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Real-time path integrals for quantum dots: Quantum dissipative dynamics with superohmic
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Based on a representation of the functional integral as the time evolution of the augmented density matrix we
have worked out an implementation of the real-time path integral approach that is applicable to the dynamics
of quantum dissipative systems with superohmic coupling to the environment. As a prototype for such a system
we consider a laser-driven strongly confined semiconductor quantum dot coupled to acoustic phonons. First
applications of this approach to quantum dot systems have already been published. Here, we provide a detailed
description of the implementation, including a discussion of numerical issues and extend the formalism from
two-level quantum dot models with a pure-dephasing type carrier-phonon coupling to the case of multiple
electronic levels. The method allows for numerically exact calculations of the dot dynamics at strong dot-phonon
and dot-laser coupling and at long times, usually inaccessible by other approaches.
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I. INTRODUCTION

The functional integration method is a well-known tool in
the theory of dissipative systems.1,2 It is particularly easy to
formulate for models where carriers are linearly coupled to
harmonic-oscillator degrees of freedom such as environment
phonons. In principle the method is capable of providing
numerically accurate results in regimes inaccessible to other
approaches. However, numerical real-time path integrations
typically have to face a number of difficulties. The most
severe of them is the so-called dynamical sign problem which
refers to the difficulty to sum up accurately a huge number
of paths of similar weight that almost cancel out due to
the summation over different phase factors. An elegant and
numerically reliable way to overcome this problem has been
developed in Refs. 3–7 for a certain class of dissipative systems
for which initial value problems have been discussed without
external driving. As practical calculations with this scheme
mainly aimed at applications in the field of chemical physics,
the focus of these studies has been exclusively on systems
with ohmic or subohmic coupling types, for which physical
problems, such as dynamic localization and the crossover
between coherent and incoherent dynamics, have been studied.
Here, as usual, a system environment coupling is called
subohmic when the spectral density of the effective coupling
strength J (ω) scales in the low-frequency limit as J (ω) ∝ ωa

with 0 � a < 1. For a = 1 it is called ohmic while the case
a > 1 is referred to as superohmic. As will be shown below the
application of numerical path integrals in the superohmic case
requires a special treatment due to peculiarities of this type of
coupling.

The pure dephasing type carrier-phonon coupling in
strongly confined semiconductor quantum dots (QDs) rep-
resents a prominent example for a system with superohmic
coupling.8–14 The rapid development of experimental methods
for studies of the ultrafast dynamics in such nanosized
samples15–20 continues to stimulate interest in the detailed
theoretical simulation of the time evolution of these systems.
Most of those experiments study the evolution in strongly

nonlinear regimes, when a system is driven by external light
of high intensities and many prospective applications of QD
systems, in turn, rely on nonlinear properties as, e.g., Rabi
oscillations. In addition the dynamics is strongly influenced
by the interaction between the optically active carriers and
other excitations in the media. For many QD systems the
coupling between QD carriers and phonons in the embedding
media provides the main dephasing mechanism in the ultrafast
time regime. Furthermore, in many real situations the effective
carrier-phonon coupling is not weak, especially at elevated
temperatures.

The theoretical analysis of the dynamics when both the
light-dot and the media-dot coupling are strong is a nontrivial
task since one usually cannot identify a small parameter in the
system. The genuine non-Markovian nature of the dynamics,
reflected in many unusual features such as an experimen-
tally observed nonmonotonic temperature dependence of the
initial decay,13 or a phonon-induced renormalization of the
Rabi frequency,21,22 provides an additional challenge as the
influence of the environment cannot be captured by simple
rates. Most theoretical approaches employed in the analysis
of QD dynamics account fully for the dot-light coupling,
but treat media-dot couplings within approximations which
are explicitly or implicitly perturbative. For example, the
correlation expansion method for the density matrix21–23 or the
two-time Green’s function approach24 contain arbitrary orders
of the phonon coupling constant. However, not all terms in the
perturbation expansion over the phonon coupling are taken into
account, similarly to a summation of certain selected diagram
classes. The noninteracting blip approximation (NIBA) and
its improvements introduced in studies of quantum dissipative
systems1 implicitly employ similar approximations. The main
assumption in the NIBA is that the phonon subsystem is not
affected by the QD state, remaining in the thermal equilibrium
during the evolution. This approach is believed to work
rather well for ohmic and subohmic phonon couplings, but
its validity for the superohmic case is questionable.2 Indeed,
it has been shown that the backaction of nonequilibrium
phonons on the dynamics of QDs can be significant for
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certain excitation conditions.23,25 Approximate methods often
yield qualitatively and, in some cases, quantitatively correct
results. However, their validity is unclear in the limits of
strong coupling, high temperatures, and long time dynamics.
The real-time path integral implementation presented here
can be used as a benchmark for standard approaches that
make use of approximations as has been done for test-
ing the range of validity of the density-matrix method in
Ref. 26.

In this work we present an implementation of the numerical
path integral method that is able to deal with superohmic
couplings. We shall explicitly formulate the theory for
semiconductor quantum dots with few carrier states cou-
pled with external optical pulses and environment phonons
which is certainly one of the major target systems for our
approach. A dissipative system with superohmic coupling
possesses a number of specific properties that are not found
in systems with other coupling types. An important example
is the existence of ever lasting polaronic complexes that
strongly affect the spectral and dynamical properties of a QD.
The polaron stability is related to asymptotic properties of
the time dependence of the memory kernel that governs the
interaction induced dynamics of carriers and phonons. As
we shall demonstrate, these properties make the superohmic
case particularly suitable for the analysis by path integral
calculations, so that reliable results can be obtained at arbitrary
long times.

