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The effective quantum pseudospin-1/2 model for interacting rare-earth magnetic moments, which are
locally described with atomic doublets, is studied theoretically for magnetic pyrochlore oxides. It is derived
microscopically for localized Pr3+ 4f moments in Pr2T M2O7 (T M = Zr, Sn, Hf, and Ir) by starting from the
atomic non-Kramers magnetic doublets and performing a strong-coupling perturbation expansion of the virtual
electron transfer between the Pr 4f and the O 2p electrons. The most generic form of the nearest-neighbor
anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from the symmetry properties, which
is applicable to Kramers ions Nd3+, Sm3+, and Yb3+, potentially showing large quantum effects. The effective
model is then studied by means of a classical mean-field theory and the exact diagonalization on a single
tetrahedron and on a 16-site cluster. These calculations reveal appreciable quantum fluctuations leading to
quantum phase transitions to a quadrupolar state as a melting of spin ice for the Pr3+ case. The model also shows
the formation of a cooperative quadrupole moment and pseudospin chirality on tetrahedrons. A sign of a singlet
quantum spin ice is also found in a finite region in the space of coupling constants. The relevance to experiments
is discussed.
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I. INTRODUCTION

Quantum fluctuations and geometrical frustration are a cou-
ple of key ingredients in realizing nontrivial spin-disordered
ground states without a magnetic dipole long-range order
(LRO) in three spatial dimensions.1–4 The pyrochlore lattice
structure is a typical example where the geometrical frustration
plays a crucial role in preventing LRO.1,5,6 Of particular
interest in this paper is the so-called dipolar spin ice,7–10 such
as Dy2Ti2O7, Ho2Ti2O7, and related systems. The dipolar spin
ice provides a classical magnetic analog of cubic water ice11

and is characterized by an emergent U(1) gauge field mediating
the Coulomb interaction between monopole charges12,13 as
well as the dipolar spin correlation showing a pinch-point
singularity.14,15 Introducing quantum effects to a classical
spin ice may produce further nontrivial states of matter.
Evidence of quantum effects has recently been observed in
inelastic neutron-scattering experiments on spin-ice-related
compounds, Tb2Ti2O7,16–18 Tb2Sn2O7,18 and Pr2Sn2O7.19

Exploiting a weak coupling of rare-earth magnetic moments
to conduction electrons, a chiral spin state3 has been detected
through the anomalous Hall effect20 at zero magnetic field
without magnetic dipole LRO in another related compound,
Pr2Ir2O7.21 Vital roles of the planar components have also
been observed experimentally in Yb2Ti2O7 and Er2Ti2O7.22

Obviously, quantum fluctuations enrich the otherwise classical
properties of the spin ice. They may drive it to other states of
matter, including quadrupolar states and chiral spin states.23

The aims of this paper are to provide a comprehensive
derivation of a realistic effective quantum model for these
spin-ice related materials and to understand its basic properties
including nontrivial quantum effects.

A. Classical dipolar spin ice

Let us briefly review the classical (spin) ice. The low-energy
properties of water and spin ices are described by Ising
degrees of freedom that represent whether proton displace-
ments (electric dipoles) and magnetic dipoles, respectively,

point inward (“in”) to or outward (“out”) from the center of
the tetrahedron. The interaction among the Ising variables
favors nearest-neighbor pairs of “in” and “out” and thus
suffers from geometrical frustration. This produces a so-called
ice rule11,24 stabilizing “2-in, 2-out” configurations on each
tetrahedron. The macroscopic degeneracy of this ice-rule
manifold produces Pauling’s residual entropy, 1

2R ln 3
2 .11

In a dipolar spin ice,7–9 a rare-earth magnetic moment m̂r =
gJ μB Ĵ r located at a vertex r of tetrahedrons plays the role of
the Ising variable because of the large crystalline electric field
(CEF), which is sometimes approximately modeled by

ĤIsing = −DIsing

∑
r

(nr · Ĵ r/J )2, (1)

with the Landé factor gJ and DIsing > 0. Here, J is the
quantum number for the total angular momentum Ĵ r , and nr

defines a unit vector at a pyrochlore-lattice site r that points
outward from the center of the tetrahedron belonging to one fcc
sublattice of the diamond lattice and inward to that belonging to
the other sublattice. The amplitude of the rare-earth magnetic
moment is so large that the interaction between the magnetic
moments is dominated by the magnetic dipolar interaction,25,26

ĤD = μ0

4π

∑
〈r,r ′〉

[
m̂r · m̂r ′

(�r)3
− 3

(m̂r · �r)(�r · m̂r ′)

(�r)5

]
, (2)

with �r = r − r ′ and the summation
∑

〈r,r ′〉 over all pairs
of atomic sites. This yields a ferromagnetic coupling Dn.n. =
5
3

μ0

4π
m2

(a/2
√

2)3 ∼ 2.4 K between the nearest-neighbor magnetic
moments for Ho2Ti2O7 and Dy2Ti2O7 with the moment
amplitude m ∼ 10μB and the lattice constant a ∼ 10.1 Å9,
providing a main driving force of the ice rule. It prevails
over the nearest-neighbor superexchange interaction, which
is usually assumed to take the isotropic Heisenberg form

ĤH = −3Jn.n.

n.n.∑
〈r,r ′〉

Ĵ r · Ĵ r ′/J 2. (3)
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In the limit of DIsing → ∞, ĤDSI = ĤIsing + ĤD + ĤH is
reduced to an Ising model,26 which can explain many magnetic
properties experimentally observed at temperatures well below
the crystal-field excitation energy.9,10,13,27

Because of the ferromagnetic effective nearest-neighbor
coupling Jeff = Dn.n. + Jn.n. > 0, creating “3-in, 1-out” and
“1-in, 3-out” configurations out of the macroscopically de-
generate “2-in, 2-out” spin-ice manifold costs energy, and
they can be regarded as defects of magnetic monopoles and
antimonopoles with a magnetic charge.6 Then, the spin ice is
described as the Coulomb phase of magnetic monopoles where
the emergent U(1) gauge fields mediate the Coulomb interac-
tion between monopole charges.12,13 The density of magnetic
monopoles is significantly suppressed to lower the total free
energy at a temperature T < Jeff ∼ a few kelvins. Simulta-
neously, the reduction of the monopole density suppresses
spin-flip processes, for instance, due to quantum tunneling,28

that change the configuration of monopoles. Hence, the
relaxation time to reach the thermal equilibrium shows a
rapid increase. These phenomena associated with the thermal
quench of spin ice have been observed experimentally29,30 and
successfully mimicked by classical Monte Carlo simulations
in a Coulomb gas model of magnetic monopoles.27,31 This
indicates that quantum effects are almost negligible in dipolar
spin ice. It has been shown that emergent gapless U(1)
gauge excitations together with a power-law decay of spin
correlations can survive against a weak antiferroic exchange
interaction that exchanges the nearest-neighbor pseudospin-
1/2 variables (“in” and “out”).12 This U(1) spin liquid12 can
be viewed as a quantum version of the spin ice, although
the macroscopic degeneracy of the ice-rule manifold should
eventually be lifted in the ideal case under equilibrium.

B. Quantum effects

At first glance, one might suspect that quantum fluctuations
should be significantly suppressed by a large total angular
momentum J of the localized rare-earth magnetic moment
and its strong single-spin Ising anisotropy DIsing > 0, since
they favor a high amplitude of the quantum number for
Ĵ z

r ≡ Ĵ r · nr , either MJ = J or MJ = −J . Namely, in the
effective Hamiltonian, ĤDSI = ĤIsing + ĤD + ĤH, a process
for successive flips of the total angular momentum from
MJ = J to −J at one site and from −J to J at the adjacent
site is considerably suppressed at a temperature T 
 DIsing.
The coupling constant for this pseudospin-flip interaction is of
the order |Jn.n.|(|Jn.n.|/DIsing)2J and becomes negligibly small
compared to the Ising coupling Jeff .

In reality, however, because of the D3d CEF acting on rare-
earth ions (Fig. 1), the conservation of Ĵ z, which is implicitly
assumed in the above consideration, no longer holds at the
atomic level. Eigenstates of the atomic Hamiltonian including
the LS coupling and the CEF take the form of a superposition
of eigenstates of Ĵ z whose eigenvalues are different by integer
multiples of 3. Obviously, this is advantageous for the quantum
pseudospin exchange to work efficiently.

Attempts to include quantum effects have recently ap-
peared. It has been argued that the presence of a low-energy
crystal-field excited doublet above the ground-state doublet
in Tb2Ti2O7

10,16 enhances quantum fluctuations and possibly
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FIG. 1. (Color online) (a) Pr3+ ions form tetrahedra (dashed lines)
centered on O2− ions (O1) and are surrounded by O2− ions (O2) in
the D3d symmetry as well as by transition-metal (T M) ions. Each Pr
magnetic moment (thick arrow) points to either of the two neighboring
O1 sites. (xr , yr ,zr ) denotes the local coordinate frame. (b) Local
coordinate frame from the top. Upward and downward triangles of
O2− ions (O2) are located above and below the hexagon of T M ions,
respectively.

drives the classical spin ice into a quantum spin ice composed
of a quantum superposition of “2-in, 2-out” configurations.32

We have theoretically explored an alternative scenario,
namely, a quantum melting of spin ice.23 A quantum entan-
glement among the degenerate states lifts the macroscopic
degeneracy, suppresses the spin-ice freezing, and thus leads
to another distinct ground state. Actually, the quantum-
mechanical spin-exchange Hamiltonian mixes “2-in, 2-out”
configurations with “3-in, 1-out” and “1-in, 3-out”, leading
to a failure of the strict ice rule and a finite density of
monopoles in the quantum-mechanical ground state. Namely,
the quantum mechanically generated monopoles can modify
the dipolar spin-ice ground state, while a spatial profile of
short-range spin correlations still resembles that of the dipolar
spin ice.23 They may appear in bound pairs or in condensates.
We have reported that there appears a significantly large
anisotropic quantum-mechanical superexchange interaction
between Pr magnetic moments in Pr2T M2O7

23 (T M = Zr,
Sn, Hf, and Ir).33 This anisotropic superexchange interaction
drives quantum phase transitions among spin ice, quadrupolar
states having nontrivial chirality correlations, and quantum
spin ice, as we will see later.

