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Low-energy quasi-one-dimensional spin dynamics in charge-ordered La2−xSrxNiO4
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The low-energy spin excitations of La2−xSrxNiO4, x = 0.275 and 1/3, have been investigated by unpolarized-
and polarized-inelastic neutron scattering from single crystals. A pattern of magnetic diffuse scattering is observed
in both compositions and is consistent with quasi-one-dimensional AFM spin correlations along the charge stripes.
Analysis of the energy line shape for x = 1/3 indicates that the diffuse scattering is inelastic with a characteristic
energy of 1.40 ± 0.07 meV. There is no discernible difference between the diffuse scattering from x = 0.275
and x = 1/3, suggesting that it is an intrinsic property of the charge stripes.

DOI: 10.1103/PhysRevB.83.094414 PACS number(s): 75.40.Gb, 71.45.Lr, 75.30.Fv, 75.30.Et

I. INTRODUCTION

Striped patterns of spin and charge order have been
observed in a wide range of antiferromagnetic oxides since the
initial discovery in La1.48Nd0.4Sr0.12CuO4.1 Interest has been
sustained by continuing uncertainty about the true importance
of stripe correlations for the mechanism of superconductivity
in the layered cuprates. In some models, for example, stripe
correlations assist in the formation of pairing instabilities
that can lead to superconductivity,2 whereas according to
experiment static charge stripes suppress superconductivity.1

Investigations into the fundamental properties of stripes
are therefore potentially important for an understanding of
cuprate superconductivity, as well as providing insight into an
interesting emergent phase of electronic matter.

Experimental investigations on stripe phases have been
made on various materials, but the layered nickelates
La2−xSrxNiO4+δ (LSNO) have been a particularly informative
model system to study.3–8 LSNO, which is isostructural with
the “214” high temperature superconductor La2−xSrxCuO4+δ ,
exhibits spin and charge stripe order for 0.15 � x � 0.5.9,10

The stripes form on the square NiO2 layers and consist of
diagonal bands of antiferromagnetically (AFM) ordered Ni2+
spins separated by charged domain walls that act as antiphase
boundaries to the magnetic order. At one-third doping (e.g.,
x = 1/3,δ = 0) the stripe order is particularly stable owing to
a combination of two factors, first a commensurability effect
that pins the charge stripes to the lattice, and second a stripe
periodicity which is the same for the magnetic and charge
order.9,11,12 At this doping level LSNO displays long-range
(>100 Å) charge order,9,10 making it an ideal material in which
to probe the charge-ordered state.

The magnetic excitation spectrum in the ordered stripe
phase of LSNO with x ≈ 1/3,δ = 0 has been investigated
in some detail with neutron inelastic scattering and found to
contain two distinct components: (i) quasi-two-dimensional
spin-wave excitations of the AFM-ordered regions, extending
to ∼80 meV in energy,13–16 and (ii) a low-energy (<10 meV)
quasi-one-dimensional (q-1D) magnetic fluctuation consistent

with short-range AFM correlations along the charge stripes.17

A two-component spectrum with qualitatively similar charac-
teristics has also been observed in La3/2Sr1/2NiO4 (Ref. 18).
The observation of two types of magnetic dynamics is
consistent with the existence of two magnetic subsystems
associated with nominally Ni2+ and Ni3+ ions, the latter of
which form the charge stripes. At this time, however, there is
no microscopic model of the magnetic interactions in LSNO
that provides a unified description of the complete magnetic
spectrum.

The aim of the present study was to work toward a better
understanding of the low-energy q-1D magnetic correlations
by comparing neutron scattering data from two doping levels,
x = 0.275 and x = 1/3 (both with δ = 0), and by examining in
more detail the energy line shape of the magnetic scattering.
We have found that the q-1D scattering is present at both
doping levels, and our analysis of the energy line shape
reveals that the signal is gapped at the minimum of the q-1D
dispersion.

II. EXPERIMENTAL DETAILS

Single crystals of La2−xSrxNiO4 were grown by the
floating-zone method.19 The crystals were in the form of rods
with typical dimensions 7–8 mm in diameter and ∼40 mm in
length (mass ∼ 15 g).

