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Ab initio description of spin pumps and spin sinks in magnetic double layers with in-plane coupling
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For magnetic double layers separated by a nonmagnetic metallic spacer the precession of the magnetization in
only one magnetic slab (“spin pump”) and in both of them (“spin sink”) is described using the fully relativistic
spin-polarized screened Korringa-Kohn-Rostocker method. It is found that both semiaxes of the ellipses that form
the base planes of precessional cones can be identified with particular anisotropy energies. Slopes along particular
paths of the obtained free energy hypersurfaces are then used to estimate in terms of the Landau-Lifshitz-Gilbert
equation the minimal times to move from a chosen initial state to a particular final state. Furthermore, fully
relativistic spin-polarized calculations by means of the Kubo equation of the corresponding zz-like elements of
the conductivity tensor show that the current along the surface normal is bigger for “spin pumps” than for “spin
sinks.” For moderately small external fields the time scale for the individual processes is in the femtoregime.
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I. INTRODUCTION

Very recently ferromagnetic resonance (FMR) and other
experimental techniques such as the depth-resolved Kerr
effect (TRMOKE) were used1,2 to study the magnetization
dynamics and electric properties of magnetic double lay-
ers Au12Fe12AgnFe16 with n = 5,20,100,300,500,1500 (in
monolayers) grown on a GaAs(100) substrate. The interesting
idea behind these experiments was to study the interaction
between “spin pumps” and “spin sinks,” namely a change
in electric properties when the magnetization precesses only
in one of the magnetic slabs (“spin pump”) with respect
to a precession in both (“spin sink”). To follow this idea
theoretically on an ab initio scale implies first to describe the
precession of the magnetization in one and in both magnetic
slabs on an appropriate quantum mechanical level, then to
evaluate the corresponding electric properties, and finally to
estimate the time scales for “spin pump” and “spin sink”
processes. For this purpose the system Au12Fe12 Ag5Fe16/Vac
in which the rather thick Au cap is considered as a semi-infinite
system3 and the GaAs substrate is replaced by a vacuum
barrier was chosen, since due to the small spacer thickness
sufficiently large effects can be expected. In particular, the
following systems were investigated,

Au(100)/Au12Fe12Ag2︸ ︷︷ ︸
slab 1: �1,�1

AgAg2Fe16Vac3︸ ︷︷ ︸/Vac,

slab 2: �2,�2

(1)

in which in the left magnetic slab a uniform orientation of the
magnetization is characterized by the angles �1 and �1, and
in the right magnetic slab by �2 and �2. The angles �1 and
�2 refer to rotations around the respective in-plane y axes,
�1 and �2 around the z axis (parallel to the surface normal)
(see Fig. 1), in which it is assumed that the orientations of the
magnetization in the two slabs are aligned either parallel or
antiparallel to the in-plane x axis.

II. COMPUTATIONAL ASPECTS

All ab initio electronic structure calculations were per-
formed at the experimental lattice constant of Au in terms
of the spin-polarized (fully) relativistic screened Korringa-
Kohn-Rostoker method.4 The free energies in Eq. (4) are

evaluated (at zero temperature) in terms of the magnetic force
theorem, the electric transport properties by means of the fully
relativistic Kubo-Greenwood equation.5 In all calculations
a maximum angular quantum number of two,4 the density
functional parametrization of Ref. 6, and the atomic sphere
approximation (ASA)4 were used.

It should be noted that by using a fully relativistic spin-
polarized approach in the context of density functional theory
(DFT) the corresponding Kohn-Sham Hamiltonian is given4,5

by

H (�r) = c�α · �p + βmc2 + V eff(�r)I4 + β �� · �Beff(�r), (2)

where

�α =
(

0 �σ
�σ 0

)
, β =

(
I2 0
0 −I2

)
, �� =

(�σ 0
0 �σ

)
, (3)

Im is an m-dimensional unit matrix, �σ = (σx,σy,σz) a formal
vector consisting of the usual Pauli spin matrices, and,
according to DFT, V eff(�r) and �Beff(�r) refer to the effective
potential and exchange field, respectively. Any rotation of
this Hamiltonian comprises not only a transformation in
coordinate space, but also of the occurring Pauli matrices.7 By
considering, for example, the last term in Eq. (2) it is easy to
show4,5 that a transformation in spin space (i.e., of �σ ) induces a
transformation of the orientation of the exchange field �Beff(�r),
which of course is a classical vector. If, therefore, in the
following mainly the term “orientation of the magnetization”
is used, in fact a quantum mechanically correct description of
the transformation properties of the spin operator �� in Eq. (3)
applies.