Actually, among the rare-earth ions available for mag-
netic pyrochlore oxides,10,33 the Pr3+ ion could optimally
exhibit quantum effects because of the following two facts.
(i) A relatively small magnitude of the Pr3+ localized mag-
netic moment, whose atomic value is 3.2μB , suppresses the
magnetic dipolar interaction, which is proportional to the
square of the moment size. Then, for Pr2T M2O7, one obtains
Dn.n. ∼ 0.1 K, which is an order of magnitude smaller than
the 2.4 K for Ho2Ti2O7 and Dy2Ti2O7. Similarly, quantum
effects might appear prominently also for Nd3+, Sm3+, and
Yb3+ ions because of their small moment sizes, 3.3μB ,
0.7μB , and 4μB , respectively, for isolated cases. (ii) With
fewer 4f electrons, the 4f -electron wave function becomes
less localized at atomic sites. This enhances the overlap
with the O 2p orbitals at the O1 site [Fig. 1(a)], and thus
the superexchange interaction. It is also further increased
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by a near resonance of Pr 4f and O 2p levels. Moreover,
this superexchange interaction appreciably deviates from the
isotropic Heisenberg form because of the highly anisotropic
orbital shape of the f -electron wave function and the strong
LS coupling. Since the direct Coulomb exchange interaction
is even negligibly small,25 this superexchange interaction due
to virtual f -p electron transfers is expected to be the leading
interaction.

Recent experiments on Pr2Sn2O7,34 Pr2Zr2O7,35 and
Pr2Ir2O7

36 have shown that the Pr3+ ion provides the 〈111〉
Ising moment described by a non-Kramers magnetic doublet.
They show similarities to the dipolar spin ice. (i) No magnetic
dipole LRO is observed down to a partial spin-freezing
temperature Tf ∼ 0.1-0.3 K.19,21,34–37 (ii) Pr2Ir2O7 shows a
metamagnetic transition at low temperatures only when the
magnetic field is applied in the [111] direction,21 indicating
the ice-rule formation due to the effective ferromagnetic
coupling 2Jeff ∼ 2Jn.n. ∼ 1.4 K.21 In contrast, substantially
different experimental observations from the dipolar spin ice
have also been made. The Curie-Weiss temperature TCW is
antiferromagnetic for zirconate35 and iridate,36 unlike the spin
ice. Stannate shows a significant level of low-energy short-
range spin dynamics in the energy range up to a few kelvins,19

which is absent in the classical spin ice. Furthermore, iridate
shows the Hall effect at zero magnetic field without magnetic
dipole LRO,21 suggesting the onset of a chiral spin-liquid
phase3 at TH ∼ 1.5 K.

The discovery of this chiral spin state endowed with a
broken time-reversal symmetry on a macroscopic scale in
Pr2Ir2O7 without apparent magnetic LRO21 has increased the
variety of spin liquids. One might speculate that this is caused
mainly by a Kondo coupling to Ir conduction electrons and
thus the RKKY interaction.38 However, the low-temperature
thermodynamic properties are common in this series of
materials, Pr2T M2O7, except that a small partial reduction
(∼10%) of Pr magnetic moments, probably due to conduction
electrons, affects the resistivity and the magnetic susceptibility
of Pr2Ir2O7.36 Furthermore, the onset temperature TH ∼ 1.5 K
for the emergent anomalous Hall effect is comparable to
the ferromagnetic coupling 2Jeff ∼ 1.4 K.21 Therefore, it
is natural to expect that a seed of the chiral spin state
below TH exists in the Pr moments interacting through the
superexchange interaction, and possibly the state is stabilized
by the conduction electrons. Another intriguing observation
here is that, without appreciable quantum effects, the chiral
manifold of classical ice-rule spin configurations21 that has
been invented to account for the emergent anomalous Hall
effect will result from magnetic dipole LRO or freezing, which
is actually absent down to Tf . This points to a significant level
of nontrivial quantum effects.

In this paper, we develop a realistic effective theory for
frustrated magnets Pr2T M2O7 on a pyrochlore lattice and
provide generic implications of quantum effects in spin-ice–
related materials, giving a comprehensive explanation of our
recent letter.23 In Sec. II, the most generic nearest-neighbor
pseudospin-1/2 Hamiltonian for interacting magnetic mo-
ments on the pyrochlore lattice is derived on the basis of atomic
magnetic doublets for both non-Kramers and Kramers ions. In
particular, it is microscopically derived from strong-coupling
perturbation theory in the Pr3+ case. We analyze the model

for the non-Kramers case by means of a classical mean-field
theory in Sec. III, which reveals spin-ice, antiferroquadrupolar,
and noncoplanar ferroquadrupolar phases at low temperatures.
Then we perform exact-diagonalization calculations for the
quantum pseudospin-1/2 case on a single tetrahedron in
Sec. IV and on the 16-site cube in Sec. V. We have found within
the 16-site cluster calculations a cooperative ferroquadrupolar
phase, which is accompanied by crystal symmetry lowering
from cubic to tetragonal and can then be categorized into a
magnetic analog of a smectic or crystalline phase of liquid
crystals.39 This provides a scenario of the quantum melting of
spin ice and can explain the experimentally observed magnetic
properties, including powder neutron-scattering experiments
on Pr2Sn2O7 and the magnetization curve on Pr2Ir2O7. We
also reveal a possible source of the time-reversal symmetry
breaking observed in Pr2Ir2O7. It takes the form of a solid
angle subtended by four pseudospins on a tetrahedron, each of
which is composed of an Ising dipole magnetic moment and
a planar atomic quadrupole moment, and shows a nontrivial
correlation because of a geometrical frustration associated
with the fcc sublattice structure of the dual diamond lattice. A
possible sign of a singlet quantum spin-ice state has also been
obtained within the 16-site numerical calculations in another
finite region of the phase diagram. Section VI is devoted to
discussion and a summary.

II. DERIVATION OF THE EFFECTIVE MODEL

In this section, we give a microscopic derivation of the
effective pseudospin-1/2 Hamiltonian in a comprehensive
manner. Although we focus on 4f localized moments of Pr3+
ions, the form of our nearest-neighbor anisotropic pseudospin-
1/2 Hamiltonian is most generic for atomic non-Kramers
magnetic doublets. We also present the generic form of the
nearest-neighbor Hamiltonian for Kramers doublets of Nd3+,
Sm3+, and Yb3+.

A. Atomic Hamiltonian for Pr3+

1. Coulomb repulsion

The largest energy scale of the problem should be the local
Coulomb repulsion among Pr 4f electrons. Photoemission
spectroscopy on Pr2T M2O7, which is desirable for its reliable
estimate, is not available yet. A typical value obtained from
Slater integrals for Pr3+ ions is of the order of 3–5 eV.40 The
cost of the Coulomb energy becomes 0, U , and 3U for the
occupation of one, two, and three f electrons, respectively
(Fig. 2). For Pr3+ ions, the O 2p electron level � at the O1 site
should be higher than the f 1 level and lower than the f 3 level
(Fig. 2). Thus, it would be a reasonably good approximation
to start from localized f 2 states for Pr3+ configurations and
then to treat the other effects as perturbations.

2. LS coupling for f 2 configurations

We introduce operators Ĵ , L̂, and Ŝ for the total, orbital,
and spin angular momenta of f 2 electron states of Pr3+. Within
this f 2 manifold, the predominant LS coupling λLS > 0 in
ĤLS = λLS L̂ · Ŝ gives the ground-state manifold 3H4 with
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FIG. 2. (Color online) Local level scheme for f and p electrons,
and local quantization axes zr and zr ′ .

the quantum numbers J = 4, L = 5, and S = 1 for the total,
orbital, and spin angular momenta, respectively.

3. Crystalline electric field

The ninefold degeneracy of the ground-state manifold 3H4

is partially lifted by the local crystalline electric field (CEF),
which has the D3d symmetry about the 〈111〉 direction toward
the O1 site. We define the local quantization axis zr as this
〈111〉 direction. Then, the Hamiltonian for the CEF,

ĤCEF =
3∑

ml,m
′
l=−3

V
ml,m

′
l

CEF

∑
r

∑
σ=±

f †
r,ml ,σ fr,m′

l ,σ
, (4)

contains not only orthogonal components with ml = m′
l but

also off-diagonal components with ml − m′
l = ±3 and ±6,

all of which become real if we take x and y axes as xr and
yr depicted in Figs. 1(a) and 1(b). Here, fr,ml ,σ

and f
†
r,ml ,σ

denote the annihilation and creation operators of an f electron
with the z components ml and ms = σ/2 of the orbital and
spin angular momenta, respectively, in the local coordinate

frame at the Pr site r . The formal expressions for V
ml,m

′
l

CEF
within point-charge analysis are given in Appendix A. In the
rest of Sec. II A, we drop the subscript for the site r , for
brevity.

We perform a first-order degenerate perturbation theory,
which replaces Eq. (4) with P̂ (3H4)ĤCEFP̂ (3H4), where
P̂ (3H4) is the projection operator onto the 3H4 manifold.
First, let us introduce the notation |L,ML; S,MS〉 for the
f 2 eigenstate corresponding to the orbital and spin quantum
numbers (L,ML) and (S,MS) in the local coordinate frame. It
is straightforward to express the eigenstates {|MJ 〉}MJ =−J,...,J

of Ĵ z in terms of |5,ML; 1,MS〉 and then in terms of f -electron
operators,

|MJ 〉 =
∑

ML,MS

CMJ ,ML,MS
|5,ML; 1,MS〉

=
∑

ML,MS

C̃MJ ,m,m′,σ,σ ′f †
m,σ f

†
m′,σ ′ |0〉, (5)

as explicitly written in Appendix B.