Neutron scattering measurements were performed on crys-
tals with x = 0.275 and x = 1/3 on the triple-axis spectrome-
ters (TAS) IN8, IN20, and IN14 at the Institut Laue-Langevin,
and on RITA-II at SINQ, Paul Scherrer Institut. The energies
of the incident and scattered neutrons were selected by Bragg
reflection from crystal arrays of pyrolytic graphite (PG) crys-
tals (IN8, IN14, RITA-II), physically bent Si crystals (IN8), or
Heusler arrays (IN20). The monochromators were vertically
focused (IN8, IN14) and horizontally focused (IN8, IN20,
RITA-II) to maximize neutron flux on the sample position.
The analyzers were horizontally focused on all instruments
and vertically focused on IN8. Data were collected with fixed
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final neutron wave vectors of 2.662 Å−1 (IN8, IN20), 1.5 Å−1

(IN14, RITA-II), and 1.2 Å−1 (IN14). A pyrolytic graphite
filter (IN8, IN20) or Be/BeO filter operating at 77 K (IN14,
RITA-II) was placed between the sample and analyzer to
suppress higher order harmonic scattering. On IN20 polarized
neutrons were employed, and the neutron spin polarization P
was maintained in a specified orientation with respect to the
neutron scattering vector Q by an adjustable guide field of a
few mT at the sample position. A monitor is placed between the
monochromator and sample position to determine the number
of neutrons incident on the sample position. The monitor count
has an energy dependent contamination due to higher order
neutrons in the incident beam, which we have corrected for
when integrated intensities are shown. We aligned the crystals
so that the horizontal scattering plane was (h,k,0) for x = 1/3
and (h,h,l) for x = 0.275 (we refer here to the tetragonal unit
cell of the space group I4/mmm with unit cell parameters
a = 3.8 Å and c = 12.7 Å). The particular crystals used in
the TAS measurements were grown at Oxford University and
have been used in previous neutron scattering studies described
elsewhere.13,15,16,21

To supplement the TAS measurements we will also present
some data on the x = 0.275 composition collected on the
MAPS time-of-flight spectrometer at the ISIS spallation
neutron source. A report on the findings of this study at higher
energy transfers can be found elsewhere.15 The sample used on
MAPS was an array of four crystals grown at Kyoto University
and co-aligned by X-ray diffraction to within about 1◦. Crystals
with x = 0.275 from the same source have been used in
neutron diffraction studies of magnetic and charge order.20 The
sample was mounted on MAPS in a closed-cycle refrigerator
and aligned with the c axis parallel to the incident beam
direction. A Fermi chopper was used to select the incident
neutron energy of 60 meV. The intensity was normalized and
converted to units of scattering cross section (mb sr−1 meV−1

[f.u.]−1) by comparison with measurements from a standard
vanadium sample. Scattered neutrons were recorded in large
banks of position-sensitive detectors. The spin dispersion in
La2−xSrxNiO4 is highly two-dimensional,15 and so we project
the data onto the (h,k) two-dimensional reciprocal lattice
plane. The elastic energy resolution on MAPS was 2.7 meV
(full width at half maximum).

III. RESULTS

To help visualise the experimental measurements we
reproduce in Fig. 1 part of a figure from our previous pub-
lication on the q-1D magnetic fluctuations in La5/3Sr1/3NiO4

(Ref. 17). Figure 1(a) is a simplified map of the low-energy
scattering features in the (h,k,0) plane of reciprocal space. The
sharp peaks (circles) at (1/2 ± 1/6,1/2 ± 1/6,0) and (1/2 ±
1/6,1/2 ∓ 1/6,0) represent spin-wave scattering associated
with the magnetic ordering wave vectors. There are two pairs of
peaks because there are two possible orientations of the stripes
on the NiO2 layers, either along the [1,1,0] direction or the
[1,1,0] direction. The diagonal lines which run parallel to the
stripe directions represent the approximate pattern of diffuse
scattering observed in La5/3Sr1/3NiO4 (Ref. 17). Figure 1(b)
depicts an array of AFM chains running parallel to the stripes
which would give rise to the diagonal grid of diffuse scattering
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FIG. 1. (Color online) Diagrams representing the low-energy
magnetic fluctuations in La5/3Sr1/3NiO4, after Ref. 17. (a) Schematic
map of the low-energy scattering in the (h,k,0) plane of reciprocal
space. Circles are stripe superlattice zone centers and diagonal lines
indicate the diffuse scattering from ideal one-dimensional AFM spin
chains running parallel to the charge stripes. Filled circles and full
lines are for stripes running parallel to the [1,1,0] direction; open
circles and broken lines are for stripes parallel to the [1,1,0] direction.
(b) Model of AFM correlations along the charge stripes consistent
with the observed q-1D diffuse scattering. The arrows indicate the
instantaneous orientation of the spins on the charge stripes. For clarity,
the background AFM order in the regions between the charge stripes
is not shown.

