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Linear-response theory of spin Seebeck effect in ferromagnetic insulators
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We formulate a linear response theory of the spin Seebeck effect, i.e., a spin voltage generation from heat
current flowing in a ferromagnet. Our approach focuses on the collective magnetic excitation of spins, i.e.,
magnons. We show that the linear-response formulation provides us with a qualitative as well as quantitative
understanding of the spin Seebeck effect observed in a prototypical magnet, yttrium iron garnet.
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I. INTRODUCTION

The generation of spin voltage, i.e., the potential for an
electron’s spin to drive spin currents, by a temperature gradient
in a ferromagnet is referred to as the spin Seebeck effect (SSE).
Since the first observation of the SSE in a ferromagnetic metal,
Ni81Fe19,1 this phenomenon has attracted much attention as
a new method of generating spin currents from heat energy
and opened a new possibility of spintronics devices.2 The
SSE triggered the emergence of the new field dubbed “spin
caloritronics”3,4 in the rapidly growing spintronics community.
Moreover, as the induced spin voltage can be converted into
electric voltage through the inverse spin Hall effect5 at the
attached nonmagnetic metal, this phenomenon put a new
twist on the long and well-studied history of thermoelectric
research.6

One of the canonical frameworks to describe nonequilib-
rium transport phenomena is linear-response theory.7 Having
been applied to a number of transport phenomena, linear-
response theory has been so successful because it is intimately
related to the universal fluctuation-dissipation theorem. Up to
now, however, the linear-response formulation of the SSE has
not been known mainly because, unlike the charge current, the
spin current is not a conserved quantity. Therefore, it is of great
importance to formulate the SSE in terms of linear-response
theory.

Concerning the SSE, a big mystery is now being estab-
lished, which is, how can conduction electrons sustain the
spin voltage over such a long range of several millimeters1

in spite of the conduction electrons’ short spin-flip diffusion
length, which is typically of several tens of nanometers? A key
to resolve this puzzle was reported by a recent experiment on
electric signal transmission through a ferromagnetic insulator8

which demonstrates that the spin current can be carried by
the low-lying magnetic excitation of localized spins, i.e., the
magnon excitations, and that it can transmit the spin current as
far as several millimeters. Subsequently, the SSE was reported
to be observed in the magnetic insulator LaY2Fe5O12 despite
the absence of conduction electrons.9 These experiments
suggest that contrary to the conventional wisdom over the
last two decades that the spin current is carried by conduction
electrons,10 the magnon is a promising candidate as a carrier
for the SSE.

The purpose of this paper is twofold. First, we analyze the
SSE observed in LaY2Fe5O12

9 (hereafter referred to as YIG)

in terms of magnon spin current, i.e., a spin current carried
by magnon excitations. Second, we develop a framework
for analyzing the SSE by means of the standard linear-
response formalism7 which is amenable to the language of
the magnetism community.11 This allows us to describe the
spin transport phenomena systematically, and it can be easily
generalized to a situation including other degrees of freedom,
e.g., conduction electrons and phonons, to describe a more
complicated process in the case of metallic systems.1

The plan of this paper is as follows. In Sec. II, we present
a linear-response approach to the “local” spin injection by
thermal magnons, in which the spin injection is driven by
the temperature difference between the ferromagnet and the
attached nonmagnetic metal. Next, in Sec. III we develop
a linear-response theory of the “nonlocal” spin injection by
thermal magnons, in which the spin injection is driven by the
temperature gradient inside the ferromagnet. As one can see
below, this process can explain the SSE observed in YIG.9

Finally, in Sec. IV we summarize and discuss our results.

II. “LOCAL” SPIN INJECTION BY THERMAL MAGNONS

We start by briefly reviewing the SSE experiment for
YIG.9 Figure 1 shows the experimental setup where several Pt
terminals are attached on top of a YIG film in a static magnetic
field H0 ẑ (� anisotropy field) which aligns the localized
magnetic moment along ẑ. A temperature gradient ∇T is
applied along the z axis, and it induces a spin voltage across the
YIG/Pt interface. This spin voltage then injects a spin current
Is into the Pt terminal (or ejects it from the Pt terminal). A
part of the injected/ejected spin current Is is converted into a
charge voltage through the so-called inverse-spin Hall effect:5

VISHE = �H (|e|Is)(ρ/w), (1)

where |e|, �H , ρ, and w are the absolute value of electron
charge, spin Hall angle, resistivity, and width of the Pt terminal
(see Fig. 1), respectively. Hence, the observed charge voltage
VISHE is a measure of the injected/ejected spin current Is .

