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We have developed a formalism by combining the tight binding linearized muffin-tin orbital and the recursion
methods with the augmented space formalism (TB-LMTO-ASR) to study noncollinear magnetism in disordered
alloys. We apply the TB-LMTO-ASR to study disordered MnPt and Mn3Rh alloys. The electronic structures
of these alloys in different magnetic structures have been calculated and compared to the previous theoretical
results.
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I. INTRODUCTION

Antiferromagnetic materials have attracted attention be-
cause of their potential candidature for giant magnetoresis-
tance (GMR) devices. From a microscopic viewpoint, it is
interesting to examine how lattice structure, composition,
long-ranged disorder, and short-range ordering determine
the magnetic structure of antiferromagnetic alloys. In many
random alloys with close-packed lattice configurations, mag-
netic structures can become quite complex as compared
to the simple collinear antiferromagnetic picture usually
assumed. Atomic arrangement and randomness may introduce
frustration effects in such alloys. Neutron diffraction experi-
ments have often suggested complex magnetic alignments in
mostly Mn-based disordered alloys like FeMn, MnPt, Mn3Pt,
and Mn3Rh due to the presence of almost half-filled Mn
3d orbitals. Noncollinear magnetism has been studied within
the density functional theory in formalisms, where the energies
are functionals not of charge density but density matrices
in spinor space. This has been done for ordered alloys,1–3

amorphous materials,4,5 and disordered alloys6,7 based on
both the Korringa-Kohn-Rostocker (KKR) and linear muffin-
tin orbitals (LMTO) methods, coupled with the single-site
coherent potential approximation (CPA) to deal with disorder.

In this work we propose to generalize the augmented
space recursion8 (ASR) based on the tight-binding version
of the LMTO (TB-LMTO) so that it is capable of describing
noncollinear magnetism. Local magnetic moments in alloys
are strongly affected by the disorder in their local envi-
ronments. Our aim will be to suggest a formalism which
will allow us to go beyond the usual single-site mean-field
approximations and provide an analyticity and symmetry-
preserving generalization capable of addressing the situations
where disorder fluctuations in the environment are important
(like clustering or short-ranged ordering) accurately.

The rest of the paper is arranged as follows. In Sec. II we
briefly discuss the Kohn-Sham equation generalized within the
density-matrix functional theory to take care of noncollinear
magnetism. Subsequently, we obtain a representation of the

Kohn-Sham “Hamiltonian” in the TB-LMTO basis. In Sec. III
we introduce substitutional disorder and the augmented space
formalism to take care of configuration averaging. In Sec. IV
we briefly describe the scalar recursion method. Finally, in
Sec. V we shall apply our formalism to study the possibility
of noncollinear magnetism in disordered MnPt and Mn3Rh
alloys.

II. BASIC FORMULATION

A. The Kohn-Sham equation with noncollinear magnetism

Since our aim is to study alloys via the ASR technique,
we would like to develop a methodology which gives rise
to a sparse Hamiltonian representation with matrix elements
obtained self-consistently through a density functional formu-
lation. The generalization of the collinear local spin-density
approximation (LSDA) begins at the level of the Kohn-Sham
equation. The Kohn-Sham orbitals in a spin-polarized electron
liquid are spinors of the form

ψ(E,�r) =
(

ψ1(E,�r)

ψ2(E,�r)

)
.

The magnetization density, like the charge density, is a local
function. We describe our system on a more coarse-grained
level. We start with the “rigid spin approximation” in which
we associate with each Wigner-Seitz cell (or atomic sphere
if we use the atomic sphere approximation) labeled by �R a
unique direction of magnetization. This direction will be the
local quantization axis characterized by two angles θR,φR with
respect to a set of suitably chosen global axes. With respect to
these global axes the Kohn-Sham equation may be written as{(

− 1

2
∇2

)
I + VKS(�r)

}
ψ(E,�r) = Eψ(E,�r), (1)

where the effective Kohn-Sham potential is

VKS(�r) =
∑
R

{VHart(�rR) + Vie(�rR) + VSR(�rR)}I

+ Vxc(�rR) + v(r) �L · �S, (2)
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where, �rR = �r − �R, VHart(�rR) is the Hartree potential, Vie(�rR)
the ion-electron potential, and VSR(�rR) is the scalar rela-
tivistic correction. Vxc(�rR) = V (1)

xc I + �B · �S is the exchange-
correlation potential, where

�B(�r) =
∑
R

V (2)
xc (�rR) �eR,

in which �eR is the unit vector along the direction of the local
quantization axis within the Rth Wigner-Seitz cell.

The Kohn-Sham Hamiltonian acts on the Hilbert spaceH ⊗
S, where S is the spin space spanned by the bispinors(

1
0

)
and

(
0

1

)
.