shown in Fig. 1(a). In reality, the the line of the observed
diffuse scattering is not exactly straight but meanders slightly
so as to follow approximately the magnetic zone boundaries,
suggesting that the fluctuations on adjacent chains are weakly
correlated. The spins are shown pointing upward to reflect the
observation that the strength of the out-of-plane fluctuations
is about twice the strength of the in-plane fluctuations.17 The
diffuse scattering has a strong dynamic component on a THz
frequency scale, and may even be entirely dynamic. Whether
the q-1D scattering is quasielastic or inelastic (i.e., gapped) is
an open question which will be addressed later in this work.

Figure 2 presents maps of the magnetic scattering intensity
measured in the (h,k,0) plane of the x = 1/3 crystal at a
temperature of 2 K. The maps were collected at three fixed
energies: (a) 0 meV (i.e., elastic scattering within the resolution
of the spectrometer), (b) 2.5 meV, and (c) 5 meV. The 2.5 meV
data is reproduced from Ref. 17. Figure 2(d) shows the areas
covered in the three maps, which are not the same.

In the elastic map, Fig. 2(a), there is a magnetic Bragg
reflection at (0.667,0.667,0) due to the pattern of AFM order
between the charge stripes, and a small spurious peak at
(0.45,0.75,0). No diffuse elastic scattering signal can be
observed within the experimental precision. Comparing the
two inelastic maps, Figs. 2(b) and 2(c), one can see that
the q-1D diffuse scattering is broader at E = 5 meV than
at at E = 2.5 meV. This is consistent with our previous
measurements17 which showed that the q-1D scattering dis-
perses in the direction perpendicular to the scattering ridge,
with a bandwidth of about 10 meV. The intensity of the
q-1D scattering is modulated, with maxima adjacent to the
spin-wave scattering from the AFM order and at the positions
where the diffuse ridges meet, i.e., (1,0.5,0) and equivalent
positions.

We now turn to the LSNO crystal with x = 0.275. At this
composition the charge stripe order is incommensurate with
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FIG. 2. (Color online) Maps of the scattering intensity in the
(h,k,0) reciprocal space plane of LSNO (x = 1/3). (a) Elastic
scattering, (b) E = 2.5 meV, and (c) E = 5 meV. The data were
collected on IN8 with a final wave vector of kf = 2.662 Å−1 at
a temperature of 2 K. The contour plots are formed from ∼25×30
rectangular grids of data points. The data in (a) and (c) were measured
with a pyrolytic graphite monochromator, and in (b) with a silicon
monochromator. (d) Diagram of reciprocal space indicating the areas
mapped out in (a)–(c).

the crystal lattice and it is of interest to see whether this has any
effect on the q-1D magnetic fluctuations. Figure 3(a) shows
the distribution of scattering intensity from LSNO (x = 0.275)
measured on MAPS. The scattering has been averaged over
the energy range 3–5 meV and plotted as a function of the
in-plane components (h,k) of reciprocal space. There are four
strong scattering signals at positions (0.5 ± ε/2,0.5 ± ε/2)
and (0.5 ± ε/2,0.5 ∓ ε/2) with ε = 0.297 ± 0.001, from the
steeply dispersing spin-wave excitations of the AFM order.
In Fig. 3(a) the spin-wave excitations from the AFM order
are too low in energy to be resolved into spin-wave cones,
and appear simply as spots. In addition to these, there can
also be seen ridges of diffuse scattering similar to the q-1D
scattering observed from the x = 1/3 crystal [Figs. 2(b) and
2(c)]. Figures 3(b) and 3(c) show cuts through this data along
the paths marked A and B in Fig. 3(a). Path B is chosen so
that no intensity from the excitations of the ordered AFM is
observed in a scan along path B. The location for path B is
determined experimentally, by performing scans perpendicular
to path A through the excitations from the AFM order. The
cut in Fig. 3(b) along path A shows the diffuse scattering as a
shoulder to the sharper spin-wave peak, whereas the cut shown
in Fig. 3(c) along path B shows just the diffuse scattering peak,
which is centered on ξ ≈ 0.25 [the ξ coordinate measures the
position along the scan projected perpendicularly onto line A,
i.e., such that ξ = 0 projects onto (0,0) and ξ = 0.5 projects
onto (0.5,0.5)]. From these and similar cuts we find that
the diffuse scattering at x = 0.275 follows the same slightly
meandering path as does the diffuse scattering at x = 1/3—see
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FIG. 3. (Color online) Neutron scattering from La2−xSrxNiO4