III. FREE ENERGY HYPERSURFACES

According to the specifications in (1) the free energy is
given by

E(�1,�1; �2,�2)=Eb(�1,�1; �2,�2)−Eb

(
�0

1,�
0
1; �0

2,�
0
2

)

=
N∑

p=1

Ep(�1,�1; �2,�2), (4)

094428-11098-0121/2011/83(9)/094428(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.094428


P. WEINBERGER PHYSICAL REVIEW B 83, 094428 (2011)

FIG. 1. (Color online) (Top) Perspective view of the precession of
the magnetization in both magnetic slabs, that is, considering a typical
“spin sink” situation. The cone displayed in dashed lines refers to a
parallel alignment. The xy and xz planes indicated specify the cuts
through the precession cones. (Bottom) View of the base plane of a
precessional cone.

where Eb(�1,�1; �2,�2) is the grand canonical potential4,5

corresponding to a particular choice of these four angles,
and Eb(�0

1,�
0
1; �0

2,�
0
2) is that of an appropriate reference

configuration. In Eq. (4) the Ep(�1,�1; �2,�2) are the
so-called layer-resolved free energies, N being the total
number of layers considered. Clearly enough in the case of an
in-plane orientation of the magnetization in the two magnetic
slabs, depending on the thickness of the spacer (Ag), a priori
parallel or antiparallel coupling can occur. Therefore, for
matters of completeness, in Table I both kinds of coupling
are taken into account. In this table Exc

xy[z](�) refers to the
interlayer exchange energy, Ea

xy[z](�) to a uniform in-plane
anisotropy, Ea

xz[y](�) to a uniform perpendicular anisotropy
energy. According to the terms coined in Fig. 1 of Ref. 1
E

a1
xz[y](�) and E

a1
xy[z](�) have to be associated with “spin

pump” energies, while together with E
a2
xz[y](�) and E

a2
xy[z](�)

they correspond to “spin sink” energies.
In a traditional geometrical picture of precession (see the

top part of Fig. 1), E
a1
xz[y](�) and E

a2
xz[y](�) refer to cuts of

precessional cones with the xz plane, E
a1
xy[z](�) and E

a2
xy[z](�)

to those with the respective xy planes. Consider like in the
bottom part of Fig. 1 the precession of the orientation of the
magnetization in only one magnetic slab and a plane (specified
by a particular value of �) parallel to the yz plane. In this

TABLE I. Definition of various free energies. �1 and �1

specify the (uniform) orientation of the magnetization in the “left”
magnetic slab (Au2Fe12Ag2), �2 and �2 in the right magnetic slab
(Ag2Fe16Vac2) (see also Fig. 1). The superscript xc denotes the
interlayer exchange energy, a anisotropy energies, a1 anisotropy
energies if the orientation of the magnetization changes only in
the “left” magnetic slab, a2 refers to anisotropy energies when the
orientation changes in both slabs simultaneously. The index denotes
the investigated plane and in square brackets is the corresponding
rotation axis. For � = 0 an alignment parallel to the x axis applies, for
� = 180 an antiparallel one. The reference magnetic configurations
[see Eq. (4)] are compiled in Table II.

�1 �1 �2 �2 E

90 � 90 0 Exc
xy[z](�)

90 � 90 � Ea
xy[z](�)

� 0 � 0 Ea
xz[y](�)

� 0 90 � E
a1
xz[y](�)

� 0 � � E
a2
xz[y](�)

90 � 90 � E
a1
xy[z](�)

90 � 90 � − � E
a2
xy[z](�)

plane E
a1
xz[y](�) and E

a1
xy[z](�) are the major and the minor

semiaxis of the ellipse, respectively, that forms the base of the
precessional cone.8

In the inset of Fig. 2 the interlayer exchange energy
Exc

xy[z](�) (see Table I) is displayed for Au12Fe12Ag5Fe16. As
can be seen in this system the two Fe slabs are strongly coupled
antiparallel and therefore the antiparallel cases in Table I
(� = 180) apply [i.e., the reference orientations are in turn
(1,0,0) and (−1,0,0)] for the two cones displayed in Fig. 1. In
Fig. 2, viewed from left to right, E

a1
xz[y](�) and E

a2
xz[y](�) lead

from (0,0,1) to (1,0,0); Ea1
xy[z](�) and E

a2
xy[z](�) from (0,1,0) to

(1,0,0). All curves for “spin-pump” and “spin-sink” energies
are “half-parabola”-like shaped, the vertex being when the
collinear, antiparallel alignment of the two Fe slabs applies. In
the small energy regime (E � 1 meV) the precession of the
orientation of the magnetization forms a conical surface with
an almost circular base plane and an aperture of 2 (90 − �).
It should be realized that the energy scale in Fig. 2 is very
big indeed and reflects of course the size of the interlayer
exchange energy. Because all effects are “big” they show
best the difference between a “spin pump” and a “spin sink”
situation and of course between major and minor semiaxes.

