iteration transformation relations
they obtain the plots of various observables. The direct transfer
matrix calculation used in the present paper allows us to
avoid any numerics and provides a ground for direct physical
intuition. One of the main goals of our research is to perform
the detailed analysis of various T = 0 ground-state phase
diagrams, in particular emphasizing biquadratic interaction
and single-ion anisotropy effects. As the number of parameters
in the considered model are rather high, the phase diagrams
have been shown to be rather rich, demonstrating a large
variety of ground states: saturated one, three ferrimagnetic
ground states with magnetization equal to 3/5, and four other
ferrimagnetic ground states with magnetization equal to 1/5.

There are also two frustrated macroscopically degenerated
ground states that exist at a zero magnetic filed. In general,
depending on the values of parameters, the system can exhibit
all ten ground states described in the paper, which is almost
two times larger that in the S = (1,1/2) Ising–Heisenberg
diamond chain considered in Ref. 14. The thermodynamic
properties of the model have been described exactly by exact
calculation of partition function within the direct classical
transfer-matrix formalism. The entries of transfer matrix, in
their turn, contain the information about quantum ground
states of the vertical S = 1 XXZ dimer (eigenvalues of local
hamiltonian for vertical link). It is worth mentioning that the
recent achievements in the synthesis of novel coordination
polymer compounds containing highly anisotropic magnetic
ions32,33 make the research field of an exact solution of the
Ising-Heisenberg spin chains not only interesting from the
abstract statistical mechanics point of view, but also practically
relevant for computation of the magnetic and thermodynamic
properties of novel magnetic materials.
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29J. Strečka, M. Jaščur, M. Hagiwara, Y. Narumi, K. Kindo, and

K. Minami, Phys. Rev. B 72, 024459 (2005).
30V. Ohanyan and N. Ananikian, Phys. Lett. A 307, 76 (2003).

31F. Litaiff, J. Desousa, and N. Branco, Solid State Commun. 147,
494 (2008).

32D. Visinescu, A. M. Madalan, M. Andruh, C. Duhayon, J.-P. Sutter,
L. Ungur, W. Van der Heuvel, and L. F. Chibotary, Chem. Eur. J.
15, 11808 (2009).

33W. Van den Heuvel and L. F. Chibotaru, Phys. Rev. B 82, 174436
(2010).

34C. Kittel, Phys. Rev. 120, 335 (1960).
35R. Baxter, Exactly Solved Models in Statistical Mechanics

(Academic Press, New York, 1982).

094430-9

http://dx.doi.org/10.1016/j.physleta.2008.02.004
http://dx.doi.org/10.1016/j.physleta.2008.02.004
http://dx.doi.org/10.1103/PhysRevB.79.014432
http://dx.doi.org/10.1103/PhysRevB.79.014432
http://dx.doi.org/10.1134/S1063778810030129
http://dx.doi.org/10.1140/epjb/e2010-00146-x
http://dx.doi.org/10.1103/PhysRevB.72.024459
http://dx.doi.org/10.1016/S0375-9601(02)01224-0
http://dx.doi.org/10.1016/j.ssc.2008.06.037
http://dx.doi.org/10.1016/j.ssc.2008.06.037
http://dx.doi.org/10.1002/chem.200902408
http://dx.doi.org/10.1002/chem.200902408
http://dx.doi.org/10.1103/PhysRevB.82.174436
http://dx.doi.org/10.1103/PhysRevB.82.174436
http://dx.doi.org/10.1103/PhysRev.120.335