(x = 0.275) measured on MAPS. (a) Slice through the data volume
averaged over the energy range 3–5 meV. (b) and (c) Cuts along the
paths marked A and B in (a). An elastic scattering cut along path A is
also displayed in (b). Solid and dashed lines indicate fits to the data
with either one or two Gaussian peaks on a sloping background.

Figs. 2(b) and 2(c). In Fig. 3(b) we also display the elastic
scattering intensity along path A. This shows the magnetic
Bragg peak from the AFM order but does not contain any
elastic signal corresponding to the position of the diffuse
inelastic signal.

To confirm that the diffuse scattering signal is magnetic
in origin we performed scattering measurements on IN20 em-
ploying neutron polarization analysis. For these measurements
we constrained the neutron polarization P to be parallel to
the scattering vector Q. In this configuration scattering from
electronic magnetic moments causes the neutron spin to flip,
whereas scattering via nonmagnetic processes does not.

Figure 4 displays the neutron spin-flip (SF) and non-
spin-flip (NSF) scattering from the x = 0.275 crystal along
a line equivalent to path A. Plots of elastic scattering data
and inelastic scattering data with E = 3 meV are shown.
The elastic scan contains a strong peak in the SF channel
centered on ξ = 0.65, the AFM ordering wave vector for
this composition. A small peak in the NSF channel at the
same position is due to imperfect spin polarization, which
has not been corrected for. At E = 3 meV there is a broad
peak centered on ξ ≈ 0.7 in the SF channel but not in
the NSF channel. Due to their very steep dispersion, the
spin-wave scattering from the AFM order only accounts for the
delta-shaped left side of the SF peak.15 The remaining extent
of the SF peak can be accounted for by the inelastic diffuse
scattering.
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FIG. 4. (Color online) Polarized neutron scattering from
La2−xSrxNiO4 (x = 0.275). The scans are along the (1,1,0) direction
[path A in Fig. 3(a)] and measured at energies of 0 meV (elastic
scattering, right scale) and 3 meV (left scale). Spin-flip (SF) and
non-spin-flip (NSF) scattering channels are shown. The small peak in
the NSF channel of the elastic scan is due to imperfect polarization,
which has not been corrected for.

The results of the unpolarized and polarized neutron
scattering measurements presented here for x = 0.275 are
qualitatively very similar to our previous measurements17

on x = 1/3. This shows that the q-1D diffuse scattering is
magnetic in origin and has the same character in both the
x = 0.275 and x = 1/3 samples.

Next we turn to the question of whether the q-1D scattering
is gapped or not. To answer this we performed inelastic neutron
scattering measurements on IN14 on the x = 1/3 crystal at
energies E � 3 meV. Figure 5 shows constant-energy scans at
0.2 meV and 0.8 meV along a direction equivalent to path B of
Fig. 1(a). The scan at 0.8 meV reveals a peak centered on ξ =
0.75 from the q-1D fluctuation, whereas the scan at 0.2 meV
shows no peak at ξ ∼ 0.75 within the statistical precision of
the data. The peak widths of both the q-1D diffuse scattering at
0.8 meV and the spin-wave scattering at 0.6 meV (not shown)
are resolution limited.22
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the La2−xSrxNiO4 (x = 1/3) at 0.2 meV and 0.8 meV. The solid line
is the best fit to a Gaussian function on a linear background.
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FIG. 6. (Color online) Line shape of the q-1D diffuse scattering
in La2−xSrxNiO4 (x = 1/3) at low energy. The integrated intensities
were obtained from the area of a Gaussian function fitted to a series
of constant-energy scans like those shown in Fig. 5. For E � 0.6
meV the signal was small and the Gaussian width was fixed in the
fit to the value obtained from the 0.8 meV data. The measurements
were made with kf = 1.2 Å−1 for E � 1 meV and kf = 1.5 Å−1