Since a Fe double layer with a spacer thickness of n > 5
monolayers of Ag is also coupled in plane,1 there is no need
to repeat the above analysis for different spacer thicknesses.
The only effect to be encountered will be the well-known
change between a parallel and an antiparallel alignment (short
and perhaps long periods) and the usual decay properties9 of
Exc

xy[z](�) (and similar ones for all anisotropy energies) when
increasing the number of spacer layers.

From Fig. 3 showing the layer-resolved free energies4,5

corresponding to E
a1
xz[y](�) and E

a2
xz[y](�), � = 30, it can be

seen that all anisotropy effects are confined to the interfaces.
In this figure, by going from left to right, the first tip is due
to the Au-Fe interface, followed by the two peaks caused by
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FIG. 2. (Color online) “Spin pump energies” E
a1
xz[y](�) (open cir-

cles) and E
a1
xy[z](�) (solid circles), and “spin sink energies” E

a2
xz[y](�)

(open squares) and E
a2
xy[z](�) (solid squares) in Au12Fe12Ag5Fe16. The

inset shows the interlayer exchange coupling energy Exc
xy[z](�) (see

also Tables I and II).

the Fe-Ag interfaces. The small dip to the right is caused
by the Fe-substrate interface. Because being confined to the
interfaces, interdiffusion effects will be of crucial importance
for the actual values of the major and minor semiaxes of the
ellipses characterizing precessional cones.10

IV. ELECTRIC PROPERTIES

Clearly enough not the free energy per se is interesting
but the changes in the electric properties when going from a
“spin pump” to a “spin sink” situation. To answer the question
whether a current jz(�1,�1; �2,�2) is flowing parallel to the
surface normal caused by the difference in these two situations
requires one to evaluate in terms of the fully relativistic spin-
polarized Kubo equation4,5 σzz(�1,�1; �2,�2), namely the
zz elements of the conductivity tensor as a function of those
values of �1,�1,�2, and �2 that apply to these two situations,

jz(�1,�1; �2,�2) = σzz(�1,�1; �2,�2)Ez

=
∑
p,q

σpq
zz (�1,�1; �2,�2)Eq

z . (5)

Assuming that a uniform electric field Ez applies in each
layer4,5 (i.e., Eq

z = Ez, ∀q), the zz-like conductivity is direct
proportional to the current. Consider, for example, σ (1)

zz (�) =
σzz(�,0; 90,180) and σ (2)

zz (�) = σzz(�,0; �,180). Then these
two conductivities correspond to the “spin-pump” energy
E

a1
xz[y](�) and the “spin-sink” energy E

a2
xz[y](�), respectively.

Since from Fig. 2 it is obvious that to each value of E
a1
xz[y](�)

there exists a value of E
a2
xz[y](�) degenerated in energy
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FIG. 3. (Color online) Layer-resolved band energies in
Au12Fe12Ag5Fe16 corresponding to the “spin pump” energy E

a1
xz[y](�)

(dashed line) and the “spin sink” energy” E
a2
xz[y](�) (solid line) for

� = 30.

(i.e., E
a1
xz[y](�) = E

a2
xz[y](�) = E), σ (1)

zz (�) and σ (2)
zz (�) have

to be displayed as implicit functions of the free energy,
for example, as j (1)

z (E) ∼ σ (1)
zz (Ea1

xz[y](�)). At a given E

corresponding “spin pump” and “spin sink” cases are equally
probable. Clearly, only as implicit functions of E these two
conductivities can be compared to each other. From Fig. 4 it
can be seen that at a given energy E (e.g., due to an external
magnetic field, finite temperature, etc.) the “spin-pump”-like
current is always larger than the “spin-sink”-like one. In this
figure the energy range is confined to about 0.5 T (i.e., to
energies in principle accessible in experiments). From the
inset one can see that in this energy regime the aperture of
a precessional (“spin pump”) cone is less than about 10◦.