To investigate the SSE observed in YIG, we consider
a model shown in Fig. 2(a). While YIG is a ferrimagnet,
we model it as a ferromagnet since we are interested in
the low-energy properties. The key point in our model is
that the temperature gradient is applied over the insulating
ferromagnet, but there is locally no temperature difference
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FIG. 1. Experimental setup for observing the SSE.9 Inset:
Schematics of the spatial profile of the observed voltage.

between the ferromagnet and the attached nonmagnetic metals,
i.e., TN1 = TF1 = T1, TN2 = TF2 = T2, and TN3 = TF3 = T3.
We assume that each domain is initially in thermal equilibrium
without interactions with the neighboring domains, and then
calculate the nonequilibrium dynamics after we switch on the
interactions. Note that this procedure is essentially equivalent
to that used by Luttinger12 to realize the initial condition
mentioned above.

Let us consider first the low-energy excitations in the
ferromagnet. In the following, we focus on the spin-wave
region where the magnetization M(r) fluctuates only weakly
around the ground state value Ms ẑ with the saturation
magnetization Ms , and we set M/Ms = (1 − m2/2) ẑ + m
to separate the small fluctuation part m (⊥ ẑ) from the
ground-state value. Then, the low-energy excitations of M
are described by boson (magnon) operators a

†
q and aq through

the relations13 m+
q = √

1/S0a
†
−q and m−

q = √
1/S0aq where

m± ≡ (mx ± imy)/
√

2, S0 is the size of localized spins, and
m(r,t) = NF

−1/2 ∑
q mq(t)eiq·r with NF being the number

of localized spins in the ferromagnet. Consistent with this
boson mapping, the magnetization dynamics is described by

JexJsd

TN1

Jex Jsd

1z 2z 3z

T2

T3

T1

z

(b)

(a)

T
(z

)

N3N1 N2

2F1F 3F

== T T1F1 =F2 2N2 = TT T ==TN3 F3T T3

FIG. 2. (a) System composed of ferromagnet (F ) and nonmag-
netic metals (N ) divided into the three temperature domains of F1/N1,
F2/N2, and F3/N3 with their local temperatures of T1, T2, and T3. (b)
Temperature profile.

the following action:14,15

SF =
∫

C

dt
∑

q

m+
−q(t)[Xq(i∂t )]

−1m−
q (t), (2)

where the integration is performed along the Keldysh contour
C,16 and the bare magnon propagator is given by

X̌q(ω) =
(

XR
q (ω),

0,

XK
q (ω)

XA
q (ω)

)
(3)

with the following equilibrium condition:

XA
q (ω) = [

XR
q (ω)

]∗
, XK

q (ω) = 2i ImXR
q (ω) coth

(
h̄ω

2kBT

)
. (4)

The retarded component of X̌q(ω) is given by XR
q (ω) =

S−1
0 (ω − ω̃q + iαω)−1 where α is the Gilbert damping con-

stant, and ω̃q = γH0 + ωq is the magnon frequency. Here,
γ is the gyromagnetic ratio and ωq = Dexq

2, where Dex =
2S0Jexa

2
S is the spin-wave stiffness constant with Jex and a3

S

being the exchange energy and the effective block spin volume.
In the nonmagnetic metal, the dynamics of the spin density

s can be described by the action17

SN =
∫

C

dt
∑

k

s+
−k(t)[χk(i∂t )]

−1s−
k (t), (5)

where s±
k = (sx

k ± is
y

k )/2 is defined by sk =
NN

−1/2 ∑
p c

†
p+kσc p with σ , c

†
p = (c†p,↑,c

†
p,↓), and NN

being the Pauli matrices, the electron creation operator for
spin projection ↑ and ↓, and the number of atoms in the
nonmagnetic metal. The equilibrium spin-density propagator
is given by

χ̌k(ω) =
(

χR
k (ω),

0,

χK
k (ω)

χA
k (ω)

)
(6)

with the following equilibrium condition:

χA
k (ω) = [

χR
k (ω)

]∗
, χK

k (ω) = 2iImχR
k (ω) coth

(
h̄ω

2kBT

)
. (7)

The retarded part of χ̌ is given by18 χR
k (ω) = χN (1 + λ2

Nk2 −
iωτsf)−1 with χN , λN , and τsf being the paramagnetic suscepti-
bility, spin diffusion length, and spin relaxation time, the form
of which is consistent with the corresponding diffusive Bloch
equation [see Eq. (10) below].