for E � 1 meV, and normalized so as to match at 1 meV. The
solid line is calculated from Eq. (1) with E0 = 1.4 meV, and the
broken line is calculated with E0 = 0. The inset shows the spectral
weight function, which is related to the dynamical susceptibility by
χ ′′(ω) ∝ ωF (ω).

By performing a series of constant-energy scans like those
of Fig. 5 and fitting these with Gaussian peaks we determined
the integrated intensity of the spin-wave and q-1D diffuse
scattering peaks as a function of energy. We remind the reader
that in scans along path B only the q-1D excitations are
observed, while in scans along path A the excitations from
the AFM order are clearly resolved from the q-1D.17 Below
3 meV we observed no energy variation of the integrated
intensity of the spin excitations from the AFM order along
path A (not shown), placing an upper limit of 0.3 meV on the
in-plane anisotropy gap. In Fig. 6 the energy variation of the
integrated intensity of the diffuse scattering peak in x = 1/3 is
plotted. With increasing energy transfer the integrated intensity
of the diffuse scattering increases monotonically up to ∼2
meV, then remains almost constant up to 3 meV, the highest
energy measured.

In a separate experiment we investigated the q-1D diffuse
scattering from the x = 0.275 sample, performed on the RITA-
II spectrometer. In the inset of Fig. 7 we show constant-energy
scans at 0.8 meV and 0.5 meV along a direction equivalent
to path A. For E = 0.8 meV the q-1D scattering is clearly
observed and centered on ξ = 0.73. At E = 0.5 meV there is
still a small excess of scattering above the background at ξ =
0.73. The centering is consistent with the meandering of the q-
1D observed in Fig. 2, and the energy dependence is consistent
with our observations of the q-1D in the x = 1/3 sample;
see Fig. 5 and Fig. 6. Figure 7 shows a constant-Q scan at
Q = (0.75,0.75,0) of the background-corrected amplitude of
the q-1D in the x = 0.275, off-centered to avoid the excitations
from the AFM order. The background was estimated from
measurements at nearby wave vectors. With decreasing energy
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FIG. 7. (Color online) Background-corrected energy scan of the
q-1D diffuse scattering from La2−xSrxNiO4 (x = 0.275) at Q =
(0.75,0.75,0). The background was estimated from energy scans
at (0.75,0.75,0) ± (0.19,0.19,0). Inset: Constant-energy scans along
path A at energies of 0.5 meV and 0.8 meV. Arrows indicate the
positions of the spin-wave scattering from the AFM order of the Ni2+

spins and from the q-1D diffuse scattering. The 0.5 meV scan has
been offset by the addition of 50 counts for clarity.

transfer the signal remains roughly constant down to 0.8 meV,
then drops to a level close to zero at around 0.5 meV. Within
the limitations of low counting statistics, this is consistent
with the constant energy scans on the x = 0.275 sample,
and our observations of the q-1D in the x = 1/3 sample;
see Fig. 6.

IV. DISCUSSION

This work has been concerned with the nature of the
low-energy q-1D diffuse scattering in La2−xSrxNiO4 first
found for x = 1/3 (Ref. 17). We have shown here that the
diffuse scattering is also present at x = 0.275, and that it
is the same for x = 0.275 as for x = 1/3 to within the
experimental precision. This implies that the q-1D scattering is
not dependent on the periodicity of the spin-charge stripe order,
and neither is it a consequence of the special circumstance
found at x = 1/3 in which the spin and charge order have
the same periodicity and are commensurate with the crystal
lattice. Instead, the diffuse scattering appears to be an intrinsic
property of individual charge stripes embedded in the AFM
matrix formed by the Ni2+ spins, consistent with the interpre-
tation in terms of q-1D correlations among spins in the charge
stripes.17

