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Dynamic response function in Ising systems below Tc
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With the aid of Nelson’s method we derive expressions for the frequency-, momentum-, and temperature-
dependent response function below a critical point in the Ising-type system. The scaling function is given
within the renormalization-group formalism at one-loop order for zero external field. The comparison with
the corresponding expressions above Tc and with the mean-field approximation is made. We also discuss the
dynamic correlation function, focusing on the deviations from the Gaussian expression. The comparison with
field-theoretical calculations is also given.
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I. INTRODUCTION

Recently the dynamic critical behavior for many phys-
ically interesting systems has actively been studied both
theoretically1–6 and experimentally.7–11 One of the most
important dynamic universality classes is that of the three-
dimensional Ising-like model with purely relaxational dynam-
ics [model A (Ref. 12)]. The critical exponents, the equation of
state, and the static scaling functions for susceptibility, etc., are
relatively well known13 for this model. A theoretical basis for
understanding these critical phenomena was provided mainly
by the renormalization-group theory.14 Comparatively less
attention has been devoted to an investigation of an important
quantity, the dynamic response function, especially in the
low-temperature phase. Another quantity that measures the
dynamic correlations is the dynamic structure factor (dynamic
correlation function). It is especially important from the
experimental point of view as it can be measured in neutron,
light, or x-ray scattering experiments. This paper is concerned
with the dynamic susceptibility and structure factor of the
one-component Ginzburg-Landau model below the transition
temperature. We restrict ourselves to study the simplest
model (purely relaxational) with no massless Goldstone
modes present in isotropic n-component models for n > 1,
which appear as a consequence of the spontaneously broken
symmetry in the ordered phase. The so-called coexistence
anomalies have been studied for the static model15,16 as well
for dynamics.17,18 The results of Täuber and Schwabl can be
even extended to n = 1. However, the authors focused their
study on the crossover to an asymptotical Gaussian limit.18

The dynamic structure factor in the disordered and ordered
phases has been studied also by Calabrese et al.5 on the basis
of a perturbative field-theoretical RG approach both above
and below the transition temperature, and also by Monte Carlo
simulation in the high-temperature phase. It is well known that
calculations of dynamical functions are rare and complicated
because we need to exponentiate singularities at both large
and small arguments.19 Many alternative approaches can give
different results depending on the exponentiation procedure
and the region of the reduced wave vector or frequency. One of
the best methods for computation of the scaling function with
exponentiated singularities valid for all values of arguments

is the method introduced by Nelson19 for computation of the
static correlation function above the critical temperature. It
was a generalization of the technique developed by Rudnick
and Nelson20 of mapping the Hamiltonian out of the critical
regime into the noncritical region with small correlation length,
where the usual perturbation expansion can be employed.
Subsequently, the quantity calculated in the noncritical regime
is related by a renormalization-group (RG) transformation
to the corresponding quantity in the critical region. This
technique allowed the authors to construct the equation of
state to first order in ε as well as to obtain the scaling functions
for the susceptibility, specific heat, etc., both in the ordered
and disordered phases.

The motivation for this paper is to provide a relatively
simple analytical expression for dynamic susceptibility and
dynamic structure factor for the three-dimensional Ising-like
system with relaxational dynamics. These expressions should
be valid in the whole range of temperature, wave vector,
and frequency with a reasonably accuracy. To find such a
reliable estimate we use the generalization of Nelson’s19

method of integration of the renormalization-group recursion
relations. Apart from its simplicity, a special advantage of
this method lies in the possibility to obtain exponentiated
singularities for the scaling function both for large- and
small-wave vectors. Later Nelson’s method was generalized
by Achiam and Kosterlitz21 to calculate the static momentum-
dependent correlation function for arbitrary temperature and
magnetic field. Dengler et al.22 were the first to generalize
this method into a dynamic correlation function by using the
modified matching condition. They investigated relaxational
and diffusive dynamics in the high-temperature phase. In
this paper we extend the results of Nelson,19 Achiam and
Kosterlitz,21 and Dengler et al.22 by obtaining to first order
in ε = 4 − d the expressions for the dynamic susceptibility
and correlation function for the nonconserved Ising order
parameter with purely relaxational dynamics both above and
below the critical temperature. This is achieved by postulating
a modified matching condition suitable for the ordered phase.
As we shall see, at variance with the paramagnetic phase, the
deviations of the dynamic form factor from the mean-field
result are quite substantial in the ordered phase. We believe
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that our approach leads to more transparent results than the
previous attempts.