Finally, the interaction between magnons and spin density
at the interface is given by

SF−N =
∫

C

dt
∑
k,q

S0J k−q
sd√

NF NN

m−q(t) · sk(t), (8)

where J k−q
sd is the Fourier transform of Jsd (r) = Jsdξ0(r)

with Jsd being the s-d exchange interaction between
conduction-electron spins and localized spins, and ξ0(r) =∑

r0∈N−N interface a3
Sδ(r − r0).

It is instructive to point out that in the spin-wave region and
in the classical limit with negligible quantum fluctuations, a
system described by Eqs. (2), (5), and (8) is equivalent15,19 to
a system described by the stochastic Landau-Lifshitz-Gilbert
equation,

∂t M =
[
γ (Heff + h) − Jsd

h̄
s
]

× M + α

Ms

M × ∂t M, (9)
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coupled with the Bloch equation,20

∂t s = (
DN∇2 − τ−1

sf

)
δs + Jsd

h̄Ms

M × s + l, (10)

where Heff = H0 ẑ + (Dex/γ )∇2(M/Ms), DN = λ2
N/τsf is the

diffusion constant, and δs(r) = s(r) − s0ξ0(r)M(r)/Ms is the
spin accumulation with the local equilibrium spin density s0 =
χNS0Jsd/h̄. The noise field h represents thermal fluctuations in
F with 〈hi(r,t)〉 = 0 and 〈hi(r,t)hj (r ′,t ′)〉 = 2kBT (r)α

γMs
δij δ(r −

r ′)δ(t − t ′),21 while the noise source l in N satis-
fies 〈li(r,t)〉 = 0 and 〈li(r,t)lj (r ′,t ′)〉 = 2kBT (r)χNa3

τsf
δij δ(r −

r ′)δ(t − t ′)22 with the lattice constant a, both of which are
postulated by the fluctuation-dissipation theorem.

In this section we focus on the “local” spin injection from
F1 into N1. The spin current induced in N1 can be calculated
from the linear response expression of the magnon-mediated
spin injection given in the Appendix [Eq. (A4)]. Consider the
process P1 shown in Fig. 3(a) where magnons travel around
the ferromagnet F1 without feeling the temperature difference
between F1 and F2. Using the standard rules of constructing
the Feynman diagram in Keldysh space,16 the corresponding
interface Green’s function Čk,q(ω) for the correlation between
the magnons in F1 and the spin density in N1 [Eq. (A4)] can
be written in the form

Čk,q(ω) = J k−q
sd S0√
NNNF

χ̌k(ω)X̌q(ω), (11)

where NN and NF are the number of lattice sites in N1

and F1. Substituting Eq. (11) into Eq. (A4) and employing
the equilibrium conditions [Eqs. (4) and (7)], we obtain the
expression for the injected spin current:

IN1
s = − 4NintJ

2
sdS

2
0√

2h̄2NNNF

∑
q,k

∫
ω

ImχR
k (ω)ImXR

q (ω)

×
[

coth

(
h̄ω

2kBTN1

)
− coth

(
h̄ω

2kBTF1

)]
, (12)

where we have introduced the shorthand notation
∫
ω

=∫ ∞
−∞

dω
2π

, and Nint is the number of localized spins at the N1-F1

interface playing a role of the number of channels. The ω

Is

P3

P1

P′2

P′1

3z2z1z

1NIs

Is
N2

Is
N3

(a)

(b)

P2
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z

N3N1 N2

2F1F 3F
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FIG. 3. (a) Feynman diagrams expressing the spin current in-
jected from the ferromagnet (F ) to the nonmagnetic metals (N ). The
thin solid lines with arrows (bold lines without arrows) represent
electron propagators (magnon propagators). (b) Spatial profile of the
calculated spin current.

integration can be performed by picking up only magnon
poles under the condition αh̄ω̃q � kBTN1 ,kBTF1 (always
satisfied for YIG), giving