Finally, we obtain the following representation of Eq. (4)
in terms of Eq. (5):

〈MJ |ĤCEF|M ′
J 〉

=
3∑

ml,m
′
l ,m

′′
l =−3

V
ml,m

′
l

CEF

∑
σ,σ ′=±

[
C̃MJ ,ml,m

′′
l ,σ,σ ′C̃M ′

J ,m′
l ,m

′′
l ,σ,σ ′

− C̃MJ ,m′′
l ,ml ,σ,σ ′C̃M ′

J ,m′
l ,m

′′
l ,σ

′,σ

− C̃MJ ,ml,m
′′
l ,σ,σ ′C̃M ′

J ,m′′
l ,m

′
l ,σ

′,σ

+ C̃MJ ,m′′
l ,ml ,σ,σ ′C̃M ′

J ,m′′
l ,m

′
l ,σ,σ ′

]
. (6)

The CEF favors MJ = ±4 configurations that are linearly
coupled to MJ = ±1 and ∓2 because of the D3d CEF.
This leads to the atomic non-Kramers magnetic ground-state
doublet,

|σ 〉D = α|4σ 〉 + βσ |σ 〉 − γ | − 2σ 〉, (7)

with small real coefficients β and γ as well as α =√
1 − β2 − γ 2. For Pr2Ir2O7, the first CEF excited state is

a singlet located at 168 K and the second is a doublet at
648 K.41 They are located at 210 and 430 K for Pr2Sn2O7.19

These energy scales are two orders of magnitude larger than
that of our interest, 2Jn.n. ∼ 1.4 K. Hence it is safe to neglect
these CEF excitations for our purpose. Then it is convenient
to introduce the Pauli matrix vector σ̂ r for the pseudospin-1/2
representing the local doublet at each site r , so that Eq. (7) is
an eigenstate of σ̂ z

r = σ̂ r · zr with eigenvalue σ .
Note that in the case of Tb3+, the first CEF excited state is

a doublet at a rather low energy, ∼18.7 K42, and the effects
of the first excited doublet cannot be ignored32 when a similar
analysis is performed. Nevertheless, since this CEF excitation
in Tb3+ is an order of magnitude larger than Jeff , it can be
integrated out.32 Then the model reduces to a form of the
effective pseudospin-1/2 Hamiltonian similar to that derived
in Ref. 23 and is also discussed below, though the explicit form
has not been presented as far as we know.

B. Dipole and quadrupole moments

Only the z component σ̂ z
r = σ̂ r · zr of the pseudospin

contributes to the magnetic dipole moment, represented as
either “in” or “out,” while the transverse components σ̂ x =
σ̂ r · xr and σ̂

y
r = σ̂ r · yr correspond to the atomic quadrupole

moment, that is, the orbital. This can be easily shown by
directly calculating the Pr 4f magnetic dipole and quadrupole
moments in terms of the pseudospin. We first take the
projection of the total angular momentum Ĵ = (Ĵ x,Ĵ y,Ĵ z) to
the subspace of the local non-Kramers magnetic ground-state
doublet described by Eq. (7). It yields

D〈σ |Ĵ z|σ ′〉D = (4α2 + β2 − 2γ 2) σδσ,σ ′ , (8)

D〈σ |Ĵ±|σ ′〉D = 0, (9)

with Ĵ± = (Ĵ x ± iĴ y). With the Landé factor gJ = 4/5 and
the Bohr magneton μB , the atomic magnetic dipole moment
is given by

m̂r = gJ μB(4α2 + β2 − 2γ 2) σ̂ z
r zr . (10)
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Note that σ̂±
r cannot linearly couple to neutron spins without

resorting to higher CEF levels. In contrast, the quadrupole
moments are given by

D〈σ |{Ĵ z,Ĵ±}|σ ′〉D = −36βγ δσ,−σ ′ . (11)

This is a general consequence of the so-called non-Kramers
magnetic doublet, and not restricted to the Pr3+ ion. Namely,
when the atomic ground state of a non-Kramers ion having
an even number of f electrons is described by a magnetic
doublet, only σ̂ z

r contributes to the magnetic dipole moment,
while σ̂

x,y
r corresponds to the atomic quadrupole moment. This

contrasts sharply with the following two cases. (i) In the case of
Kramers doublets, all three components of σ̂ r may contribute
to the magnetic dipole moment, while their coefficients can be
anisotropic. (ii) In the case of non-Kramers nonmagnetic dou-
blets, σ̂ r corresponds to a quadrupole moment or even a higher-
order multipole moment that is a time-reversal invariant.

C. Superexchange interaction

Now we derive the superexchange Hamiltonian through a
fourth-order strong-coupling perturbation theory. Keeping in
mind the local level scheme of Pr 4f electrons and O 2p

electrons at O1 sites, which is explained in Sec. II A, we
consider nonlocal effects introduced by the electron transfer
between the Pr 4f orbital and the O 2p orbital.

1. Local coordinate frames

To symmetrize the form of the final effective Hamiltonian,
it is convenient to choose a set of local coordinate frames so
that it is invariant under 180◦ rotations of the whole system
about three axes that include an O1 site and are parallel to the
global X, Y , or Z axes, which belong to the space group Fd3̄m

of the present pyrochlore system. We can start from the local
coordinate frame previously defined in Sec. II A 3 and in Fig. 1
for a certain site and generate the other three local frames by
applying the above three rotations.

For instance, we can adopt

x0 = 1√
6

(1,1, − 2), y0 = 1√
2

(−1,1,0), z0 = 1√
3

(1,1,1)

(12a)
for the Pr sites at R + a0 with a0 = − a

8 (1,1,1);

x1 = 1√
6

(1, − 1,2), y1 = 1√
2

(−1, − 1,0),

(12b)
z1 = 1√

3
(1, − 1, − 1)

for the Pr sites at R + a1 with a1 = a
8 (−1,1,1);

x2 = 1√
6

(−1,1,2), y2 = 1√
2

(1,1,0),

(12c)
z2 = 1√

3
(−1,1, − 1)

for the Pr sites at R + a2 with a2 = a
8 (1, − 1,1); and

x3 = 1√
6

(−1, − 1, − 2), y3 = 1√
2

(1, − 1,0),

(12d)
z3 = 1√

3
(−1, − 1,1)

for the Pr sites at R + a3 with a3 = a
8 (1,1, − 1), where R

represents an fcc lattice vector R = ∑
i=1,2,3 ni Ri spanned by

R1 = (0,a/2,a/2), R2 = (a/2,0,a/2), and R3 = (a/2,a/2,0)
with integers (n1,n2,n3), and a is the lattice constant, that is,
the side length of the unit cube. In particular, all the local z

directions attached to the Pr sites belonging to the tetrahedron
centered at the O1 site R point inward, and they satisfy the
relation

3∑
i=0

(xi , yi ,zi) = (0,0,0). (13)

Actually, other sets of local coordinate frames that are obtained
by threefold and sixfold rotations about [111] yield the
same form of the effective Hamiltonian for Kramers and
non-Kramers cases, respectively.

These local coordinate frames are related to the following
rotations of the global coordinate frame:

R(r)(ϕi,ϑi) = (
t xi ,

t yi ,
t zi

)
, (14a)

ϕ0 = π/4, ϑ0 = arccos(1/
√

3), (14b)

ϕ1 = 3π/4, ϑ1 = −π + arccos(1/
√

3), (14c)

ϕ2 = −π/4, ϑ2 = −π + arccos(1/
√

3), (14d)

ϕ3 = −3π/4, ϑ3 = arccos(1/
√

3). (14e)

Note that the coordinate frame for the spins is always
attached to that for the orbital space in each case. The rotation
of j = l + s with the orbital l and the spin s of a single electron
takes the form

R̂r = exp[−iϕi ĵ
z] exp[−iϑi ĵ

y]. (15)

2. f - p hybridization

The 4f electrons occupying the atomic ground-state
doublet, Eq. (7), or 4f holes can hop to the O 2p levels
at the neighboring O1 site. Because of the symmetry, the
f -p electron transfer along the local z axis is allowed only
for the pf σ bonding (ml = 0) between fz(5z2−3r2) and pz

orbitals and the pf π bondings (ml = ±1) between fx(5z2−r2)

and px orbitals and between fy(5z2−r2) and py orbitals in the
local coordinate frame defined in Eqs. (12) [Fig. 3(a)]. Their
amplitudes are given by two Slater-Koster parameters43 Vpf σ

and Vpf π , respectively. Then the Hamiltonian for the f -p
hybridization reads

Ĥt =
∑
R∈fcc

∑
τ=±

∑
ml,m

′
l=0,±1

Vml

∑
σ,σ ′=±

f̂ †
R+ai ,ml ,σ

(
R

†
R+ai

)
ml,m

′
l ;σ,σ ′ p̂R+(1+τ )ai ,m

′
l ,σ

′ + H.c.,

(16)

with V±1 = Vpf π , V0 = Vpf σ , and an index τ = ± for the two
fcc sublattices of the diamond lattice, where p̂R+(1+τ )ai ,ml ,σ

represents the annihilation operator of a 2p electron at the O1
site R + (1 + τ )ai with the orbital and spin quantum numbers
ml and ms = σ/2, respectively, in the global coordinate frame.
Here, R

†
R+ai

transforms the representation from the global
frame for p̂R+(1+τ )ai ,m

′
l ,σ

′ to the local frame for f̂ †
R+ai ,ml ,σ .
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FIG. 3. (Color online) (a) Two f -p transfer integrals: Vpf σ ,
between pz and f(5z2−3r2)z orbitals, and Vpf π , between px /py and
fx(5z2−r2)/fy(5z2−r2). (b) f -p virtual electron hopping processes. n (n′)
and 
 in state f np
f n′

represent the number of f electrons at the Pr
site r (r ′) and that of p electrons at the O1 site.