�S are spin operators in the space S.
The local and global spinor bases are related to each other

through the SU(2) rotation matrix

U =
(

eiφR/2 cos (θR/2) e−iφR/2 sin (θR/2)

−eiφR/2 sin (θR/2) e−iφR/2 cos (θR/2)

)
.

In the local axes, the exchange-correlation potential Vxc(�rR)
can be diagonalized in spinor space:

U† Vxc(�rR) U =
(

V
↑

xc(�rR) 0

0 V
↓

xc(�rR)

)
.

V σ
xc(�rR) = δExc/δρ

σ (�rR) is the exchange-correlation potential
referred to local quantization axes referred to by σ =↑ , ↓ in
the Wigner-Seitz cell labeled by R. Furthermore,

V (1)
xc (�rR) = 1

2 {V ↑
xc(�rR) + V

↓
xc(�rR)},

(3)
V (2)

xc (�rR) = 1
2 {V ↑

xc(�rR) − V
↓

xc(�rR)}.
The spin-orbit potential, suitably spheridized within a muffin
tin is related to the spheridized Kohn-Sham potential in the
absence of relativistic corrections via

v(r) = 1

r

dVKS(r)

dr
.

The use of this potential in describing the spin-orbit part has
been discussed by Koelling and Harmon.9 Stiles et al.10 have
argued that a more systematic approach incorporates two-
body terms of the type introduced by Breit.11 This approach
introduces not only the standard term given by us, but also a
spin-other-orbit interaction, off diagonal in real space. This we
have neglected for the time being in this work.

B. The TB-LMTO Hamiltonian

The Kohn-Sham equation can be represented in different
bases. We choose the TB-LMTO in the maximally screened
(or α) representation. Our choice is guided by the fact that the
TB-LMTO-α representation of the Hamiltonian is sparse. This
is essential both for modeling substitutional disordered alloys
and for the recursion method (which we subsequently use) to
be computationally tractable.

The TB-LMTO basis is now set up in the usual way12

and applied to the above Kohn-Sham equation. The secular
equation then leads to the TB-LMTO Hamiltonian

H = H (0)I + �B · �S + HSO,

where the second-order spin-independent Hamiltonian is
given by

H (0) = Eν + hα − hα oα hα.

H (0) is an operator in the space H spanned by the LMTO basis
|RL〉 and

hα
RL,R′L′ = {

C
(1)
RL − Eν


}
δRR′δLL′ + �

(1)1/2
RL SRL,R′L′�

(1)1/2
R′L′

+ �
(2)1/2
RL SRL,R′L′�

(2)1/2
R′L′ (�eR · �eR′ ). (4)

The potential parameters referred to the local quantization axes
are �RL ≡ {C↑

RL,C
↓
RL,�

↑1/2
RL ,�

↓1/2
RL , o

↑
RL and o

↓
RL}. Referred

to the global axes these parameters transform to �
(1)
RL =

(�↑
RL + �

↓
RL)/2 and �

(2)
RL = (�↑

RL − �
↓
RL)/2. SRL,R′L′ is the

screened structure matrix, short ranged in |R − R′|. The vector
�eR is a unit vector in the direction of the local moment in the
atomic sphere labeled by R:

�BRL,R′L′ = (
C

(2)
RL + �

(2)1/2
RL SRL,R′L′�

(1)1/2
R′L′

)�eR

+ (
�

(1)1/2
RL SRL,R′L′�

(2)1/2
R′L′

)�eR′

+ (
�

(2)1/2
RL SRL,R′L′�

(2)1/2
R′L′

)
(�eR × �eR′). (5)

When all spins in every Wigner-Seitz cell are collinear, �eR = ẑ

for all R, then the first two terms in the Hamiltonian expression
reduces to the usual LSDA expression, diagonal in the spinor
spaceS. Otherwise, the Hamiltonian has off-diagonal elements
in S:

HSO = +S− + −S+ + zSz.

Further,

+
LR,L′R′ = vR,LL′N+

L δRR′ δ
,
′ δm′,m+1,

−
LR,L′R′ = vR,LL′N−

L δRR′ δ
,
′ δm′,m−1, (6)

z
LR,L′R′ = vR,LL′m δRR′ δ
,
′ δm,m′ ,

with
N+

L =
√

(
 − m)(
 + m + 1),

N−
L =

√
(
 + m)(
 − m + 1).