∫
ω

Imχk(ω)ImXq(ω)[coth( h̄ω
2kBT

)] ≈
− 1

2 Imχk(ω̃q)[coth( h̄ω̃q

2kBT
)]. By making the classical approxi-

mation coth( h̄ω̃q

2kBT
) ≈ 2kBT

h̄ω̃q
, we obtain

IN1
s = NintJ

2
sdS0χNτsf

2
√

2π4h̄3(λN/a)3
ϒ1kB(TN1 − TF1 ), (13)

where ϒ1 = ∫ 1
0 dx

∫ 1
0 dy

x2√y

[(1+x2)2+y2(2JexS0τsf/h̄)2] with the dimen-
sionless variables x = kλN and y = h̄ωq/(2JexS0), and we
used the relation N−1

F

∑
q = (2π )−2

∫ √
ydy.

III. MAGNON-MEDIATED SPIN SEEBECK EFFECT

Equation (13) means that, through the “local” process
P1 shown in Fig. 3(a), the spin current is not injected into
the nonmagnetic metal N1 when F1 and N1 have the same
temperature. That is, the “local” process cannot explain the
experiment9 where no temperature difference exists between
the YIG film and the attached Pt film. A way to account for the
experiment within the “local” picture is to invoke a difference
between the phonon temperature and magnon temperature.23

In this paper, on the other hand, we take a different route and
consider the effect of temperature gradient within the YIG film
on the spin injection into the Pt terminal.

The basic idea of our approach is as follows. The above
result [Eq. (13)] that the injected spin current vanishes when
TF1 = TN1 originates from the equilibrium condition of the
magnon propagator [Eq. (4)]. When magnons deviate from
local thermal equilibrium by allowing the magnons to feel
the temperature gradient inside the ferromagnet, the magnon
propagator cannot be written in the equilibrium form, and
it generates a nontrivial contribution to the thermal spin
injection. The relevant “nonlocal” process P ′

1 is shown in
Fig. 3(a) in which magnons feel the temperature difference
between F1 and F2. The interaction between F1 and F2 is
described by the action

SF−F =
∫

C

dt
∑
q,q ′

2J q−q ′
ex S2

0

NF

mq(t) · m−q ′(t), (14)

whereJ q−q ′
ex is the Fourier transform ofJex(r) = Jexξ1(r) with

ξ1(r) = ∑
r0∈F−F interface a3

Sδ(r − r0).
We now regard the whole of the magnon lines appearing in

the process P ′
1 as a single magnon propagator δX̌q(ω), namely,

δX̌q(ω) = 1

N2
F

∑
q ′

∣∣J q−q ′
ex

∣∣2
X̌q(ω)X̌q ′(ω)X̌q(ω). (15)

Then the propagator is decomposed into the local-equilibrium
part and nonequilibrium part as24

δX̌q(ω) = δX̌l−eq
q (ω) + δX̌n−eq

q (ω), (16)

where

δX̌l−eq
q =

(
δX

l−eq,R
q ,

0,

δX
l−eq,K
q

δX
l−eq,A
q

)
(17)
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is the local-equilibrium propagator satisfying the local-
equilibrium condition, i.e., δX

l−eq,A
q = [δXl−eq,R

q ]∗ and
δX

l−eq,K
q = [δXl−eq,R

q − δX
l−eq,A
q ] coth( h̄ω

2kBT
) with

δXl−eq,R
q (ω) = 1

N2
F

∑
q ′

∣∣J q−q ′
ex

∣∣2[
XR

q (ω)
]2

XR
q ′(ω), (18)

while

δX̌n−eq
q =

(
0,

0,

δX
n−eq,K
q

0

)
(19)

is the nonequilibrium propagator with δX
n−eq,K
q (ω) given by

δXn−eq,K
q (ω) =

∑
q ′

∣∣2J q−q ′
ex S0

∣∣2

N2
F

[
XR

q ′(ω) − XA
q ′ (ω)

]∣∣XR
q (ω)

∣∣2

×
[

coth

(
h̄ω

2kBTF2

)
− coth

(
h̄ω

2kBTF1

)]
.

(20)

Note that the local equilibrium propagator [Eq. (17)] does not
contribute to the “nonlocal” spin injection.