In this work we have also carefully measured the low-
energy line shape of the q-1D diffuse scattering. To model the
line shape we recall that the dynamical part of the scattering
is proportional to the linear response function

S(Q,ω) = 1

π
{n(ω) + 1}χ ′′(Q,ω), (1)

where h̄ω is the energy transferred to the system, χ ′′(Q,ω) is
the imaginary part of the dynamical susceptibility, and

n(ω) = 1

exp(βh̄ω) − 1
. (2)

To describe the Q-integrated intensities we used the phe-
nomenological Lorentzian line shape constructed to satisfy
detailed balance,

χ ′′(ω) =
[

	ω/π

(h̄ω − E0)2 + 	2
+ 	ω/π

(h̄ω + E0)2 + 	2

]
, (3)

where 	 is the Lorentzian width (half-width at half maximum)
and E0 is the energy of the undamped mode. As the q-1D has
a large intrinsic energy width, E0 is the characteristic energy
for the q-1D, not a gap energy.

The best fit to the data achieved by this line shape is shown
as the solid line in Fig. 6, and gives an energy E0 = 1.40 ±
0.07 meV and 	 = 1.57 ± 0.13 meV. The fact that the fitted
E0 is nonzero provides a clear indication that the q-1D diffuse
scattering is inelastic rather than quasielastic. To assess how
robust this result is we repeated the fit with E0 fixed at zero,
corresponding to a quasielastic line shape. The best fit thus
obtained is shown with a broken line in Fig. 6. The width
of the quasielastic fit was 	 = 3.0 ± 0.3 meV. The fit to the
inelastic line shape has a goodness-of-fit parameter χ2 = 1.19
compared with a χ2 = 2.25 for the quasielastic line shape. On
the strength of this evidence we conclude that q-1D diffuse
scattering corresponds to a gapped inelastic excitation.

For an alternative representation of the inelastic line shape
we show in the inset to Fig. 6 the spectral weight function
F (ω), which is related to the imaginary part of the dynamical
susceptibility by χ ′′(ω) ∝ ωF (ω). The large energy width of
the excitations indicates that the q-1D excitations are relatively
short lived, 
t ∼ h̄/	 ∼ 4 × 10−13 s.

In our original work on the q-1D spin correlations in LSNO
with x = 1/3 we analyzed the magnetic spectrum with respect
to that of an antiferromagnetic spin chain.17 Assuming the
doped holes reside in localized Ni3+ states with low-spin S =
1/2 this implies that the fundamental excitations are spinons
with a gapless dispersion. In the present study, however, we
have presented evidence that the spectrum has a gap with a
characteristic energy of 1.4 meV. Further thought is needed,
therefore, if we are to reconcile this information with our
understanding of the q-1D magnetic diffuse scattering.

The model of an AFM spin chain to describe the spin
correlations along the Ni3+ charge stripes is reasonable,
provided that the coupling between the spin chain and the AFM
order of the Ni2+ spins can be neglected. The justification for
neglect of this coupling is that the net Heisenberg exchange
acting on the Ni3+ sites from the AFM-ordered Ni2+ spins
cancels at the mean-field level, so the coupling between the
spin chain and the AFM order is frustrated. However, if the
individual Ni3+–Ni2+ exchange interactions are strong enough
then a weak ferromagnetic (FM) order could be induced on the
Ni3+ stripes combined with a canting of the AFM order of the
Ni2+ spins. Such a possibility has been proposed by Klingeler
et al. based on magnetization data.24 Weak FM order would be
difficult to detect in diffraction experiments because the asso-
ciated magnetic Bragg peaks would coincide with the Bragg
peaks from the crystal lattice. Nevertheless, the competition
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between induced FM order and AFM correlations from an
effective AFM exchange along the stripes could provide an
explanation for the observed gapped dispersion. Such a model
has been investigated recently with promising results.25

V. CONCLUSION

This work has revealed that gapped, quasi-1D AFM spin
correlations are an intrinsic property of the charge stripes in
La2−xSrxNiO4. The findings should inform theoretical models
for the magnetic interactions in LSNO, and hence contribute
to a broader understanding of the formation and stability of
spin–charge stripes in LSNO and related systems.
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