The representation of the Green’s function in spinor space
is a two-by-two matrix: Gαα′

RL,R′L′ .
The magnetic density of states is given by

�mRL(E) = − 1

π
Im Trα{�SGRL,RL(E + i0)}. (7)

Within the rigid moment approximation, the magnetic
moment in the Wigner-Seitz cell labeled by R is

�mR =
∑
L

∫ EF

−∞
dE �mRL(E). (8)

The unit vectors defined earlier are �eR = �mR/mR .
The effective exchange energy, which is the amplitude

of the exchange field acting at a site labeled by R by the
surrounding moments, is J0 = ∑

R′′ J (R′′), where R′′ = R −
R′ and J (R − R′) is the pair energy given by the Lichtenstein
formula,13

J (R − R′) = − 1

4π
Im

∫ EF

−∞

∑
LL′

{
δRL(E) G

↑↑
RL,R′L′(E)δR′L′

× (E) G
↓↓
R′L′,RL(E)

}
, (9)
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where δRL(E) = �
↑
RL(E) − �

↓
RL(E) and �σ

RL(E) = (E −
Cσ

RL)/�σ
RL.

C. The augmented space formalism and the augmented
space Hamiltonian

The augmented space formalism was introduced by one
of us8 as a methodology to obtain configuration averages of
functions of a set of random variables directly. Since there have
been numerous and detailed descriptions of the methodology
already,14 we shall direct the curious reader to the review
referred to above. Here we only describe the functional steps
necessary to implement the technique.

Suppose a representation of the Hamiltonian of the dis-
ordered binary alloy in a denumerable basis {|RL〉} involves
random potential parameters �RL. For a substitutional, binary
random alloy, this can be written in terms of a random
“occupation” variable nR as

�RL = �AL nR + �BL (1 − nR) = �BL + ��L nR,

where

nR =
{

1 if R is occupied by atom A with probability xA,

0 if R is occupied by atom B with probability xB,

and ��L = �AL − �BL and the probability density of nR is
p(nR) = xAδ(nR − 1) + xBδ(nR).

In the augmented space formalism, we associate with the
random variable nR an operator MR , such that its eigenvalues
are the values taken by nR and its spectral density is the
probability density of nR . The “configuration space” of nR ,
�R , is the space spanned by the eigenvectors of MR . For a
binary variable taking two values A and B, the configuration
space of nR , �R , is of rank 2 and is spanned by the
configurations {|AR〉 and |BR〉}.

It is more convenient to change to a new basis |0R〉 =√
xA|AR〉 + √

xB |BR〉 and |1R〉 = √
xB |AR〉 − √

xA|BR〉.
In this basis, the representation of MR is

MR = xA I + (xB − xA) P
(1)
R + √

xAxB T
(01)
R ∈ �R,

with P
(1)
R = |1R〉〈1R| and T

(01)
R = |1R〉〈0R| + |0R〉〈1R|.

For each random variable nR we introduce an operator MR

in this way. The configuration space of the set of random
variables {nR} is � = ∏⊗

�R .
The augmented space theorem8 states that the configuration

average of any function f ({nR}) may be written as

� f ({nR}) �= 〈{∅}|f̃ ({M̃R})|{∅}〉 (10)

where f̃ ({M̃R}) is the same operator function of the operators
{M̃R} as f ({nR}) was of {nR}. Operationally, we construct
the operator f̃ ({M̃R}) by replacing each nR in f ({nR})
by the corresponding M̃R . Further, |{∅}〉 = ∏⊗

R |0R〉, and
M̃R = I ⊗ · · · I ⊗ MR ⊗ · · · ∈ �. All tilded operators acts
on the configuration space �.

If we substitute this back into the expression for the
potential parameters �RL we get an associated operator in
configuration space,

�̃RL =� �L � Ĩ + B(�L) P̃
(1)
R + F(�L) T̃

(01)
R , (11)

whereB(�L) = (xB − xA) ��L andF(�L) = √
xBxA ��L,

��L = �AL − �BL.
We can now start from Eqs. (4) and (5) and rewrite the

Hamiltonian as an operator in the Hilbert space H, spanned
by the TB-LMTO basis {|RL〉}. We now allow each potential
parameter to be random. Referring to Eq. (11) we can construct
the Hamiltonian in augmented space � = H ⊗ �:

ĥα =
∑
RL

ÃRL ⊗ PRL +
∑

RL,R′L′

{
B̃

(1)
RL,R′L′ ⊗ TRL,R′L′ + (

B̃
(2)
RL,R′L′ ⊗ TRL,R′L′

) ∑
μ

e
μ

Re
μ

R′

}
,

B̂μ =
∑
RL

(
D̃RL ⊗ PRL+

∑
R′

B̃
(3)
RL,R′L′ ⊗ TRL,R′L′

)
e
μ

R+
∑

RL,R′L′

{(
B̃

(4)
RL,R′L′ ⊗ TRL,R′L′

)
e
μ

R′ +
(
B̃

(2)
RL,R′L′ ⊗ TRL,R′L′

)∑
νξ

εμνξ eν
Re

ξ

R′

}
,

where
ÃRL = C̃

(1)
RL − ẼνL; D̃RL = C̃

(2)
RL;

B̃
(1)
RLR′L′ = �̃

(1) 1/2
RL ⊗ S̃RLR′L′ ⊗ �̃

(1) 1/2
R′L′ ;

B̃
(2)
RLR′L′ = �̃

(2) 1/2
RL ⊗ S̃RLR′L′ ⊗ �̃

(2) 1/2
R′L′ ;

B̃
(3)
RLR′L′ = �̃

(2) 1/2
RL ⊗ S̃RLR′L′ ⊗ �̃

(1) 1/2
R′L′ ;

B̃
(4)
RLR′L′ = �̃

(1) 1/2
RL ⊗ S̃RLR′L′ ⊗ �̃

(2) 1/2
R′L′ .