When we substitute Eq. (16) into Eq. (A4) and use Eq. (11)
with X̌q(ω) being replaced by δX̌q(ω), we obtain the following
expression for the magnon-mediated thermal spin injection:

IN1
s = −4J 2

sdS0(2JexS0)2NintN
′
int√

2h̄2N3
F NN

∑
q,q ′,k

∫
ω

ImχR
k (ω)

∣∣XR
q (ω)

∣∣2

×ImXR
q ′(ω)

[
coth

(
h̄ω

2kBT1

)
− coth

(
h̄ω

2kBT2

)]
,

(21)

where N ′
int is the number of localized spins at the

F1-F2 interface, and we used TNi
= TFi

= Ti (i = 1,2).
The ω integration can be performed as before, giving∫
ω

ImχR
k (ω)|XR

q (ω)|2ImXR
q ′(ω)[coth( h̄ω

2kBT1
) − coth( h̄ω

2kBT2
)] ≈

−π
2αω̃q

δ(ωq − ωq ′)ImχR
k (ω̃q)[coth( h̄ω̃q

2kBT1
) − coth( h̄ω̃q

2kBT2
)], which

suggests that the magnon modes with different q’s do not
interfere with each other. With the classical approximation
coth( h̄ω̃q

2kBT
) ≈ 2kBT

h̄ω̃q
, we obtain

IN1
s = Nint

(
J 2

sdS0
)
χNτsf(a/λN )3

8
√

2π5h̄3α(�/aS)
ϒ2kBδT , (22)

where δT = T1 − T2, � is the size of F1 along the temperature
gradient, and ϒ2 = ∫ 1

0 dx
∫ 1

0 dy
y2

[(1+x2)2+y2(2S0Jexτsf/h̄)2] which is
approximated as ϒ2 ≈ 0.1426 (ϒ2 ≈ 0.337h̄/2S0Jexτsf) for
2S0Jexτsf/h̄ � 1 (for 2S0Jexτsf/h̄ � 1).

The spin current IN3
s injected into the right terminal N3 can

be calculated in the same manner by considering the process
P3, which gives IN3

s = −IN1
s from the relation T1 − T2 =

−(T3 − T2). The spin current IN2
s injected into the middle

terminal N2 vanishes because the two relevant processes (P2

and P ′
2) cancel out. Therefore, we obtain the spatial profile of

the injected spin current as shown in Fig. 3(b). Note that the
effect of the spatial dependence of magnetization M[T (r)]
through the local temperature T (r) is already taken into
account in our treatment because the temperature dependence

of M in the magnon region is automatically described by the
number of thermal magnons discussed in this paper.

For an order of magnitude estimation, we compare
Eq. (22) with the experiment.9 By using �H ≈ 0.0037,25,26

ρ = 15.6 × 10−8 �m, w = 0.1 mm, λN ≈ 7 nm, τsf ≈ 1 ps,
a = 2 Å, aS = 12.3 Å, S0 = 16, α ≈ 5 × 10−5,8 χN = 1 ×
10−6 cm3/g,27 and Nint = 0.1 × 4 mm2/a2

S , the s-d exchange
coupling extracted from the previous ferromagnetic reso-
nance experiment8 (Jsd ≈ 10 meV) can account for the spin
Seebeck voltage VISHE/δT ≈ 0.1 μV/K observed at room
temperature.

Finally, we comment on the issue of length scales associated
with the SSE. In the original SSE experiment for a metallic
ferromagnet,1 the signal maintained over several millimeters
was a big surprise because the spin diffusion length for that
system is much shorter than a millimeter. Concerning the
magnon-mediated SSE in an insulating magnet9 which we
have discussed, it is of crucial importance to recognize that
the length scale relevant to the SSE is related to magnon
density fluctuations and is given by longitudinal fluctuations
of magnons, while the magnon mean free path is related to
magnon dephasing and is given by transverse fluctuations of
magnons.28 It was shown by Mori and Kawasaki30 that these
two length scales do not coincide with each other since they
obey quite different dynamics, and it was demonstrated that in
a certain situation the length scale of magnon density fluctua-
tions (which is relevant to the SSE as well) is much longer than
the magnon mean free path [see Eq. (6.33) in Ref. 30 where the
length scale of long-wavelength magnon density fluctuations
is infinitely long].31 The notion of these two different length
scales is the key to understanding the length scales observed
in the SSE experiment in an insulating magnet.9