The paper is organized as follows. In Sec. II we define
the model and recall the solutions of the recursion relations
for the high-temperature phase. In Sec. III we discuss the
solutions of the recursion relations in the ordered phase as
well as the matching condition and calculate the dynamic
susceptibility. In Sec. IV we present the comparison of the
real part of the dynamic susceptibility with the mean-field
results for several values of frequency and wave vector. We
also discuss the dynamic correlation function and its deviations
from the conventional result. Finally, we compare the dynamic
correlation scaling function found in this work with the corre-
sponding results obtained within the field-theoretic framework
by Calabrese et al.5 and by Täuber and Schwabl.17,18

II. MODEL AND THE SOLUTIONS OF THE RECURSION
RELATIONS ABOVE Tc

We consider an Ising-like (n = 1) continuous order param-
eter with purely dissipative relaxational dynamics,

∂S(x,t)

∂t
= −�

δH

δS(x,t)
+ η(x,t) (1)

with the Ginzburg-Landau Hamiltonian

H = 1

2

∫
ddx{rS2 + (∇S)2 + 2uS4}, (2)

and the Gaussian white noise obeying the Einstein relation,

〈η(x,t)η(x′,t ′)〉 = 2�δ(t − t ′)δ(x − x′). (3)

The response (and correlation) function can be most suitably
expressed using the functional representation of equations of
motion,23–27

δ〈S(x,t)〉
δh(x′,t ′)

= �〈S(x,t)S̃(x′,t ′)〉 ≡ G(x − x′,t − t ′), (4)

where h is an external field coupled to the order parameter
and the nonequilibrium averages are calculated with the aid of
dynamic functional J {S̃,S}, which determines the probability
of the whole trajectory {S(x)}t ∈ [−t0, t0] in some time interval,

〈O(S,S̃)〉 = 1

Z

∫
D[iS̃]D[S] O[S,S̃] expJ {S̃,S}. (5)

The new functional

J {S̃,S} =
∫

ddxdt

[
S̃�S̃ − S̃

(
Ṡ + �

δH

δS

)
+ 1

2
�

δ2H

δS2

]
,

(6)

is a function of an artificial imaginary field S̃ known as the
response field because an additional term related to the external
magnetic field h in the Hamiltonian gives the contribution �hS̃

in the functional.
The scaling relation for the Fourier-transformed response

function (dynamic susceptibility) at the lth stage of iteration is

χ (q,ω,r,u) = e(2l−∫ l

0 η(l′)dl′)χ (qel,ωezl,r(l),u(l)), (7)

where η(l) reduces to critical exponent η at the critical point
u∗ = ε/36K4 (η can be neglected to first order in ε) and z is the
dynamic critical exponent and r(l), u(l) are the renormalized
couplings in the effective Hamiltonian H (l).

Above Tc the renormalization-group flow equations for r(l)
and u(l) are the same as in the static case and to order ε are
given by20

τ (l) ≡ r(l) + 6K4{u(l) − u(l)r(l) ln[1 + r(l)]}
= τ (0)e2l/Q(l)1/3, (8)

u(l) = ueεl/Q(l), (9)

where τ (0) ≡ τ ∝ T − Tc is proportional to the reduced
temperature, K4 = 1/8π2, and

Q(l) = 1 + 36K4u(eεl − 1)/ε. (10)

At the fixed point τ (l) scales as τ (l) = τel/ν with ν as the
correlation length exponent. The right-hand side of Eq. (7)
can be calculated for some value l = l∗ where not all the
arguments: qel∗ ,ωezl∗ ,r(l∗) vanish simultaneously.