3. Strong-coupling perturbation theory

Now we are ready to perform the strong-coupling pertur-
bation expansion in Vpf π and Vpf σ . Hybridization between
these Pr 4f electrons and O 2p electrons at the O1 site, which
is located at the center of the tetrahedron, couples f 2 states
having the local energy U with f 1 and f 3 states having the
local energy levels 0 and 3U , respectively (Fig. 2). Here, LS

coupling has been ignored in comparison with U for simplicity.
Creating a virtual p hole decreases the total energy by �, which
is the p-electron level measured from the f 1 level.

First, the second-order perturbation in Vpf σ and Vpf π

produces only local terms. They only modify the CEF from
the result of the point-charge analysis with renormalized
parameters for the effective ionic charges and radii. Nontrivial
effects appear in the fourth order in Vpf σ and Vpf π . Taking
into account the virtual processes shown in Fig. 3(b), the
fourth-order perturbed Hamiltonian in Vpf σ and Vpf π is
obtained as

Ĥff = 2

(2U − �)2

n.n.∑
〈r,r ′〉

∑
m1,m2

∑
m′

1,m
′
2

∑
σ1,σ2

∑
σ ′

1,σ
′
2

Vm1Vm′
1
Vm2Vm′

2

× f̂ †
r,m1,σ1 f̂r,m2,σ2 f̂

†
r ′,m′

1,σ
′
1
f̂r ′,m′

2,σ
′
2

×
[

− 1

2U − �
δm1,m2δm′

1,m
′
2
δσ1,σ2δσ ′

1,σ
′
2

+
(

1

2U − �
+ 1

U

)
(R†

rRr ′)m1,m
′
2;σ1,σ

′
2
(R†

r ′Rr )m′
1,m2;σ ′

1,σ2

]
.

(17)

D. Effective pseudospin-1/2 model

Next we project the superexchange Hamiltonian, Eq. (17),
onto the subspace of doublets given by Eq. (7). For this
purpose, we have only to calculate for a site r the matrix
elements of the operators f̂ †

r,ml ,σ f̂r,m′
l ,σ

′ with ml,m
′
l = 0, ± 1

and σ,σ ′ = ±1, in terms of |MJ 〉, which is explicitly repre-
sented by f -electron operators in Appendix B, and then in

FIG. 4. (Color online) Pyrochlore lattice structure. The phase
φr,r ′ appearing in Eq. (18) takes −2π/3, 2π/3, and 0 on the blue, red,
and green bonds, respectively, in our choice of the local coordinate
frames [Eqs. (12)].

terms of the atomic doublet |σ 〉D , Eq. (7). Finally, we obtain
the effective quantum pseudospin-1/2 Hamiltonian:

Ĥeff = Jn.n.

n.n.∑
〈r,r ′〉

[
σ̂ z

r σ̂ z
r ′ + 2δ(σ̂+

r σ̂−
r ′ + σ̂−

r σ̂+
r ′ )

+ 2q(e2iφr,r′ σ̂+
r σ̂+

r ′ + H.c.)
]
, (18)

with σ̂±
r ≡ (σ̂ x

r ± iσ̂
y
r )/2, where σ̂ r represents a vector of the

Pauli matrices for the pseudospin at a site r . The phase44

φr,r ′ takes −2π/3, 2π/3, and 0 for the bonds shown in
blue, red, and green in Fig. 4, in the local coordinate frames
defined in Eq. (12). This phase cannot be fully gauged
away, because of the noncollinearity of the 〈111〉 magnetic
moment directions and the threefold rotational invariance
of (r,σ r ) about the [111] axes. Equation (18) gives the
most generic nearest-neighbor pseudospin-1/2 Hamiltonian
for non-Kramers magnetic doublets of rare-earth ions such
as Pr3+ and Tb3+ that is allowed by the symmetry of the
pyrochlore system. Note that the bilinear coupling terms of
σ̂ z

r and σ̂±
r ′ are prohibited by the non-Kramers nature of the

moment; namely, σ̂ z
r changes sign under the time-reversal

operation, while σ̂
x,y
r does not.

The dependence of the Ising coupling constant on U , �,
Vpf σ , and Vpf π takes the form

Jn.n. = V 4
pf σ

(2U − �)2

(
1

U
+ 1

2U − �

)
J̃ (β,γ,Vpf π/Vpf σ ),

(19)

where J̃ contains the dependence on the remaining dimension-
less variables (β, γ , Vpf π/Vpf σ ). We show the sign of J̃ as
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FIG. 5. (Color online) A phase diagram for the sign of the
dimensionless Ising coupling J̃ , defined through Eq. (19), as functions
of γ and Vpf π/Vpf σ for β = γ /3, γ /6, 0, −γ /6, and −γ /3.
In each case, J̃ is positive in the shaded region and negative
otherwise.

functions of γ and Vpf π/Vpf σ for several choices of β/γ in
Fig. 5. In particular, for −0.37 � Vpf π/Vpf σ � −0.02, which
includes a realistic case of Vpf π/Vpf σ ∼ −0.3, J̃ is found
to be positive. Since the prefactor in Eq. (19) is positive,
the Ising coupling Jn.n. is also positive, namely, antiferroic
for pseudospins, in this case. Taking account of the tilting
of the two neighboring local z axes by θ = arccos(−1/3), this
indicates a ferromagnetic coupling between the physical 〈111〉
magnetic moments and provides a source of the ice rule.

The D3d CEF produces two quantum-mechanical inter-
actions in the case of non-Kramers ions: the pseudospin-
exchange and pseudospin-nonconserving terms. The ratios
δ and q of their coupling constants to the Ising one are
independent of U/Vpf σ and �/Vpf σ but depend strongly on
β and γ . Figures 6(a) and 6(b) show δ and q, respectively,
as functions of γ , which characterizes the D3d CEF for a
typical choice of Vpf π/Vpf σ = −0.3, in the cases of β/γ =
0, ±1/3, and ±1/6. Henceforth, we adopt β = 7.5% and
β/γ = 1/3, following the point-charge analysis of the inelastic
powder neutron-scattering data on Pr2Ir2O7.41 Actually, these
estimates of β and γ lead to the local moment amplitude,

M0 = gJ μB(4α2 + β2 − 2γ 2) ≈ 2.9μB, (20)

according to Eq. (10), which reasonably agrees with the
experimental observation on Pr2Ir2O7

36 and Pr2Zr2O7.
35 Then

FIG. 6. (Color online) Coupling constants (a) δ and (b) q as
functions of γ for several choices of β/γ = 1/3, 1/6, 0, −1/6, and
−1/3. We have adopted Vpf π/Vpf σ = −0.3.

we obtain δ ∼ 0.51 and q ∼ 0.89, indicating the appreciable
quantum nature. In general, however, the values of δ and q

may vary depending on the transition-metal ion and crystal
parameters.

It is instructive to rewrite the q term as

q[( �̂σ r · �nr,r ′)( �̂σ r ′ · �nr,r ′ ) − ( �̂σ r · �n′
r,r ′)( �̂σ r ′ · �n′

r,r ′ )], (21)

where we have introduced a two-dimensional vector composed
of the planar components of the pseudospin, �̂σ r = (σ̂ x

r ,σ̂
y
r ),

and two orthonormal vectors,

�nr,r ′ = (cos φr,r ′ , − sin φr,r ′), (22a)

�n′
r,r ′ = (sin φr,r ′ , cos φr,r ′). (22b)

Thus, it is clear that the sign of q can be absorbed by
rotating all the pseudospins σ r about the local zr axes by
π/2. Furthermore, in the particular case δ = |q| or −|q|, the
planar ( �̂σ r ) part, namely, the sum of the δ and q terms, of the
Hamiltonian, Eq. (18), is reduced to the antiferroic or ferroic
pseudospin 120◦ Hamiltonian.45

For Kramers ions such as Nd3+, Er3+, and Yb3+, there
appears to be another coupling constant46,47 for the additional
interaction term,

ĤK = K

n.n.∑
〈r,r ′〉

[
σ̂ z

r ( �̂σ r ′ · �nr,r ′) + ( �̂σ r · �nr,r ′)σ̂ z
r ′
]
, (23)

whose form has been obtained so that it satisfies the threefold
rotational symmetry about 〈111〉 axes, that is, zr , the mirror
symmetry about the planes spanned by zr and zr ′ for all
the pairs of nearest-neighbor sites r and r ′, and the twofold
rotational symmetry about X , Y , and Z axes. This reflects the
fact that all the components of σ̂ r change the sign under the
time reversal, σ̂ r → −σ̂ r , and hence ĤK respects the time-
reversal symmetry for Kramers ions. Equation (18) and the
additional term, Eq. (23), appearing only for Kramers doublets
define the most generic form of the nearest-neighbor bilinear
interacting pseudospin-1/2 Hamiltonian that is allowed by the
symmetry of the magnetic pyrochlore system. Throughout this
paper, we restrict ourselves to the case of non-Kramers ions,
for which K vanishes and ĤK does not appear.

III. CLASSICAL MEAN-FIELD THEORY

We start with a classical mean-field analysis of our effective
Hamiltonian, Eq. (18), along the strategy used in Ref. 5.
We look for instability with decreasing temperature and then
consider candidates for the mean-field ground state in the space
of the two coupling constants δ and q. We restrict ourselves
to the nearest-neighbor model, though it is known that longer-
range interactions can lift the degeneracy at least partially.5

Since σ̂ z
r and σ̂±

r are decoupled in the Hamiltonian in the
classical level, we proceed by requiring that 〈σ̂ z

r 〉 and/or 〈σ̂ x,y
r 〉

is finite. It reveals three distinct mean-field instabilities in the
case of Jn.n. > 0, which also provide candidate mean-field
ground states under the constraint |〈σ̂ r〉| � 1. Note that the
decoupling approximation of the Ising and planar components
becomes inaccurate around the SU(2)-symmetric point of a
Heisenberg antiferromagnet.
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A. Ising states 〈σ z
r 〉 �= 0

Let us introduce a vector,
t d̂R = (

σ̂ z
R+a0

,σ̂ z
R+a1

,σ̂ z
R+a2

,σ̂ z
R+a3

)
, (24)

where R is an fcc lattice vector and {ai}i=0,...,3 have been
defined in Sec. II C 1. In the mean-field approximation,
magnetic dipolar states characterized by a nonzero 〈σ z

r 〉
are obtained as states having a minimum eigenvalue of the
following mean-field Hamiltonian:

Hz
MF = NT

∑
q

〈d̂†
q〉hz

q〈d̂q〉, (25)

hz
q = 2Jn.n.