IV. CONCLUSION

We have developed a theory of the magnon-mediated
spin Seebeck effect in terms of the canonical framework
of describing transport phenomena, i.e., the linear-response
theory, and shown that it provides us with a qualitative
as well as quantitative understanding of the spin Seebeck
effect observed in a prototypical magnet, yttrium iron garnet.9

Because the carriers of spin current in this scenario are
magnons, we can obtain a bigger signal for a magnetic material
with a lower magnon damping [see Eq. (22) where the injected
spin current is inversely proportional to the Gilbert damping
constant α]. An advantage of our linear-response formulation
is that it can be easily generalized to a situation including
degrees of freedom other than magnons, e.g., phonons and
conduction electrons, to describe a more complicated process
in the case of metallic1 and semiconducting systems,33 and
a calculation taking account of the effect of nonequilibrium
phonons will be reported in a future publication.34 A numerical
approach to the SSE is also developed in Ref. 35. We believe
that the present approach stimulates further research on the
spin Seebeck effect.
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APPENDIX: LINEAR-RESPONSE EXPRESSION
OF MAGNON-INDUCED SPIN INJECTION

The Gaussian action for conduction electrons in the
nonmagnetic metal Ni (i = 1,2,3) is given by

SN =
∫

C

dt
∑
p, p′

c†p(t){i∂t − (ε pδ p, p′

+ U p− p′ [1 + iηsoσ · ( p × p′)])}c p′(t), (A1)

where c
†
p = (c†p,↑,c

†
p,↓) is the electron creation operator for

spin projection ↑ and ↓, U p− p′ is the Fourier transform of
the impurity potential Uimp

∑
r0∈impurities δ(r − r0), and ηso

measures the strength of the spin-orbit interaction.36

At the ferromagnet/nonmagnetic-metal interface, the mag-
netic interaction between conduction-electron spin density
and localized spin is described by the s-d interaction
[Eq. (8)]. The spin current induced in the nonmagnetic
metal N1 can be calculated as the rate of change of the
spin accumulation in N1, i.e., IN1

s (t) ≡ ∑
r∈N1

〈∂t s
z(r,t)〉 =

〈∂t s̃
z
k0

(t)〉k0→0, where 〈· · ·〉 means the statistical average at a
given time t , and s̃k = √

NN sk with s being defined below
Eq. (5).

The Heisenberg equation of motion for s̃z
k0 gives

∂t s̃
z
k0

=
∑
q,k

iJ k−q
sd S0√

2NF NNh̄

(
m+

−q

[
s−

k ,sz
k0

] + m−
−q[s+

k ,sz
k0

])
= i

∑
q,k

2J k−q
sd S0√

2NF NNh̄

(
m+

−qs
−
k+k0

− m−
−qs

+
k+k0

)
, (A2)

where we have used the relation [̃s z
k ,̃s ±

k′ ] = ±2̃s±
k+k′ , and

neglected a small correction term arising from the spin-orbit
interaction assuming that the spin-orbit interaction is weak
enough at the neighborhoods of the interface. Then, the
statistical average of the above quantity gives the following
spin current:

IN1
s (t) =

∑
q,k

−4J k−q
sd S0√

2NF NNh̄
ReC<

k,q(t,t), (A3)

where C<
k,q(t,t ′) = −i〈m+

−q(t ′)s−
k (t)〉 is the interface Green’s

function. In the steady state, the Green’s function C<
k,q(t,t ′)

depends only on the time difference t − t ′ as C<
k,q(t − t ′) =∫ ∞

−∞
dω
2π

C<
q,k(ω)e−iω(t−t ′). Adopting the representation37 Č =

(CR,CK

0,CA ) and using C< = 1
2 [CK − CR + CA], we finally obtain

IN1
s =

∑
q,k

−2J k−q
sd S0√

2NF NNh̄

∫ ∞

−∞

dω

2π
ReCK

k,q(ω) (A4)

for the spin current IN1
s in a steady state. As in the case of

tunneling charge current driven by a voltage difference,38 the
spin current IN1

s can be calculated systematically.

*hiroto.adachi@gmail.com
1K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando,
S. Maekawa, and E. Saitoh, Nature (London) 455, 778 (2008).
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