Here PRL and TRL,R′L′ are projection and transfer operators,
respectively, in the Hilbert space H spanned by the TB-LMTO
basis {|RL〉}. All hatted operators act on the full augmented
space �. Thus,

Ĥ (0) = Êν + ĥα − ĥα ⊗ ô α ⊗ ĥα,

where

Êν = Ẽν L ⊗ I, ô α =
∑
RL

õRL ⊗ PRL.

Similarly, for the spin-orbit part,

̂+ =
∑
RL

ṽ+
L ⊗ PRL, ̂− =

∑
RL

ṽ−
L ⊗ PRL,

̂z =
∑
RL

ṽz
L ⊗ PRL.

So that the full augmented space Hamiltonian becomes

Ĥ = Ĥ (0)I +
∑

μ

B̂μ Sμ + ̂+S− + ̂−S+ + ̂zSz. (12)
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The augmented space theorem then gives the averaged Green’s
function as

�GRL,R′L′(E)� = 〈RL{∅}| Ĝ(E) |R′L′{∅}〉, (13)

where

Ĝ(E) = (
EÎ − Ĥ

)−1 ∈ �,

and |RL{∅}〉 = |RL〉 ⊗ |{∅}〉 is a particular state in augmented
space �.

The averaged projected and magnetic density of states are

� nRL(E) �=− 1

π
Im Trα{ĜRL{∅},RL{∅}(E + i0)},

� �mRL(E) �=− 1

π
Im Trα{�S ĜRL{∅},RL{∅}(E + i0)}. (14)

Among methods to deal with disorder, the most used is the
single-site, mean-field, CPA. This approximation has been
eminently successful in dealing with a variety of disordered
systems. Of all the single-site approximations, the CPA
alone maintains the essential Herglotz15 analytical properties
and lattice translational symmetry of the averaged Green’s
function. In earlier works we have shown16,17 that the CPA can
be obtained as a specific approximation within the augmented
space formalism. Ordinarily, the ASR will subsume the CPA.
However, wherever effects of statistical clustering,18 short-
ranged ordering,19,20 partial or sublattice disorder,21 and off-
diagonal disorder arising out of local lattice distortions due to
large size mismatch of constituent atoms in the alloy22 become
important, the ASR provides an analyticity and symmetry
preserving generalization to the CPA capable of addressing
these situations accurately. These local environmental effects
strongly affect the local magnetic moments. One of the aims
of this work is to put forward a formalism that will allow
us to go beyond the single-site CPA and take into account
environmental effects.

Of the generalizations of the CPA, the augmented
space-based methods—the traveling cluster approximation
(TCA),23,24 the itinerant CPA25 (ICPA), and the ASR26—are
among the most successful. They too not only retain the nec-
essary analytic (Herglotz) properties and lattice translational
symmetry of the averaged Green’s function, as the CPA does,
but also properly incorporate local environment effects. We
have chosen the ASR. In particular, a recursion carried out till
n steps before termination yields 2n moments of the density
of states accurately and samples an environment n steps away
from the starting state.

D. The recursion method in augmented space

One of the useful O(N ) methods for the calculation of
the Green’s function in systems where lattice translation
symmetry is broken is the recursion method proposed by
Haydock et al.27 The augmented space theorem tells us that
the Green’s functions calculated with the full augmented
space Hamiltonian (described above) and projected onto the
configuration subspace spanned by |{∅}〉 = ∏⊗

R |0R〉 is the
configuration averaged Green’s function. The result is exact,
and therefore, if we obtain the averaged Green’s function by
the recursion method, the only approximations will be those
related to the termination of the continued fraction. Haydock

and co-workers28 and Beer and Pettifor29 have described
various analyticity preserving terminators. Unlike mean-field
theories like the CPA and its cluster generalizations, these
approximations are controlled and errors can also be easily
estimated.28

In order to calculate a generalized noncollinear magne-
tization density, we need also to calculate the nondiagonal
elements of the Green’s function in spinor space.30 At this
point we may proceed in several different ways. Either we
carry out three recursions with local quantization axis rotated
in the x, y, or z directions by SU(2) rotation matrices
or the nondiagonal elements of the Green’s function can
be calculated either by performing several recursions with
carefully chosen starting states.31 Alternately, we can perform
vector recursion.32,33 In this work we use the scalar recursion
with rotated quantization axes. However, vector recursion is
elegant and requires only a single application for both the
diagonal and the off-diagonal Green’s function spinor matrix
elements. We postpone application of vector recursion for a
later communication. The question of rotational invariance of
the Green’s function obtained from scalar recursion has been
addressed by one of us in earlier works on the applications
of recursion in studying noncollinear magnetism in ordered
compounds.30,34–36 Introduction of homogeneous disorder
will not alter that line of argument. Maintaining rotational
invariance of the Green’s function comes naturally within the
vector recursion method.