⎛
⎜⎜⎜⎝

0 fqy+qz
fqz+qx

fqx+qy

fqy+qz
0 fqx−qy

fqz−qx

fqz+qx
fqx−qy

0 fqy−qz

fqx+qy
fqx−qz

fqy−qz
0

⎞
⎟⎟⎟⎠ , (26)

where fq = cos(qa/4), and

d̂q ≡ 1

NT

∑
R

⎛
⎜⎜⎜⎝

σ̂ z
R+a0

e−iq·(R+a0)

σ̂ z
R+a1

e−iq·(R+a1)

σ̂ z
R+a2

e−iq·(R+a2)

σ̂ z
R+a3

e−iq·(R+a3)

⎞
⎟⎟⎟⎠ , (27)

with NT = N/4, where N is the number of pyrochlore-lattice
sites. hz

q has the eigenvalues5

εz
q = −2Jn.n. and 2Jn.n.(1 ∓ √

1 + gq), (28)

where gq = f2qx
f2qy

+ f2qy
f2qz

+ f2qz
f2qx

. For Jn.n. > 0, the
lowest energy of the mean-field solution, which is obtained
as −2Jn.n. per tetrahedron for any wave vector q all over
the Brillouin zone reflecting the macroscopic degeneracy,
coincides with the exact ground-state energy of the nearest-
neighbor spin ice model.

B. Planar states 〈σ±
r 〉 �= 0

Introducing another vector,

t Q̂R = ( �̂σ R+a0 , �̂σ R+a1 , �̂σ R+a2 , �̂σ R+a3 ), (29)

with �̂σ r = (σ̂ x
r ,σ̂

y
r ), the mean-field Hamiltonian reads

HP
MF =

∑
q

〈Q̂†
q〉hq

q〈Q̂q〉, (30)

where

hP
q = 2Jn.n.

⎛
⎜⎜⎜⎜⎜⎝

0
(
δτ̂0 + q

−√
3τ̂x−τ̂z

2

)
fqy+qz

(
δτ̂0 + q

√
3τ̂x−τ̂z

2

)
fqz+qx

(δτ̂0 + qτ̂z)fqx+qy(
δτ̂0 + q

−√
3τ̂x−τ̂z

2

)
fqy+qz

0 (δτ̂0 + qτ̂z)fqx−qy

(
δτ̂0 +

√
3τ̂x−τ̂z

2

)
fqz−qx(

δτ̂0 + q
√

3τ̂x−τ̂z

2

)
fqz+qx

(δτ̂0 + qτ̂z)fqx−qy
0

(
δτ̂0 + −√

3τ̂x−τ̂z

2

)
fqy−qz

(δτ̂0 + qτ̂z)fqx+qy

(
δτ̂0 +

√
3τ̂x−τ̂z

2

)
fqz−qx

(
δτ̂0 + −√

3τ̂x−τ̂z

2

)
fqy−qz

0

⎞
⎟⎟⎟⎟⎟⎠ . (31)

We have introduced the Fourier component Q̂q of Q̂R in
analogy to Eq. (27).

For δ > (|q| + 1)/2, the lowest eigenvalue of hP
q is given

by

εPAF
q = −2Jn.n.(δ + 2|q|) (32)

for the planar antiferropseudospin (PAF) states at the rods
q = 2π

a
h(1, ± 1, ± 1) with h being an arbitrary real number. It

has the 120◦ planar pseudospin structure within a tetrahedron,
which is expressed as

t 〈Q̂q〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(�0,�n′
a0,a1

,�n′
a0,a2

,�n′
a0,a3

)
for q = qx(1,1,1),(�n′

a0,a1
,�0,�n′

a1,a2
,�n′

a1,a3

)
for q = qx(−1,1,1),(�n′

a0,a2
,�n′

a1,a2
,�0,�n′

a2,a3

)
for q = qx(1, − 1,1),(�n′

a0,a3
,�n′

a1,a3
,�n′

a2,a3
,�0)

for q = qx(1,1, − 1),

(33)

for q > 0. When q < 0, �n′ in Eq. (33) are replaced by �n.
In the other case of δ < (|q| + 1)/2, the lowest eigenvalue

of hP
q is given by

εPF
q = 6Jn.n.δ (34)

for the planar ferropseudospin (PF) state at q = 0 and
symmetry-related q vectors connected by 4π

a
(n1,n2,n3) and/or

2π
a

(1,1,1) with integers n1, n2, and n3. This state has eigen-
vectors showing a collinear ferroic alignment of the planar
components of the pseudospins.

Because of the saturation of each ordered moment, except
at one site per tetrahedron in the case of the PAF phase, these
states can be stabilized as the ground state if the energy is
lower than in the dipolar state.

C. Mean-field phase diagram

Comparing the energies of the dipolar state and the two
quadrupolar states given above, we obtain the classical mean-
field phase diagram shown in Fig. 7; (i) the macroscopically
degenerate dipolar states associated with the nearest-neighbor
spin ice for −1/3 < δ < 1 − 2|q|, (ii) the PAF states showing
the 120◦ structure of 〈�̂σ r〉 in each plane perpendicular to the
rods q = 2π

a
h(1, ± 1, ± 1) for δ > 1 − 2|q|, and (iii) a PF

state characterized by 〈σ̂ r〉 = (cos �, sin �,0) for δ < −1/3
and δ < 1 − |q|/2 with an arbitrary angle �. Note that the
degeneracy along the rods q = q(1, ± 1, ± 1)/

√
3 in the PAF

phase could be lifted by an order-by-disorder mechanism that
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δ

|q |

-1

1

10

N.N. spin ice

N.N. Heisenberg AF

-1/3

Ising spin Ice

PF (AFQ)
Q=0

PAF Q rod // [111]

(noncoplanar FQ for q>0)
(AFQ for q>0)

FIG. 7. (Color online) Classical mean-field phase diagram of the
model given by Eq. (18). The Q = 0 planar ferropseudospin (PF)
phase physically represents the antiferroquadrupole (AFQ) phase.
The planar antiferropseudospin (PAF) phase is characterized by Bragg
rods Q ‖ [111] and physically represents a 2D AFQ phase for q > 0
or a 2D noncoplanar ferroquadrupole (FQ) phase for q < 0, where
quadrupole moments are aligned only within the plane perpendicular
to Brag rod vectors Q ‖ [111] in the mean-field level. In the region
around the N.N. Heisenberg antiferromagnet, the present mean-field
theory becomes less accurate. The point X = (δ,q) = (0.51,0.89) for
Pr3+ is also shown.

favors the q = 0 order because of the higher degeneracy or
by a longer-range interaction that is not taken into account in
the present paper. The nearest-neighbor spin ice (δ,q) = (0,0)
and Heisenberg antiferromagnet (δ,q) = (1,0), both of which
are marked in Fig. 7, show no LRO6,14 down to T = 0 but
dipolar spin correlations.14 We stress again that the present
mean-field treatment becomes inaccurate around the nearest-
neighbor Heisenberg antiferromagnet. Note that the recently
studied 120◦ antiferromagnetic planar model45 corresponds to
the limit of δ = |q| → ∞.

For Pr3+ ions, the planar components �̂σ r represent atomic
quadrupole moments, as explained in Sec. II B. Note that they
are defined in local coordinate frames through �̂σ r = ((σ̂ r ·
xr ),(σ̂ r · yr )). Thus, the phases (ii) PAF and (iii) PF are char-
acterized by the following quadrupole order. Since the local
frames satisfy Eq. (13), the collinear PF state has noncoplanar
antiferroquadrupole LRO without any translation-symmetry
breaking. In contrast, the 2D PAF state has a noncollinear
alignment of atomic quadrupole moments in each [111] layer.
It exhibits a noncoplanar ferroquadrupole (FQ) order having
a finite uniform quadrupole moment pointing to the direction
of q for q < 0 or a coplanar 120◦ antiferroquadrupole order
for q > 0. These can be directly shown by using Eqs. (12) and
(33) with or without the replacement of �n′ by �n for q < 0 or
q > 0, respectively.

IV. SINGLE-TETRAHEDRON ANALYSIS

It is instructive to investigate the quantum interplay of
σ̂ z

r and σ̂
x,y
r in the model given by Eq. (18) within a single

tetrahedron. A similar analysis in a model for Tb2Ti2O7
16 has

been employed.32

In the classical case of β = γ = 0 and thus δ = q = 0,
three energy levels appear in a single tetrahedron:

(1) Sixfold degenerate “2-in, 2-out” configurations |± X〉,
|± Y 〉, and |± Z〉 have the energy −2Jn.n. and are character-
ized by the direction of the net Ising moment on the tetrahedron
T ,

M̂T =
∑
r∈T

m̂r = M0

∑
r∈T

σ̂ z
r zr , (35)

which points to ±X , ±Y , and ±Z directions in the global
frame, respectively. Here, M0 is the local moment amplitude
introduced in Eq. (20).

(2) Eightfold degenerate “3-in, 1-out” and “1-in, 3-out”
configurations have the energy 0.

(3) “4-in” and “4-out” configurations |4+〉 and |4−〉 have
the energy 6Jn.n.

With nonzero β and γ and thus nonzero δ and q,
the Hamiltonian, Eq. (18), can be diagonalized on a sin-
gle tetrahedron to yield the following set of eigenvalues
and eigenstates for a singlet, three doublets, and three
triplets.