The original matching condition

τ (l∗) + q2e2l∗ = 1, (11)

introduced by Nelson19 in order to evaluate the two-point
correlation function G(q,τ ) in the dynamic case was replaced
by Dengler et al.22 (for the symmetric phase) by

[(ω/�)ezl∗ ]4/z + [(τel∗/ν)2ν + q2e2l∗ ]2 = 1, (12)

which permits an analytic solution. Later this matching
condition was generalized to a more flexible form in the context
of ultrasonic attenuation calculations:28

[(ω/�)ezl∗ ]4/z + [χ (l∗)−2/(2−η) + q2e2l∗ ]2 = 1, (13)

where χ (l∗) is the static susceptibility at the lth stage of
renormalization and to first order in ε the exponent −2/(2 − η)
can be replaced by −1.

(a)

(b)

FIG. 1. The diagrams contributing to O(ε) to the self-energy
below Tc.
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With the matching condition (12) the dynamic susceptibility
in the symmetric phase is given by22

χ−1(q,ω,r,u) = e−2l∗ {(−iω/�)ezl∗ + τ (l∗) + q2e2l∗

+pτ (l∗)[1 − τ (l∗)−α]}, (14)

where p = 1 + ε + O(ε2) and the second line of this equation
represents the Hartree diagram from Fig. 1(a) proportional to
the energy. α is the critical exponent of the specific heat.

III. RECURSION RELATIONS, MATCHING CONDITION,
AND SELF-ENERGY BELOW Tc

Below Tc the solution of the recursion relations can be
written in a very similar way,20

r(l) + 12u(l)M(l)2 = T (l) + 6K4{u(l) − u(l)T (l)

× ln[1 + T (l)]}, (15)

T (l) = τ (l) + 12u(l)M(l)2, (16)

τ (l) = τ (0)e2l/Q(l)1/3, (17)

with M(l) = Meλml∗ being the system’s magnetization at
the lth stage of the renormalization group and λm =
β/ν = 1 − ε

2+O(ε2). The functions Q(l) and u(l) are
given by Eqs. (10) and (9), respectively. Because in the
low-temperature phase and at the critical point [u = u∗ =
ε/36K4 + O(ε2)] we have (for h = 0) χ (l∗) = χe−2l∗ = (1 −
18u∗K4)|2τ |−γ e−2l∗ + O(ε2)20 so we choose the matching
condition (13) for zero external field in the form

[a(ω/�)ezl∗ ]4/z + [b|2τ |2νe2l∗ + cq2e2l∗ ]2 = 1, (18)

where the factors a = 1 + ε/8, b = 1 + ε/2, and c = 1 +
ε/12 follow from the universal amplitude ratios for the static
susceptibility, correlation length,29–31 and the characteristic
frequency, correct to O(ε):

C+/C− = 2γ (1 + ε/2) + O(ε2), (19)

f+/f− = 2ν(1 + 5ε/24) + O(ε2), (20)

ω+
c /ω−

c = (1 + ε/8)C−/C+ = 2−zν(1 − 3ε/8) + O(ε2).

(21)

The last estimate agrees qualitatively with the result for
the ratio of the relaxation times τ+

c /τ−
c = 3.35 obtained by

Wansleben and Landau32 in their Monte Carlo investigation
of critical dynamics in the three-dimensional Ising model.
Equation (18) permits the explicit solution

el∗ = |2τ |−νF (x,y), (22)

with

F (x,y) = (1 + ε/2)−1/2[y4/z + (1 + x2)2]−1/4, (23)

where y = 1+ε/8
1+ε/2 (ω/�)|2τ |−zν ≡ ω/ω−

c / is the reduced

frequency and x =
√

1+ε/12
1+ε/2 q|2τ |−ν ≡ qξ− is the reduced

wave vector. Different normalization conditions in Eq. (18)
as that without the factors (1 + ε/8), etc., are also possible.
At one-loop order the self-energy of χ (qel∗ ,ωezl∗ ,r(l∗),u(l∗))
is represented by the two diagrams shown in Fig 1.
The first term in the self-energy represented by Fig. 1(a)
equals 12u

∫
p
〈σpσ−p〉, where σ = S − M . It is the static

Hartree diagram which is related to the internal energy
by21

∫
p

〈σpσ−p〉 = 2
∂F (l)

∂τ (l)
− M2(l).