For the sake of completeness, we briefly describe the scalar
recursion technique in the full augmented space.

If we do a rigid moment approximation within an atomic
sphere, then we can define a local spin-axis in which Sz is
diagonal. We can apply unitary SU(2) rotation operators Ux ,
Uy , and Uz = I which diagonalize Sx , Sy , and Sz, respectively.
Thus,

�m
μ

RL(E)�

= − 1

π
Im Tr{Sμ U†

μUμ GRL{∅},RL{∅}(E) U†
μUμ}

= − 1

π
Im Tr{(UμSμU†

μ) (UμGRL{∅},RL{∅}(E)U†
μ)}

= − 1

π
Im Tr{S′

μ G′
RL{∅},RL{∅}(E)}

and

�m
μ

R �=
∑
L

∫ EF

−∞
dE �m

μ

RL(E)� . (15)

Since S′
μ are diagonal in spinor space we need to calculate

only the diagonal elements of G′
RL{∅},RL{∅}. This requires two

recursions per direction, so six recursions in all. Moreover,

Ĝ′(E) = (EÎ − Ĥ′)−1 ∈ �,

where

Ĥ′ = Ĥ (0)I +
∑

μ

B̂μ S′μ + ̂+S′− + ̂−S′+ + ̂zS′z.

The recursion in full augmented space then follows: First,
we have to have a representation of “states” in augmented
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FIG. 1. (Color online) Choice of the magnetic primitive cell on a
fcc lattice.

space. In the absence of disorder the representation is simple:
A state is labeled by L and R. So we can represent this by a
(
max + 1)2 × N matrix, where 
max is the maximum angular
momentum labels in the TB-LMTO minimal basis (usually 9
for s, p, and d basis) and N is the maximum number of muffin
tins considered in the recursion procedure. For spin degrees of
freedom each scalar in this (
max + 1)2 × N matrix is replaced
by a 1 × 2 spinor. So one such state may be represented by the
symbol: |�α

RL〉 with R = 1,2, . . . N , L = 1,2, . . . (
max + 1)2,
and α = 1,2.

The states in configuration space can be uniquely la-
beled by the cardinality sequence, that is, the sequence of
sites {C > where we have a state |1R〉. For example, the
configuration state

|0R1 , . . . ,1Rk
,0Rk+1 , . . . ,1R


, . . .〉 ≡ |{Rk,R
, . . .}〉.
A state in the full augmented space is given by � = |�α

RL ⊗
{C}〉. The inner product is defined by

(� � �) =
∑
RLα

�α
RL�α

RL δ(C,C ′).

The recursion begins with a state

|0〉 = ∣∣�α
RL ⊗ {∅}〉. (16)

FIG. 2. (Color online) Collinear antiferromagnetism in ordered
L10 MnPt. Mn atoms are shown as (blue) open circles while the Pt
ions as (blue) solid circles.

The other states are generated from

βn+1|n + 1〉 = H̃|n〉 − αn|n〉 − βn|n − 1〉. (17)

Imposing orthogonality, one obtains

αn = 〈n|H̃|n〉
〈n|n〉 βn = 〈n − 1|H̃|n〉

〈n − 1|n − 1〉 . (18)

This new basis tridiagonalizes the Hamiltonian. It follows
that

G(N)(E) = [E − αN+1 − T (E)]−1,

G(n)(E) = [E − αn+1 − β2
n+1G

(n+1)(E)]−1

(19)
for n � N − 1,

G(0)(E) = �GRLα,RLα(E)� ,

where T (E) is one of the terminators suggested by Haydock28

or Beer and Pettifor.29 Two recursions with the two possible
starting states in Eq. (16) for the two values of α give the two
diagonal matrix elements in spinor space.

III. APPLICATION TO MnPt ALLOYS

The ordered intermetallic compound 50-50 MnPt has a
L10 structure. A small tetragonal distortion with c/a � 0.92
lowers the total energy and stabilizes the compound. It
exhibits collinear antiferromagnetism of the Mn atoms only.
The Pt atoms carry negligible magnetic moment. The Néel
temperature is rather high ≈1000 K.37 Figure 1 shows the
choice of the magnetic primitive cell for the alloys. For ordered
MnPt alloy in the L10 structure the Mn and Pt atoms sit in
alternate layers. This is shown in Fig. 2. It is experimentally
known that the possible magnetic structure of Mn atoms is a
AF-I type arrangement shown in Fig. 2.