(i) An A1g singlet that is a superposition of the six “2-in,
2-out” configurations:23,32

EA1g
= −2Jn.n.(1 − 4δ), (36a)∣∣�A1g

〉 = 1√
6

∑
τ=±

(|τX〉 + |τY 〉 + |τZ〉) . (36b)

(ii) Two Eg doublets that are superpositions of both “2-in,
2-out” and “4-in”/“4-out” configurations:23

EEg
= −2Jn.n.(

√
(2 + δ)2 + 6q2 − 1 + δ), (37a)

∣∣�χ

Eg

〉= c√
6

∑
τ=±

(
ei 2π

3 χ |τX〉 + e−i 2π
3 χ |τY 〉+|τZ〉) + c′|4χ〉

(37b)

and

E′
Eg

= 2Jn.n.(
√

(2 + δ)2 + 6q2 + 1 − δ), (38a)

c′
√

6

∑
τ=±

(
ei 2π

3 χ |τX〉 + e−i 2π
3 χ |τY 〉 + |τZ〉) − c|4χ〉,

(38b)

with a sign χ = ± and dimensionless functions c′ =
[
√

6q/2][(2 + d)2 + 6q2 + (2 + d)
√

(2 + d)2 + 6q2]−1 and
c = √

1 − c′2,
(iii) A T1u triplet described with the antisymmetric superpo-

sition of “2-in, 2-out” configurations:

ET1u
= −2Jn.n., (39a)

1√
2

∑
τ=±

τ (|τX〉,|τY 〉,|τZ〉) . (39b)

(iv) Two triplets and a doublet purely comprised of “3-in,
1-out” and “1-in, 3-out” configurations, whose energy levels
are given by −2Jn.n.(δ ± 2q) and 6Jn.n.δ, respectively.
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FIG. 8. (Color online) Symmetry of the ground states of the
effective Hamiltonian Ĥeff in the space of δ and q in a single-
tetrahedron analysis.

In our case of Jn.n. > 0, the ground state is given by either
a singlet |�A1g

〉 [Eq. (36b)] or a doublet |�χ

Eg
〉 [Eq. (37b)],

depending on whether δ is less than or greater than

δB(q) = −(
√

1 + q2 − 1)/2, (40)

respectively, as shown in Fig. 8.
In the above chiral representation of the doubly degenerate

Eg states, |�χ

Eg
〉, the index χ = ± represents the sign of the

net pseudospin chirality of the tetrahedron,

κ̂T = 1

2

T∑
r1,r2,r3

σ̂ r1 · σ̂ r2 × σ̂ r3 , (41)

through the relation

〈
�

χ

Eg

∣∣κ̂T

∣∣�χ ′
Eg

〉 =
√

3

2
c2χδχ,χ ′ . (42)

Here, the summation over sites r1,r2,r3 on the tetrahedron T is
taken so that they appear counterclockwise about the outward
normal to the plane spanned by the three sites for each triangle
[Fig. 9(a)]. 〈κ̂T 〉 gives the solid angle subtended by the four
pseudospins [Fig. 9(b)].

At this level of approximation, the “2-in, 2-out” and
“4-in”/“4-out” configurations are totally decoupled from the
“3-in, 1-out”/“1-in, 3-out”, because any single pseudospin
cannot be flipped by the Hamiltonian Eq. (18) within a single

FIG. 9. (Color online) (a) Outward normal vectors [(green)
arrows] of the surfaces of the tetrahedron, used to define the
chirality κ̂T . (b) Solid angle subtended by four pseudospins σ r i

.
(c) Distribution of the tetrahedral magnetic moment 〈M̂T 〉 in a
cooperative ferroquadrupolar state with 〈Q̂zz

T 〉 > 0. Arrows represent
the lattice deformation linearly coupled to 〈Q̂zz

T 〉.

tetrahedron. This decoupling is an artifact and a drawback of
the single-tetrahedron analysis, which is resolved by larger
system-size calculations in the next section.

V. NUMERICS ON THE 16-SITE CUBE

Next, we perform exact-diagonalization calculations of the
model given by Eq. (18) on the 16-site cube (Fig. 4) with the
periodic boundary conditions. Because of the lack of the total
pseudospin conservation, this system size already gives a large
Hilbert space, though we can exploit the following symmetry
operations:

(i) the even-odd parity of the total pseudospin, �̂ = ∏
r σ̂ z

r ;
(ii) the translations T̂ (R) by fcc lattice vectors R =∑
i=1,2,3 ni Ri with integers ni ;

(iii) the spatial inversion Î about a site; and
(iv) the threefold rotation R̂ about a (111) axis.
Among these symmetry operations, �̂, Î , and R̂ commute

with each other. In general, T̂ (R) commutes with Îσ and �̂

but not with Î and R̂. In our case of the 16-site cube with the
periodic boundary condition, however, there exist only two
nonequivalent translations T̂ (Ri) with the fcc primitive lattice
vectors Ri (i = 1,2), since T̂ (R1)T̂ (R2) = T̂ (R2)T̂ (R1) =
T̂ (R3) in this case, and these two translations eventually
commute with Î . Therefore, we can adopt the following set of
commuting operators: Ĥeff , �̂, T̂ (R1), T̂ (R2), and Î . R̂ can
also be used in the translationally invariant manifold where
both T̂ (R1) and T̂ (R1) have eigenvalue 1.

In Fig. 10, we show the symmetry properties of the
ground state in the parameter space of δ and |q|. Special
points corresponding to the nearest-neighbor spin ice and
the nearest-neighbor Heisenberg antiferromagnet are denoted
as a triangle and a star, respectively, where dipolar spin
correlations appear without any LRO.6,14 At finite δ and/or

δ

|q |

-1

1

10

N.N. spin iceq = 0, 

R=1,

I=+1,  Σ =+1

q = kX, kY, or kZ

I=+1 or -1,  Σ=+1/-1

/

N.N. Heisenberg AF

-1/3

FIG. 10. (Color online) Symmetry properties of the ground states
obtained with the exact diagonalization of the cube with the periodic
boundary conditions. The dashed curve is the boundary between the
“2-in, 2-out” singlet and the “2-in, 2-out”+“4-in”/“4-out” doublet for
the ground state of the model on a single tetrahedron, as shown in
Fig. 8. The point X = (δ,q) = (0.51,0.89) for Pr3+ is also shown.
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q, four regions appear in the parameter range δ,|q| � 1. The
boundary δ = δB(q) [Eq. (40)] between the A1g singlet and
the Eg doublet ground states in the single-tetrahedron level,
which is shown as the dashed curve in Fig. 10, almost gives
one of the boundaries. On the left-hand side of the curve,
that is, δ � δB(q), the ferroic pseudospin exchange (δ < 0)
stabilizes a rotationally and translationally invariant singlet
ground state with the even parity I = � = +1 for both spatial
inversion and pseudospin parity [filled (blue) squares]. The
mean-field result of the collinear ferroic LRO of the planar
components of pseudospins should be realized when δ is
negatively large. Therefore, it is plausible to assign most of
this region to the PF (AFQ) phase. A ground state having the
same symmetry appears in the case of antiferroic pseudospin
exchange coupling δ > 0 when |q| is much less than δ. Noting
that the U(1) spin liquid is stable against a weak antiferroic
pseudospin exchange interaction12 and the mean-field result
also gives a macroscopically degenerate spin-ice state, this
could be assigned to a U(1) spin liquid12 or a quantum spin ice
without magnetic dipole LRO. It may also be stable against a
very weak ferroic pseudospin exchange coupling, −δ < 0.1.48

In contrast, increasing |q| out of the above two regions
changes the ground state from the singlet to sextets. The
sixfold degeneracy of the ground states is described by
a product of (i) the double degeneracy characterized by
the eigenvalues +1/−1 for the spatial inversion Î and
(ii) the threefold degeneracy characterized by the three sets
of eigenvalues, (1,−1,−1), (−1,1,−1), and (−1,−1,1), for
the translation [T̂ (R1),T̂ (R2),T̂ (R3)], or equivalently, the
wave vectors kX = 2π

a
(1,0,0), kY = 2π

a
(0,1,0), and kZ =

2π
a

(0,0,1). In fact, the singlet-sextet transition occurs in
two steps. The singlet ground state is first replaced by the
submanifold of the above sixfold degenerate states that has
an even pseudospin-parity � = +1 [filled (red) circles]. With
further increasing |q|, it is replaced by the other submanifold
that has an odd pseudospin-parity � = −1 [open (red) circles].
Though these states might have an antiferroic LRO of planar
components of pseudospins as obtained in the mean-field
approximation in Sec. III, the determination of a possible LRO
in these regions is nontrivial within calculations on a small
system size. The particular case of δ = 0.51 and q = 0.89 that
we have found for Pr3+ is also located in the region of the
sixfold degenerate ground state, as shown in Fig. 10, with an
energy of approximately −8.825Jn.n. per tetrahedron. In the
rest of this paper, we investigate magnetic dipole, quadrupole,
and chiral correlations in this particular case.

A. Magnetic dipole correlation

First, we calculate the magnetic dipole correlation,

S(q) = M2
0

N

∑
r,r ′

∑
i,j

(
δij − qiqj

|q|2
)

zi
rz

j

r ′
〈
σ̂ z

r σ̂ z
r ′
〉
avee

iq·(r−r ′),

(43)

averaged over the degenerate ground states. For non-Kramers
ions such as Pr3+, this quantity is relevant to the neutron-
scattering intensity integrated over the low-energy region
below the crystal-field excitations from the atomic ground-
state doublet Eq. (7), while for Kramers ions, the transverse
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FIG. 11. (Color online) Calculated neutron scattering profile
(a) S(q)/M2

0 and (b) S(q)FPr3+ (q)2/M2
0 for q = 2π

a
(hhl), with the

form factor FPr3+ (q).

components σ̂
x,y
r must also be taken into account. In Figs.