The energy − ∂F
∂τ

has been calculated to O(ε) by Nelson and
Rudnick20 and by Achiam and Kosterlitz.21 Below Tc it is
proportional to 1

24u
τ [4|2τ |−α − 1]. The coefficient in front of

|τ |−α is consistent with the universal amplitude ratio for the
specific heat A+/A− = 2α(1 + ε)/4.33

The second diagram has been evaluated in the static limit
(ω = 0) by Achiam and Kosterlitz21 in their calculations of the
static correlation function, and also for the q → 0 limit.28,34

Thus the general expression for the response function can be
written as

χ−1(q,ω,r,u) = e−2l∗ {(−iω/�)ezl∗ + τ (l∗) + q2e2l∗

+τ (l∗)[1 − 4|2τ (l∗)|−α]

−288u2K4M
2(l)e2λml∗C(l∗)}. (24)

Here we present the general expression for C(l∗) valid for all
reduced temperatures, wave vectors, and frequencies

C(l∗) = K−1
4

∫
2ddp

(2π )d({[−iω(l∗)/�] + 2T (l∗) + p2 + [p + q(l∗)]2}[T (l∗) + p2])

= −2−1−ε/2

q(l∗)2
πT (l∗)−ε csc

(
πε

2

)
N−ε/2

{
2εT (l∗)ε(1 + iW )ε/2[R − iω(l∗)/�]2F1 (25)

×
[

1 − ε

2
,
ε

2
,2 − ε

2
,
1 − iW

2

]
− Nε/2[V + R]Zε/2

1 2F1

[
1 − ε

2
,
ε

2
,2 − ε

2
,
Z2

2

]}
− 1

ε
+ Ic(l∗),

where ω(l∗) = ωezl∗ , q(l∗) = qel∗ , and abbreviations have been used:

N = q(l∗)2 + 4T (l∗) − 2iω(l∗)/�, R =
√

q(l∗)2N − ω(l∗)2/�2,

V = q(l∗)2 − iω(l∗)/�, W = iω(l∗)/�
√

R,

U = V + R, Z1 = (R − V )/R, Z2 = (V + R)/R.
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The symbol Ic(l∗) in Eq. (25) denotes a cutoff dependent
part which is canceled by terms in Eq. (15) and the less
singular logarithmic terms which have been omitted in the
Dyson equation (24).35

2F1 is the hypergeometric function.36

The singular part of the function C(l∗) can be expanded in
ε giving

C(l∗) = 1

2q(l∗)2
{q(l∗)2 + 2iω(l∗)/� ln 2 − R ln 4

−U ln T (l∗) + [R − iω(l∗)/�] ln N

+ 2R [ln Z1 − ln(1 + iW )] + O(ε)}. (26)

It is interesting to take the ω → 0 limit of Eq. (26):

C(l∗,ω = 0) = − 1
2 {ln[T (l∗) + q(l∗)2/4]

+ [1 − 1/P (l∗)] ln[1 − P (l∗)]

+ [1 + 1/P (l∗)] ln[1 + P (l∗)] − 1} + O(ε), (27)

with P (l∗) = q(l∗)2/[4T (l∗) + q(l∗)2]. It is equal to the
function I (l) calculated by Achiam and Kosterlitz21 for the
static case. The second limit of the function C(l∗), which has
been already known,28,34 is for q → 0 [C(l∗) corresponds to
the frequency-dependent specific heat, investigated thoroughly
in the study of ultrasonic attenuation and dispersion, where
the wavelength of the acoustic wave is much larger than the
correlation length of the critical fluctuations]. Equation (26)
can then be written as

C(l∗,q = 0) = −1

2

{
ln[T (l∗) − iω(l∗)/2�]

+ i
ln[1 − iω(l∗)/2�T (l∗)]

ω(l∗)/2�T (l∗)

}
+ O(ε). (28)

Thus the function C(l∗) has the correct q → 0 and ω → 0
limits and after substituting el∗ from Eqs. (22) to (24) we
obtain our final result:

χ (q,ω,τ ) = |2τ |−γ F 2

{
− iyF za−1 + x2F 2c−1 − F 1/ν + 2F (1−α)/ν

− εF 2β/ν

2

[
(1 − lnT ) + c

x2F 2

(
2Rln

R + iyF za−1 − x2F 2c−1

R + iyF za−1
+ (R − iyF za−1)ln

N

4T

) ]}−1

(29)

with T (x,y) = 3
2F 2β/ν − 1

2F 1/ν , N (x,y) = x2F 2c−1 +
4( 3

2F 2β/ν − 1
2F 1/ν) − 2iyF za−1, and R(x,y) =√

x2F 2c−1N − y2F 2za−2.