Although ordered 50-50 MnPt has been studied earlier, not
much work has been done on disordered 50-50 MnPt which
has been prepared in thin film form. Interest in this alloy
waned, primarily because the exchange bias mechanism is
absent in them and therefore probability of their potential use
in GMR devices is doubtful. Nevertheless, presence of possible
antiferromagnetic Mn in the alloy and Pt which provides
spin-orbit coupling makes this alloy system a fertile ground
for a search for noncollinear magnetic phases.

In the disordered alloy, in contrast with the L10 ordered
arrangement, the Mn and Pt atoms do not sit in parallel
planes. The lattice structure is strictly face-centered cubic with
both the corner and the face-center positions being occupied
randomly with either Mn or Pt atoms with equal probability.

The magnetic arrangements on this face-centered lattice are
shown in Fig. 3. The simplest is the 1Q arrangement where
the intralayer alignment is collinear ferromagnetic while the
interlayer alignment is antiferromagnetic. If we choose the
positive c axis as the global axis of quantization (z axis) and
represent the unit vector along the magnetic moment by �eR =
(θR,φR), and if we label the position of the two sites on the
bottom x-y plane as R1,R2 and those on the top x-y plane as
R3,R4, then,

φRk
= 0◦, for k = 1,2, . . . ,4

θR1 = θR2 = 0◦; θR3 = θR4 = 180◦.
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FIG. 3. (Color online) The 1Q, 2Q, and 3Q magnetic structures on the magnetic primitive lattice in a fcc structure.

The next arrangement is the 2Q noncollinear antiferromag-
netic structure shown in the middle panel of Fig. 3. Here

θRk
= 90◦, for k = 1,2, . . . ,4

φR1 = 45◦, φR2 = 225◦, φR3 = 135◦, φR4 = 315◦.

The moments lie in planes in twos and point toward each
other. Finally, the last arrangement is the 3Q structure shown
in the rightmost panel of Fig. 3. This structure is quite similar
to the 2Q with the difference that spins are raised in the lower
plane and dipped in the upper plane so that now they all point
toward the cube center.

θRk
= 54.7◦ for k = 1,2, . . . ,4,

φR1 = 45◦, φR2 = 225◦, φR3 = 135◦, φR4 = 315◦.

We have carried out a fully self-consistent local density
matrix functional approximation electronic structure and total
energy calculation on all the three magnetic structures of the
disordered MnPt alloy. We have chosen to carry out scalar
recursions in the framework of the local quantization axes.
We carried out 11 recursion steps on an augmented space
cluster with seven nearest-neighbor shells around a central
site. The terminator chosen was that of Beer and Pettifor.29 The
Madelung energy was estimated by the method of Ruban and
Skriver.38 The lattice constants of the ordered and disordered
phases do not vary much and our presented calculations
were done with a = 3.77 A. In Fig. 4 we present our partial
(constituent projected) density of states (PDOS) results of our
TB-LMTO-ASR calculations.

Before we discuss the disordered alloy, we remind the
reader of the earlier work on the DOS of L10 AF-I MnPt
(Ref. 7) and the related MnNi (Ref. 39) alloys. Both have a
prominent pseudogap around the Fermi level. This has been
assigned to the AF-I staggered field. This gap completely
disappears in the ferromagnetic or paramagnetic arrangements.
This pseudogap is absent in all the three disordered arrange-
ments 1Q, 2Q, and 3Q of MnPt. The random arrangement of
Mn and Pt atoms, which have electronic structures very differ-
ent from each other, means that the regular L10 arrangement in
the ordered phase is strongly disrupted as Pt and Mn randomly
replace each other. This disrupts the AF-I staggered field and
prevents a pseudogap forming near the Fermi level.

We need to comment on the accuracy of our ASR calcu-
lations. In particular, the accuracy of the dominant terminator
approximation of the ASR. As Haydock has argued28 that

the DOS itself is unstable under small perturbations and
convergence criteria need to be based on the convergence of
the energy moments of the DOS: Mn = ∫ EF

Emin
En n(E) dE.

Figure 5 shows the variation of the first four moments of
the Mn PDOS for the 1Q magnetic states in MnPt, with the
number of exact recursion steps before the asymptotic part of
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FIG. 4. (Color online) Partial density of states for Mn and Pt for
the disordered (DO) 1Q, 2Q, and 3Q spin arrangements in MnPt
alloys.
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FIG. 5. Variation of the first four moments of the partial DOS
of Mn in MnPt in the 1Q magnetic structure. The variation is with
the number of recursion steps after which the asymptotic part of the
continued fraction expression for the Green’s function is replaced by
a Beer-Pettifor terminator. The units for the moments Mn are (Ry)n.

the continued fraction expression for the Green’s function is
replaced (terminated) by a Beer-Pettifor “terminator.” Results
for the 2Q and 3Q magnetic states are qualitatively identical.
We see that after 10–11 recursion steps the moments fluctuate
by less than 5%. We have, therefore, terminated recursion after
11 steps with a sixth-nearest neighbor map in augmented space.
Therefore, inaccuracy creeps up only in the 22nd moment,
as opposed the 8th moment in the CPA. The Beer-Pettifor
terminator ensures that the asymptotic moments are also
accurate.