11(a) and 11(b), we show the profiles of S(q)/M2
0 and

S(q)/M2
0 · FPr3+ (|q|)2, respectively, for q = 2π

a
(hhl), with

FPr3+(q) being the form factor for Pr3+. It exhibits maxima at
(001) and (003) as well as at ( 3

4
3
4 0), and a minimum at (000),

as observed in the dipolar spin ice.9 Note, however, that the
calculated profiles are constructed from the on-site, nearest-
neighbor, and second-neighbor correlations, which gives a
good approximation when the magnetic dipole correlations
remain short-range. Obviously, when the spin correlation
length is longer, we need calculations on a larger system size,
in particular, around wave vectors such as (111) and (002),
where the pinch-point singularity14,15 appears in the case of
classical spin ice.49 Nevertheless, the failure of the strict “2-in,
2-out” ice rule can broaden the singularity.

At the moment, there are not so many experimental
results on the magnetic dipole correlations in Pr2T M2O7. The
only currently available one is a powder neutron-scattering
experiment on Pr2Sn2O7.

19 It reveals the absence of magnetic
Bragg peaks and the enhanced low-energy short-range inten-
sity around |q| ∼ 2π

a
∼ 0.5 Å−1 and ∼ 6π

a
∼ 1.5 Å−1. These

features can be explained in terms of the peak positions in our
calculated profile, which are similar to those for the dipolar
spin ice, as shown in Fig. 12. This experiment also shows a
quasielastic peak width of ∼0.1 meV saturated at 0.2 K.19 Such
a high dynamical spin relaxation rate, ∼Jn.n., can be attributed
to the appreciable quantum nature of the Hamiltonian, that is,
large δ and q.

B. Magnetization curve

Next, we show the magnetization curve. The applied mag-
netic field H ‖ [111] partially lifts the ground-state degeneracy
associated with the inversion symmetry: it splits the energies of
the I -odd(−) and I -even(+) ground-state manifolds, yielding
the ground state having the I -odd(–) property. In both
submanifolds, the magnetic susceptibility is finite, as shown
by the slope of the magnetization curve shown in Fig. 13.
This is consistent with a finite magnetic susceptibility, and
thus the negative TCW in Pr2Zr2O7

35 and Pr2Ir2O7,21 and
with the absence of an internal magnetic field in Pr2Ir2O7.37

The ground-state I -odd(–) magnetization curve shows a small
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with form factor for Pr3+

without form factor

FIG. 12. (Color online) Powder neutron-scattering intensity. The-
oretical curves with(without) the form factor [blue(magneta) curve]
and experimental results with Pr2Sn2O7 from Ref. 19.

step or dip around μBH/Jn.n. ∼ 1.8, in comparison with
that of the I -even(+) excited state. This indicates that this
structure develops upon cooling. These results qualitatively
agree with the experimental results indicating the absence and
the emergence of the metamagnetic transition at Hc ∼ 2.3 T
for T = 0.5 K and T = 0.06 K, respectively, on Pr2Ir2O7

21

(Fig. 13). Requiring that μBHc/Jn.n. ∼ 1.8, we can estimate
the effective ferromagnetic Ising coupling as Jeff ∼ Jn.n. ∼
0.84 K. However, the magnitude of the magnetization is over-
estimated by about 25%, probably because the experimental
results on Pr2Ir2O7 include contributions from Ir conduction
electrons. Experiments on the single crystals of insulating
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H [T]

Pr2Ir2O7 T=0.06 K 

Pr2 Ir2O7 T=0.5 K 

FIG. 13. (Color online) Magnetization (left) and energy (right)
per site calculated for the I -odd(–) ground state and the I -even(+)
state by adding the Zeeman term −H · M to Ĥeff , i.e., Eq. (18), at the
applied field H ‖ [111]. The symmetry of the ground-state manifold
does not change until a level cross occurs at μBH/Jn.n. ∼ 4.6 to the
almost fully polarized state. Experimental data on Pr2Ir2O7 at T = 0.5
and 0.06 K from Ref. 21 are also shown for comparison, although
they include additional contributions from Ir conduction electrons.

compounds Pr2Zr2O7 are not available at the moment but
could directly test our theoretical model in the quantitative
level.

C. Multipole correlations

The sixfold degenerate ground state can be written as a
linear combination,

|GS〉 =
∑

i=X,Y,Z

∑
I=±

ci,I |�i,I 〉, (44)

where ci,I are complex constants satisfying the normalization
condition

∑
i,I |ci,I |2 = 1. Here, we have introduced a ground

state |�i,I 〉 associated with ki for both I = +1 and I =
−1, which shows a finite cooperative quadrupole moment
defined on each tetrahedron, 〈�i,I |Q̂jj

T |�i,I 〉 = 0.0387M2
0 δij ,

where

Q̂ij

T = 3M̂i
T M̂

j

T − M̂2
T δij , i,j = X,Y,Z (global axes).

(45)

Namely, for instance, in the ground-state sector associated with
q = kZ , the net magnetic moment MT in each tetrahedron
T is inclined to point to the ±Z directions with a higher
probability than to the ±X and ±Y , as shown in Fig. 9(c). This
reflects a C3 symmetry breaking in the choice of the ground-
state sector q = ki . Thus, if we impose the C3 symmetry to
the ground state given by Eq. (44), it is of course possible to
cancel the cooperative quadrupole moment, 〈GS|Q̂ij

T |GS〉 =
0. However, it is natural to expect that the discrete C3 symmetry
is eventually broken in the thermodynamic limit. Therefore,
we study properties of the ground state having a particular
wave vector kZ and thus a direction for the finite cooperative
quadrupole moment 〈GS|Q̂ZZ

T |GS〉 �= 0. Note that this state
shows not only axial alignments of magnetic dipoles but also
a broken translational symmetry and, thus, can be classified
into a magnetic analog of a smectic (or crystalline) phase of
liquid crystals.39

The cooperative quadrupole moment 〈Q̂ii
T 〉 linearly couples

to a lattice distortion, which can be verified experimentally:
the four ferromagnetic bonds and the two antiferromagnetic
bonds should be shortened and expanded, respectively, leading
to a crystal symmetry lowering from cubic to tetragonal
accompanied by a compression in the direction of the fer-
roquadrupole moment [Fig. 9(c)]. This also indicates that a
uniaxial pressure along a [100] direction can align possible
domains of quadrupole moments. Experimental clarification
of magnetic dipole and quadrupole correlations in Pr2T M2O7

by NMR is intriguing.
Next, we perform numerical calculations of equal-time

spatial correlations of cooperative quadrupole moments,
〈Q̂ii

T Q̂
jj

T ′ 〉, between the tetrahedrons T and T ′ displaced by
R, which take matrix form in i and j . To characterize the
real-space correlations, we diagonalize this matrix to obtain
the two correlation amplitudes,

FQ
R,μ = 〈Q̂T ,R,μQ̂T ′,R,μ〉, (46)

having orthogonal forms of quadrupoles,

Q̂T ,R,μ =
∑

i=X,Y,Z

λi
R,μQ̂ii

T , (47)
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FIG. 14. (Color online) Upper and lower panels: dominant and
subdominant forms, respectively, of quadrupole-quadrupole cor-
relations 〈Q̂ii

T Q̂
jj

T ′ 〉 between tetrahedrons T and T ′ displaced by
(a) R = R1, (b) R2, and (c) R3 in the cooperative ferroquadrupolar
state with the wave vector kZ and 〈Q̂ZZ

T 〉 �= 0. In particular, λR1,1 =
(−0.803,0.274,0.529), λR2,1 = (0.274, − 0.893,0.529), and λR3,1 =
(1, − 1,0)/

√
2. Red and blue regions represent positive and negative

values of QR,1, respectively.

where λR,μ = (λX
R,μ,λY

R,μ,λZ
R,μ) with μ = 1,2 is a set of

orthonormal vectors satisfying
∑

i=X,Y,Z λi
R,μλi

R,ν = δμν and∑
i=X,Y,Z λi

R,μ = 0. Figures 14(a), 14(b), and 14(c) show
the contour plots of QR,μ = λX

R,μX2 + λY
R,μY 2 + λZ

R,μZ2,
which represent the diagonalized shapes for the quadrupole-
quadrupole correlations 〈Q̂ii

T Q̂
jj

T ′ 〉 between the tetrahedrons T

and T ′ displaced by R1 = (0,a/2,a/2), R2 = (a/2,0,a/2),
and R3 = (a/2,a/2,0), respectively. Here, red and blue repre-
sent positive and negative values, respectively. The upper and
lower panels correspond to the forms QR,1 and QR,2 showing
the higher and lower correlation amplitudes, respectively.
There exist dominant ferroquadrupolar correlations, shown in
the upper panels in Figs. 14(a) and 14(b), both of which favor
ferroquadrupole moments along the z direction. They prevail
over the antiferroquadrupole correlations shown in Fig. 14(c)
and are responsible for forming the ferroquadrupole order
〈Q̂ZZ

T 〉 �= 0.
To gain insight into the “chiral spin state” observed in

Pr2Ir2O7,21 we have also performed numerical calculations of
the chirality-chirality correlation 〈κ̂T κ̂T ′ 〉 between the tetrahe-
drons at T and T ′. Note that the chirality κ̂T is a pseudospin chi-
rality defined through Eq. (41) and is not a simple one defined
only by the Ising dipole moments σ̂ z

r zr . It turned out that this
pseudospin chirality correlation 〈κ̂T κ̂T ′ 〉 is weakly ferrochiral
between the tetrahedrons displaced by R1 and R2, which corre-
spond to Figs. 14(a) and 14(b). In contrast, it is strongly antifer-
rochiral between those displaced by R3, which corresponds to
Fig. 14(c). Namely, the pseudospin chirality, which is a scalar
quantity defined on the tetrahedrons forming a diamond lattice,
dominantly shows an antiferrochiral correlation on the nearest-
neighbor pairs of the same fcc sublattice of the diamond lattice.
This points to a strong geometrical frustration for a chirality
ordering. The fate of this pseudospin chirality correlation
should be examined by further investigations, which may open
the intriguing possibility for a chiral spin liquid.3

VI. DISCUSSION AND SUMMARY

The effective quantum pseudospin-1/2 model is quite
generically applicable to other pyrochlore magnets associated
with rare-earth magnetic moments, though the values of
three coupling constants for non-Kramers ions and four for
Kramers ions may depend largely on the materials. In this
paper, we have concentrated on novel quantum effects in the
case of non-Kramers ions, in particular, Pr3+ ions, where we
expect the most pronounced quantum effects among the rare-
earth magnetic ions available for magnetic pyrochlores.10,33

The quantum effects may result in two different scenar-
ios, depending on the values of coupling constants: (i) a
quantum spin ice where the quantum-mechanical mixing
of “3-in, 1-out” and “1-in, 3-out” could be integrated out
to bear quantum effects in magnetic monopoles and (ii) a
ferroquadrupolar state that replaces the spin ice because of
a quantum melting. We have obtained a ferroquadrupolar
state for the case of Pr3+, whose magnetic properties explain
currently available experimental observations in Pr2Sn2O7

and Pr2Ir2O7. Note that long-distance properties are still
beyond the scope of our present calculations on finite-size
systems. Further extensive studies from both theoretical and
experimental viewpoints are required for the full under-
standing of nontrivial quantum effects in these systems, in
particular, Pr2T M2O7 and Tb2T M2O7. Also, from a purely
theoretical viewpoint, it will be an intriguing and urgent issue
to clarify the fate of deconfined magnetic monopoles in the
circumstance of the large quantum-mechanical interactions we
derived.