V. ESTIMATE OF TIME SCALES

Although it seems that by now a justification for the
terms “spin pump” and “spin sink” have been found in
terms of the corresponding electric transport properties, one
still has to estimate at least qualitatively the time scales for
these processes. Along a particular path on the free energy
hypersurface the change of the free energy with respect to
the orientation of the magnetization along this path is nothing
but the internal field in the Landau-Lifshitz-Gilbert (LLG)
equation.11 In using this aspect of a free energy hypersurface
the (minimal) time needed to move on such a path from a
chosen initial state to a particular final state can therefore
easily be obtained.11 In the bottom part of Fig. 4 the times
needed to go along the paths corresponding to E

a1
xz[y](�) and

E
a2
xz[y](�), namely τ (1)(�) and τ (2)(�) are displayed (again) as

implicit functions of the energy, that is, as τ (1)(Ea1
xz[y](�)) and

τ (2)(Ea2
xz[y](�)). As can be seen it takes substantially less time

to move along a “sink”-like path than along a “pump”-like
path. Considering that a uniform Gilbert damping factor G of
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FIG. 4. (Color online) zz-like conductivities σ (1)
zz (H ) and σ (2)

zz (H )
(top) and corresponding switching times τ (1)(H ) and τ (2)(H ) (bottom)
corresponding to “spin pump” (squares) and “spin sink” (circles)
situations. Shown is the energy range up to about 0.5 T. In the inset
E

a1
xz[y](�) (circles) and E

a2
xz[y](�) (squares) are displayed in this range.

one was used11 to integrate the precessional term in the LLG
equation, the times shown in Fig. 4 provide only an estimate of
the temporal relation between a “spin-pump” and a “spin-sink”
process. It should be noted that to describe the path on the free
energy hypersurface that at a given value of E leads from a
pump and to a sink situation one has to consider, for example,
the condition,

E = E
a1
xz[y](�) = E(� + ξ,0; 90 − μ,0)

= E
a2
xz[y](�

′) = E(�′,0; �′,0), (6)

in order to scale the minor semiaxes of the ellipses forming
the base plane of the precessional cones (see also Tables I
and II). In principle, a similar condition, namely E

a1
xy[z](�) =

E
a2
xy[z](�

′) has to be fulfilled for the major semiaxes. Clearly
enough the LLG equation only provides a rough estimate of

TABLE II. Angles specifying the reference magnetic config-
urations in Eq. (4). For �0

1 = �0
1 = 90, the cases �0

1,�
0
2 = 0

correspond to (1,0,0) (parallel to the in-plane x axis), while �0
2 = 180

corresponds to (−1,0,0) (antiparallel to the in-plane x axis).

�0
1 �0

1 �0
2 �0

2 � E

90 0 90 0 − Exc
xy[z](�),Ea

xy[z](�),Ea
xz[y](�)

90 0 90 0 0 E
a1
xz[y](�),Ea2

xz[y](�),

E
a1
xy[z](�),Ea2

xy[z](�)

90 0 90 180 180 E
a1
xz[y](�),Ea2

xz[y](�),

E
a1
xy[z](�),Ea2

xy[z](�)

the applying time scales for which in principle the time-
dependent Dirac equation12 ought to be used.

VI. CONCLUSION

Within density functional theory the problem of describing
the precession of the magnetization reduces to an evaluation
of the major and the minor semiaxis of the ellipses8 that
form the base planes of the precessional cones by taking
into account all anisotropy effects in terms of a relativistic
approach. It was found that at a given external energy E

(external field) the “spin pump” current is always larger than
the “spin sink” current. In viewing all data together, one can
expect that by supplying a moderately small external field
(with a switching on time by at least one order of magnitude
larger than τ1) the system most likely will first move along
a path on the free energy hypersurface that leads to a “spin
pump” situation, that is, to E

a1
xz[y](�) (∼E

a1
xy[z](�)), from

where it can jump to a degenerated “spin sink” situation,
E

a2
xz[y](�) (∼E

a2
xy[z](�)). In such a process first the conductivity

is (slightly) increased, then at E = E
a1
xz[y](�) = E

a2
xz[y](�) it

oscillates along a path as defined in Eq. (6). During switching
off of the external field the conductivity falls rapidly back
to its initial value, namely that of the collinear ground state,
most likely from a “spin sink” situation. In this context it
should be recalled that the term “spin current” is very often
misleading as implicitly a two-spin current model is assumed.
In a relativistic description the use of a polarization operator
is needed to define a “current polarization density,”12 in terms
of which then perhaps a time-dependent “spin current” can be
interpreted.

Finally, it ought to be pointed out that the approach given
clearly does not apply when viewing the magnetization as
an average over many-electron ensembles or when having a
description in terms of nonequilibrium dynamics in mind. It
is entirely based on an “effective” single particle model as
provided by density functional theory.
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