Table I shows the magnetic moments from our results and
compares them with the CPA results of Sakuma.7 The ASR
agrees with the CPA that the 3Q arrangement has the lowest
energy per atom. The CPA gave the 2Q arrangement to have
almost the same energy as the 3Q arrangement and 1Q to
be about 1.47 mRy/atom higher. The ASR, on the other
hand, ordered the structures as 1Q, 1.41 mRy/atom higher
and then 2Q at 1.68 mRy/atom higher still. These energy
differences of a few mRy/atom are really at the very limit of
error windows of either the CPA or the ASR. The error occurs
in the TB-LMTO and then in the single-site CPA or the better
ASR approximation. These errors are additive and although

TABLE I. Magnetic moments obtained from TB-LMTO-CPA and
TB-LMTO-ASR.

Ma Mb

Spin structure (μB ) (μB )

1Q 2.75 2.08
2Q 2.76 2.19
3Q 2.76 2.16

aTB-LMTO-CPA work by Sakuma (Ref. 7).
bPresent work.

our earlier arguments convince us that the ASR is indeed
more accurate than the CPA, we can only make definitive
statements after transparent experimental evidence becomes
available. The ASR estimates of the Mn moments are about
0.57–0.67 μB lower than the CPA.

IV. APPLICATION TO Mn3Rh ALLOYS

The magnetic structure of ordered L12 Mn3Rh is a complex
triangular (T 1) type shown in the left panel of Fig. 6. The
structure was shown to be a stable structure of ordered
Mn3Rh by Kübler et al.1 The central panel shows another
coenergetic structure T 2 while the right panel shows a collinear
antiferromagnetic like structure. Like the earlier work of
Kübler et al., it was found that the T 1 and T 2 structures
have the same DOS, total energies, and magnetic moments.
As stated in that earlier work, this is expected since our theory
does not couple magnetic moments to the underlying crystal
lattice. What we focus on is the relative orientation of the
moments. In this sense the T 1 and T 2 structures are identical.
A similar argument was put forward by Bertaut and Fruchart41

based on Heisenberg models for the T 1 and the T 2 structures.
These are identical in the absence of anisotropy. We have
therefore reported only the results for the T 1 structure in what
follows. The top panel of Fig. 7 shows the variation of the total
energy with respect to the lattice constant. The figure shows
that the T 1 structure with a = 3.62 A is the stable ordered
structure for Mn3Rh. This is in consonance with the earlier
work of Kübler et al.

The bottom panel of Fig. 7 shows the PDOS for Mn and Rh
in the T 1/T 2 and collinear AFM structures. Both (particularly
T 1) indicate a pseudo-gap just above the Fermi level, as
in MnPt. Otherwise the two PDOS are not very different
from each other. Figure 8 shows the variation of magnetic

FIG. 6. (Color online) (Left) The T 1 structure of L12 Mn3Rh. (Center) The T 2 structure of L12 Mn3Rh. (Right) The collinear AFM
structure of L12 Mn3Rh. Red (dark gray) atoms are Mn and blue (light gray) atoms are Rh.
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for T 1/T 2 and collinear AFM Mn3Rh.

moment with lattice constant for the T 1/T 2 and collinear
AFM structures. The decrease of magnetic moment with lattice
constant agrees with the Stoner criterion (since the closer the
atoms, more is the overlap of electronic wave functions leading
to a wider band and a lower DOS at the Fermi level). This
indicates that these alloys exhibit itinerant magnetism. The
estimate of the magnetic moment of T 1 at equilibrium lattice
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FIG. 8. (Color online) Magnetic moment variation with lattice
constant for T 1/T 2 and collinear AFM Mn3Rh.
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FIG. 9. (Color online) Exchange energy as a function of the lattice
constant in T 1 Mn3Rh.

constant is not far from Sakuma et al.,39 but smaller than that
of Kübler et al.2

Figure 9 shows a rather interesting fact: The exchange
energy changes sign on lattice expansion, going from antifer-
romagnetic to a ferromagnetic transition. The T 1 arrangement
at equilibrium lattice constant (3.62 A) sits almost at the edge
of this transition.