Effects of coupling of localized f electrons to conduction
electrons on the transport properties are left for a future study.
A coupling of Pr moments to the atomic and/or delocalized
orbital degrees of freedom of conduction electrons allows a
flip of the pseudospin-1/2 for the magnetic doublet of Pr ion.
This could be the origin of the resistivity minimum observed
in Pr2Ir2O7.
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APPENDIX A: CRYSTALLINE ELECTRIC FIELD

Here, we give the formal expression for the CEF acting on
a Pr site. In this Appendix, the Pr site is taken as the origin for
convenience. The coordinate frame is chosen as that defined
in Fig. 1(b).

We consider the CEF created by nearby ions; two oxygen
ions at the O1 sites, six T M ions, and six oxygen ions at the
O2 sites.

094411-13



SHIGEKI ONODA AND YOICHI TANAKA PHYSICAL REVIEW B 83, 094411 (2011)

A. CEF at O1 sites

Two oxygen ions at the O1 sites are located at ±
√

3a
8 z and

produce the Coulomb potential

UO1(r) = qO1

∑
τ=±

1∣∣r − τ
√

3a
8 z

∣∣
= 16qO1√

3a

∞∑

=0

(
8r√
3a

)2

√

4π

4
 + 1
Y 0

2
(�r ) (A1)

at a position r from the Pr site, where r = |r| is assumed to be
smaller than

√
3a/8, �r represents the spherical coordinates

of r , and qO1 ∼ −2|e| is an effective charge of the oxygen
ions at O1 sites.

B. CEF at T M sites

Six T M ions are located at a
2 y and its symmetry-related

points obtained by successively applying the sixfold rotation
R6 about z; they produce the Coulomb potential

UT M (r) = qT M

5∑
n=0

1∣∣r − a
2 Rn

6 y
∣∣ = 12qT M

a

∞∑

=0

(
2r

a

)2


× 4π

4
 + 1

∑
6|m|�2


Y 6m∗
2
 (�r )Y 6m

2
 (�T M )

= 12qT M

a

3∑

=0

(
2r

a

)2
 4π

4
 + 1
Y 0

2
(�r )Y 0
2
(�T M )

+ 12qT M

a

(
2r

a

)6 4π

13

∑
m=±1

Y 6m∗
6 (�r )Y 6m

6 (�T M )

+ · · · , (A2)

at a position r from the Pr site, where r = |r| is assumed to
be smaller than a/2, �T M = (π

2 , π
2 ), and qT M ∼ +4|e| is an

effective charge of the T M ions.

C. CEF at O2 sites

Two oxygen ions at the O1 sites are located at ±(
√

2( 1
8 −

η)x + ηz) and their symmetry-related points obtained by
successively applying the threefold rotation R3 about z. They
produce the Coulomb potential

UO2(r) = qO2

∑
τ=±

2∑
n=0

1∣∣r − τ
(√

2
(

1
8 − η

)
Rn

3 x + ηz
)∣∣

= 6qO2

bO2

∞∑

=0

(
r

bO2

)2
 4π

4
 + 1

×
∑

3|m|�2


Y 3m∗
2
 (�r )Y 3m

2
 (�O2), (A3)

at a position r from the Pr site, where r = |r|
is assumed to be smaller than the Pr–O2 bond
length bO2 =

√
3( 1

32 − η/2 + 3η2)a, �O2 = (θ2,0) with θ2 =
arctan[

√
2

η
( 1

8 − η)], and qO2 ∼ −2|e| is the effective charge of
the oxygen ions at O2 sites.

D. Matrix elements between the f -electron wave functions

To take into account the orbital dependence of the CEF for f

electrons (l = 3 and ml = −3, . . . ,3), it is sufficient to include
the following terms for U (r) = UO1(r) + UT M (r) + UO2(r):

U (r) =
3∑


=1

u0∗
2
(r)Y 0

2
(�r )

+
3∑


=2

[
u3∗

2
(r)Y 3
2
(�r ) + u−3∗

2
 (r)Y−3
2
 (�r )

]
+ u6∗

6 (r)Y 6
6 (�r ) + u−6∗

6 (r)Y−6
6 (�r ), (A4)

where

u0
2
(r) = 16qO1√

3a

(
8r√
3a

)2

√

4π

4
 + 1

+ 12qT M

a

(
2r

a

)2
 4π

4
 + 1
Y 0

2
(�T M )

+ 6qO2

bO2

(
r

bO2

)2
 4π

4
 + 1
Y 0

2
(�O2), (A5a)

u±3
2
 (r) = 6qO2

bO2

(
r

bO2

)2
 4π

4
 + 1
Y±3

2
 (�O2), (A5b)

u±6
6 (r) = 6qO2

bO2

(
r

bO2

)6 4π

13
Y±6

6 (�O2)

+ 12qT M

a

(
2r

a

)6 4π

13
Y±6

6 (�T M ). (A5c)

Thus, their nonvanishing matrix elements of

V
ml,m

′
l

CEF =
∫

d�Y
ml∗
3 (�)U (r)Y

m′
l

3 (�) (A6)

are obtained as

V
m,m

CEF =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
6

√
5
π
ū0

2 + 3
22

√
π
ū0

4 − 5
66

√
13π

ū0
6 (m = ±3),

− 7
22

√
π
ū0

4 + 5
11

√
13π

ū0
6 (m = ±2),

1
10

√
5
π
ū0

2 + 1
22

√
π
ū0

4 − 25
22

√
13π

ū0
6 (m = ±1),

2
15

√
5
π
ū0

2 + 3
11

√
π
ū0

4 + 50
33

√
13π

ū0
6 (m = 0),

(A7a)

V
0,3

CEF = (
V

3,0
CEF

)∗ = −V
−3,0

CEF = −(
V

0,−3
CEF

)∗

= − 3

22

√
7

π
ū3

4 + 5

11

√
7

39π
ū3

6, (A7b)

V
−1,2

CEF = (
V

2,−1
CEF

)∗ = −V
−2,1

CEF = −(
V

1,−2
CEF

)∗

= − 1

11

√
7

2π
ū3

4 − 5

11

√
21

26π
ū3

6, (A7c)

V
−3,3

CEF = (
V

3,−3
CEF

)∗ = −5

√
7

429π
ū6

6, (A7d)

where U (r) and ūm
2
 represent the radial averages of U (r) and

um
2
(r).
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APPENDIX B: REPRESENTATION OF THE 4 H3 MANIFOLD IN TERMS OF SINGLE f ELECTRONS

|MJ = 4σ 〉 = 1√
55

|5,3σ ; 1,σ 〉 − 3√
55

|5,4σ ; 1,0〉 + 3√
11

|5,5σ ; 1, − σ 〉

= σ

[√
2

165
f̂

†
3σ,σ f̂

†
0,σ + 1√

165
f̂

†
2σ,σ f̂ †

σ,σ − 3√
110

∑
σ ′=±

f̂
†
3σ,σ ′ f̂

†
σ,−σ ′ + 3√

11
f̂

†
3σ,−σ f̂

†
2σ,−σ

]
|0〉, (B1a)

|MJ = 3σ 〉 =
√

3

55
|5,2σ ; 1,σ 〉 − 4√

55
|5,3σ ; 1,0〉 + 6√

55
|5,4σ ; 1, − σ 〉

= σ√
55

[
f̂

†
3σ,σ f̂

†
−σ,σ +

√
2f̂

†
2σ,σ f̂

†
0,σ − 4√

3

∑
σ ′=±

(
f̂

†
3σ,σ ′ f̂

†
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2
f̂

†
2σ,σ ′ f̂

†
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†
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|0〉, (B1b)
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|MJ = σ 〉 =
√

2

11
|5,0; 1,σ 〉 − 2

√
6

55
|5,σ ; 1,0〉 +

√
21

55
|5,2σ ; 1, − σ 〉

= σ√
11

[
1√
21

f̂
†
3σ,σ f̂

†
−3σ,σ + 4√

21
f̂

†
2σ,σ f̂

†
−2σ,σ + 5√

21
f̂ †

σ,σ f̂
†
−σ,σ −

√
2

7

∑
σ ′=±

f̂
†
3σ,σ ′ f̂

†
−2σ,−σ ′

− 3

√
6

35

∑
σ ′=±

f̂
†
2σ,σ ′ f̂

†
−σ,−σ ′ − 2√

7

∑
σ ′=±

f̂
†
σ,σ ′ f̂

†
0,−σ ′ +

√
7

5
f̂

†
3σ,−σ f̂

†
−σ,−σ +

√
14

5
f̂

†
2σ,−σ f̂

†
0,−σ

]
|0〉, (B1d)
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√
5
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