IV. RESULTS AND DISCUSSION

In Figs. 2–4 we show the comparison of the real part of
the response function with the mean-field (Gaussian) result
(dashed curves):

χMFA(q,ω,τ ) = (τ + q2 − iω/�)−1, τ > 0,
(30)

χMFA(q,ω,τ ) = (|2τ | + q2 − iω/�)−1, τ < 0,

for several values of the wave vector and frequency. The
position and the height of the maxima in Figs. 2 and 3
(small momentum) can be easily estimated from the hydrody-
namic form of the dynamic susceptibility C± |τ |−γ (1 + x2

± −
iy±)−1:

|τ+
max|

|τ−
max|

�
(

ω−
c

ω+
c

)1/zυ

, (31)

χ+
max

χ−
max

� C+
C−

(
ω+

c

ω−
c

)
� 1 + ε

8
+ O(ε). (32)

In Fig. 5 the comparison of a few curves for various frequencies
is shown with q = 0.01 fixed.

In many applications such as, for instance, the scattering
experiments the dynamical correlation function is used in-

stead of the response function. They are connected by the
fluctuation-dissipation theorem (kBTc = 1),

C(q,ω,τ ) = 2

ω
Im χ (q,ω,τ ). (33)

The scaling function Ĉ(x,y) is usually introduced by the
relation

C(q,ω,τ ) = χ

ωc

Ĉ(x,y). (34)

ω 0.01
MFA

q 0

0.04 0.02 0.00 0.02 0.04
τ

10

20

30

40

50

Re χ τ ,q,ω

FIG. 2. (Color online) The real part of the susceptibility for q = 0
and ω/� = 0.01. The dashed line is the mean-field approximation
(MFA).
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ω 0.05

MFA

q 0.1

0.04 0.02 0.00 0.02 0.04
τ

2

4

6

8

10
Re χ τ ,q,ω

FIG. 3. (Color online) The real part of the susceptibility for q =
0.1 and ω/� = 0.05. The dashed line is the mean-field approximation
(MFA).

Nelson’s scaling function19 yields correctly the Fisher-
Langer corrections37,38 giving rise to the maximum in the
correlation function. Dengler et al.22 have shown that this
maximum occurs not only in the static limit (ω → 0) but also
in the opposite, q → 0, limit where the following behavior can
be found: χ (q,ω,τ ) = C±

∣∣τ−γ
∣∣ D̂±(x,y), where the scaling

function D̂±(0,y) for large y can be written as

D̂±(0,y) = y−(2−η)/z

[
D±

0 + D±
1

y(1−α)/ν
+ D±

2

y1/ν
+ · · ·

]
, (35)

with D+
0 = i, D+

1 = −p, D+
2 = 1 + p, and D−

0 = i(1 + ε/8),
D−

1 = 2 − ε/2, D−
2 = −(1 + ε/4) to first order in ε. The

maximum occurs only in the high-temperature phase as it is
confirmed by Figs. 6 and 7 where the dynamical correlation
function is shown for various values of ω and q.

It is also worthwhile to compare the deviations of the scaling
function Ĉ(x,y) from the conventional Van Hove (Gaussian)
function Ĉ0(x,y) = 2/[(1 + x2)2 + y2]. It should be noted that

ω 0.01 MFA
q 0.1

0.04 0.02 0.00 0.02 0.04
τ

10

20

30

40

50

Re χ τ ,q,ω

FIG. 4. (Color online) The real part of the susceptibility for q =
0.1 and ω/� = 0.01. The dashed line is the mean-field approximation
(MFA).

ω 0

ω 0.002

ω 0.001

ω 0.01

q 0.01

ω 0.005

0.015 0.010 0.005 0.000 0.005 0.010 0.015
τ

200

400

600

800
Re χ τ ,q,ω

FIG. 5. The real part of the susceptibility for q = 0.01 and
ω/� = 0, 0.001, 0.002, 0.005, and 0.01.