Figure 10 shows the PDOS for Mn and Rh in Mn3Rh in the
1Q, 2Q, and 3Q arrangements. The PDOS were calculated
from the TB-LMTO-ASR using six nearest-neighbor shells
in augmented space. The recursions were carried out exactly
till 11 steps after which the Beer-Pettifor terminator was used
to terminate the continued fraction. As in the case of MnPt,
we show in Fig. 11 the convergence of the first four PDOS
moments for Mn in 1Q Mn3Rh. Again, those for 2Q and 3Q

magnetic structures are qualitatively similar. The convergence
is less monotonic as compared with MnPt. This is a reflection
of the fact that the PDOS in Mn3Rh has more structure as
compared with MnPt. However, in this alloy system too, the
convergence is good after 11 recursion steps and the fluctuation
in moments is of the order of 5%. A glance at Fig. 10 indicates
that in all the three disordered alloys, there is no vestige of a
pseudogap near the Fermi level. Again, random substitution
of Mn with Rh disrupts the L12 arrangement in the ordered
structures and hence disrupting the effect of the staggered field.
We note also that there is more structure to the Rh PDOS in
Mn3Rh as compared to Pt in MnPt and the overlap with the
Mn PDOS is also greater.

Table II shows the results for magnetic moments from
our work and compares them with the CPA. The magnetic
moments from the ASR agree well with the CPA results. Rh,
unlike Pt, now carries a small induced moment. However,
while the CPA predicts stability in the order 3Q, 2Q, and 1Q,
the ASR predicts stability in the order 1Q, 2Q, and 3Q. As
we discussed earlier, these small energy differences between
different magnetic structures are in the limits of our accuracy.
Again, although we are confident that the ASR with recursion
carried up to 11 steps before termination is more accurate than
the single-site CPA, it would be useful to have definitive and
transparent experimental results before we can make reliable
statements.
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FIG. 10. (Color online) PDOS for the disordered Mn3Rh alloy
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V. CONCLUSION AND REMARKS

We have set up a computational framework for the study
of noncollinear magnetic phases in disordered alloys based on
the marriage of three distinct techniques: the TB-LMTO, the
recursion method, and the augmented space formalism. The
ASR allows us to go beyond the single-site CPA and include
effects of disorder in the local environment accurately. This
is important, since the immediate environment of a magnetic
atom in a solid has a significant impact on its local magnetic
moment.

We have used our formalism to study disordered MnPt
and Mn3Rh alloys. Our ASR results are different from the
earlier CPA, specially in the energy ordering of different
noncollinear states. The very small energy differences between
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FIG. 11. Variation of the first four moments of the partial DOS
of Mn in Mn3Rh in the 1Q magnetic structure. The variation is with
the number of recursion steps after which the asymptotic part of the
continued fraction expression for the Green’s function is replaced by
a Beer-Pettifor terminator. The units for the moments Mn are (Ry)n.

different noncollinear phases means that our error window
should be very narrow. The augmented space formalism is
formally exact; therefore, the error arises in the recursion
method and the TB-LMTO. Errors in the former are controlled
and can be estimated. The main source of error is in the
TB-LMTO. A way out is either to replace TB-LMTO with the
more accurate TB-KKR. This would lead to energy-dependent
potential parameters and hence energy-dependent recursion.
This was developed by us earlier.42 Alternatively, we can
use the full-potential LMTO. However, in that case, the
Hamiltonian is not sparse and we have to have a relook
at the errors in the recursion method. This work is now
in progress.

In this paper we have started with a given noncollinear
magnetic structure and used our technique to obtain its total
energy and local magnetic moments. However, the formalism
suggested by us can deal with situations where we may start
with arbitrary local vector magnetic moments and carry out
a full density functional self-consistent calculations based
on charge densities and vector magnetic moment densities
[via Eq. (15)]. In other words, during our self-consistency
cycle we can relax the local magnetic moment directions.
This is a generalization of the usual local spin-density
functional theory (LSDA) for collinear magnetism. We have
already carried out such calculations for ordered compounds

TABLE II. Magnetic moments obtained from TB-LMTO-CPA
and TB-LMTO-ASR.

Spin Ma
Mn Mb

Mn Ma
Rh Mb

Rh

structure (μB ) (μB ) (μB ) (μB )

1Q 2.57 2.54 0.04 −0.01
2Q 2.62 2.74 0.07 0.02
3Q 2.66 2.83 0.08 0.04

aTB-LMTO-CPA work by Sakuma et al.(Ref. 40).
bPresent work.

094407-9



SHREEMOYEE GANGULY et al. PHYSICAL REVIEW B 83, 094407 (2011)

using TB-LMTO-recursion.34–36 In this communication we
present a generalization of that technique for disordered
alloys.

It appears that no detailed experimental investigation into
noncollinear magnetism in either of the two disordered alloys
has been carried out to confirm our predictions. We propose
that such experiments be carried out so that we may confirm
the theoretical predictions.
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