Monte Carlo simulations in the high-temperature phase for
the dynamic structure factor are very well approximated by
the Gaussian form up to moderately large values of reduced
frequency (y � 10) and momentum (x � 5) as was shown in
the work of Calabrese et al.5,39 The function Ĉ(x,y) − Ĉ0(x,y)
is presented in Figs. 8 and 9 where the deviations both for the
high- and low-temperature phases are shown as a function of
reduced frequency for several values of reduced momentum.
As one can see, the deviations from the conventional Van Hove
shape are much larger in the low-temperature phase where
they can reach even 12% whereas in the high-temperature
phase it is less than 1%. It should be noted, however, that
for the low-temperature phase the function χ (q,ω,τ ) in the
hydrodynamic regime reduces to the form C−|τ |−γ {1 + [1 +
O(ε2)]x2 − i[1 + O(ε2)]y}−1 so in order to obtain a more
precise form for Ĉ(x,y), additional rescaling of x and y should
be made, the effect of which results in replacing the factors
1 + O(ε2) by 1.

In all the above figures we have taken the values of the
critical exponents and parameter p correct to O(ε): z = 2,
η = 0, 1/ν = 2 − ε/3, α/ν = ε/3, β/ν = 1 − ε/2, and p =

0.03 0.02 0.01 0.01 0.02 0.03
τ

1500

2000

2500

3000

3500

4000
C τ ,q, ω

FIG. 6. (Color online) The temperature dependence of the dy-
namic correlation function C(q,ω,τ ) for ε = 1 and values of q and
ω/� shown in Fig. 7.
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0.1,0.02

0.1,0.0201

0.102,0.02

0.003 0.002 0.001 0.000 0.001 0.002 0.003
τ

3850

3900

3950

4000

C τ ,q, ω

FIG. 7. (Color online) An enlargement of the previous figure near
the critical point, showing small maxima above Tc.

0.0

0.5 T Tc

1.0
1.25

0 1 2 3 4 5 6
0.000

0.002

0.004

0.006

0.008

y

C
x,

y
C

0
x,

y

FIG. 8. Deviations of the scaling function Ĉ(x,y) from the Van
Hove shape Ĉ0(x,y) for the high-temperature phase shown as a
function of the reduced frequency y for the reduced momentum x

equal 0, 0.5, 1, and 1.25.

0.0

0.5

T Tc

1.0

1.25

0 1 2 3 4 5 6
0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

y

C
x,

y
C

0
x,

y

FIG. 9. Deviations of the scaling function Ĉ(x,y) from the Van
Hove shape Ĉ0(x,y) for the low-temperature phase shown as a
function of the reduced frequency y for the reduced momentum x

equal to 0, 0.5, 1, and 1.25.

1 with ε = 1. As was suggested by Dengler et al.22 in practice
one may extend Eqs. (14) and (29) beyond the ε expansion
taking for exponents the best numerical estimates such as, for
example, those summarized in the review paper of Pelissetto
and Vicari13 and by requiring that p = (2ν − 1)/α + O(ε2)
[this condition comes from the requirement that Eq. (14) gives
the correct hydrodynamic limit]. In the low-temperature phase
we should also require that the universal amplitude ratios C+/

C−, f+/f−, ω+
c /ω−, and A+/ A− are replaced by their best

numerical estimates from Ref. 13. With these replacements
and with the mentioned addition rescaling of the reduced
frequency and wave vector (giving the proper hydrodynamic
behavior) Eqs. (14) and (29) are supposed to be a quite good
approximation of the dynamic response function in the whole
reduced temperature, wave-vector, and frequency range. We
have used the best estimates for exponents in order to compare
our low-temperature result with the scaling function Ĉ(x,y)
obtained by Calabrese et al.5 in their perturbative calculation in
the ε expansion within a field-theoretical framework as well as
with the one-loop result of Täuber and Schwabl17,18 obtained as
a “byproduct” of their field-theoretical study of the coexistence
limit supplemented by Amit and Goldsmidt’s generalized
minimal substraction procedure40 in order to describe the
entire crossover from the critical behavior to an asymptotically
uncritical theory for n = 1.18,41

In Fig. 9 we present the comparison of the scaling function
Ĉ(x,y) obtained in this work with the results of Calabrese
et al. [see Eq. (A10) in Ref. 5] and with the corresponding
Täuber and Schwabl function. Also the conventional function
Ĉ0(x,y) = 2/[(1 + x2)2 + y2] is shown.

Given that accurate computation of scaling functions is
very difficult within any perturbative approach, it is rather
satisfactory how well the different approaches agree with one
another. In Figs. 11–14 the deviations from the Van Hove
result are shown for different x. It can be seen that the
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FIG. 10. (Color online) The scaling function Ĉ(x,y) as a function
of the reduced frequency y for several values of the reduced
momentum x in the low-temperature phase. The solid line is the
result obtained in this paper (PE); dot-dashed line corresponds to the
Calabrese et al. (Ref. 5) approach (CMPV); the dashed curve is the
result based on Täuber and Schwabl’s work (Refs. 18,41) (TS). The
dotted line is the Gaussian approximation.
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FIG. 11. (Color online) Deviations of the scaling function Ĉ(x,y)
from the Van Hove shape Ĉ0(x,y) for different approaches in the
low-temperature phase shown as a function of the reduced frequency
y for x = 0.005. Solid line: PE; dashed: TS; dot-dashed: CMPV
approximation.

deviations are strongest as x → 0 and they seem to agree
on the direction and almost magnitude of deviation from the
Gaussian expression in this regime. For intermediate and large
x the deviations are much smaller and the present work results
coincide rather with Täuber and Schwabl’s approach but differ
in sign from the result of Calabrese et al. as shown in Figs. 13
and 14. It seems that Nelson’s method, which is used in
this paper, should give a better result in this limit, as it tries
to incorporate the Fisher-Langer corrections,37 which matter
in the large-x region. These next-to-leading singularities are
unexponentiated in the function B [see Eq. (A10) in Ref. 5] in
the Calabrese et al. investigation.

In this paper we have extended Nelson’s technique of
evaluation of the correlation function to O(ε) to include
dynamics in the ordered phase. Because of the presence of
the Goldstone modes in rotationally invariant systems the
results obtained here are limited only to the simplest case
of a system with a one-component order parameter. Using
a modified matching condition we were able to obtain an
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FIG. 12. (Color online) Deviations of the scaling function Ĉ(x,y)
from the Van Hove shape for different approaches in the low-
temperature phase shown as a function of the reduced frequency
y for x = 0.5. Solid line: PE; dashed: TS; dot-dashed: CMPV
approximation.
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FIG. 13. (Color online) Deviations of the scaling function Ĉ(x,y)
from the Van Hove shape for the different approaches in the low-
temperature phase shown for x = 2. Solid line: PE; dashed: TS;
dot-dashed: CMPV approximation.

analytic expression for the dynamic susceptibility for arbitrary
momentum and frequency at temperatures both above and
below Tc in zero external field. We have carried our analysis
with exponents at their ε = 1 values and with u set to its
fixed-point value. The dependence of the real part of the
dynamic susceptibility on the temperature and frequency is in
qualitative agreement with the mean-field expression and the
results are displayed in Figs. 2–5. The position and the height
of the maxima in the dynamic susceptibility are estimated
for a small reduced wave vector. We have also calculated the
dynamic correlation function. The deviations of the dynamic
form factor from the conventional result are much larger (about
one order of magnitude) in the ordered phase than the ones
observed in the paramagnetic phase as was illustrated in Figs. 8
and 9. The comparison of three one-loop methods is presented
in Figs. 10–14. It has been shown that the correlation function
obtained in the present work and that from the Calabrese
et al. approach5 as well as Täuber and Schwabl’s function17,18

all seem to agree on the direction and almost magnitude of
deviation from the Van Hove results, at least for not very large
values of the reduced wave vector.
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FIG. 14. (Color online) Deviations of the scaling function Ĉ(x,y)
from the conventional shape for the different approaches in the low-
temperature phase shown for x = 10. Solid line: PE; dashed: TS;
dot-dashed: CMPV approximation.
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