The paper is organized as follows. In Sec. II we outline the
model that is considered here. It constitutes a prototype for
a system with superohmic coupling and describes a QD that
is coupled to phonons and driven by external light pulses.
Our numerical approach is presented in detail in Sec. III.
Main formulas of the discretized version of the path integral
for the special case of a two-level model are summarized in
Sec. III A. A detailed derivation generalized for a multiple
level system is given in the Appendix to make it easier for
the reader to focus on the numerical algorithm. Section III B is
devoted to the discussion of the memory truncation scheme and
Sec. III C describes our numerical algorithm which utilizes this
approximation in a controlled way. In Sec. IV we give a few
illustrations of our method which are presented here mainly for
benchmarking purposes and to show, how different physical
excitation conditions and numerical issues of convergence
and efficiency are interrelated. The major conclusions are
formulated in Sec. V.

II. QUANTUM DOT MODEL

The dynamics of strongly confined semiconductor quantum
dots are usually described within a model that accounts for
few carrier states linearly coupled with phonons and light.
When the electronic energy levels are well separated and the
energy gaps are incommensurate with phonon frequencies,
the phonon influence on the dynamics is dominated by the
pure dephasing mechanism where phonon-assisted transitions
between the carrier states are negligible. In many practical
situations the model can be further restricted to account for
only two optically active electronic levels that are resonantly
coupled by external laser light pulses. When the frequency of
the light source is close to the exciton energy gap one can use

the rotating wave approximation (RWA) and, if in addition the
light source is coherent and has a sufficiently high intensity,
the light field can be modeled as a classical field. Under these
conditions the relevant Hamiltonian is given by the laser-driven
two-level independent Boson (TLIB) model:

Ĥ = h̄
�

2
(̂σz + 1̂) + 1

2
(̂σz + 1̂)h̄

∑
q

(γqb
†
q + γ ∗

q bq)

+ h̄
∑

q

ωqb
†
qbq − dE(t )̂σ+ − d∗E∗(t )̂σ−, (1)

where � is the energy gap between the two electronic states.
The ground state is taken as zero of the energy. d denotes the
transition dipole for the transition between the two electronic
states, while E is the laser field which is assumed in the form
−dE(t)/h̄ = f (t)e−iωt /2, with f (t) being a real envelope
function. σ̂± ≡ σ̂x ± iσ̂y , where σ̂x ,̂σy ,̂σz are Pauli matrices
that act on the electronic subspace with the basis states |0〉
and |1〉. An extension to more than two levels is worked
out in the Appendix. ωq is the frequency of a phonon that
belongs to the phonon mode labeled by the mode index
q and bq (b†q) are the corresponding phonon annihilation
(creation) operators. Finally, the exciton dot-phonon coupling
γq is the difference between electron-phonon and hole-phonon
constants, γq = γ e

q − γ h
q .

An important quantity that can be derived from γq and the
dispersion relation ωq is the spectral density

J (ω) =
∑

q

|γq|2δ(ω − ωq). (2)

Hamiltonians of the form Eq. (1) are widely used for
many different quantum dissipative systems.1 Our numerical
algorithm can be applied to any of these systems as long as
J (ω) is of superohmic type. However, in order to make closer
contact to the existing literature on quantum dot dynamics
we want to be more specific and employ a model which is
widely used for the analysis of InGaAs self-assembled QDs.
It is based on the following further assumptions: (a) the lattice
properties of a confined QD do not differ significantly from
the environment, so that one can describe the phonons as
in the bulk material, where q denotes the phonon wave
vector; (b) the carrier-phonon interaction is dominated by
the deformation potential coupling with longitudinal acoustic
phonons; (c) small frequency phonons are most important such
that the dispersion can be taken to be linear, ωq = vs |q|, where
vs is the sound velocity. From these assumptions we obtain

γ e(h)
q = �e(h)(q)

|q|De(h)√
2Vρh̄ωq

, (3)

where ρ is the density of the material, V denotes the sample
volume, De(h) is the deformation potential constant, and
�e(h) (q) is the form factor, that can be calculated from the
wave functions ψe(h) (r) of the carriers confined in the QD as

�e(h)(q) =
∫

V

|ψe(h)(r)|2 exp(irq)d3r. (4)

Details of the wave functions are often not important. For
simplicity we assume a spherical dot with wave functions
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given by the ground-state solution of a harmonic potential,
which gives

�e(h) (q) = exp
(−q2a2

e(h)/4
)
, (5)

where ae and ah represent the electron and hole geometrical
confinement lengths, respectively. Inserting Eqs. (3)–(5) into
Eq. (2) we obtain

J (ω) = ω3

4π2ρh̄v5
c

{
De exp

(
−ω2a2

e

4v2
c

)
− Dh exp

(
−ω2a2

h

4v2
c

)}2

, (6)

which scales for small frequencies as J (ω) ∼ ω3 and thus is
indeed of superohmic type. Note that in the opposite limit of
high frequencies J (ω) tends to zero as a Gaussian function, i.e.,
faster than usually assumed in studies of dissipative systems.

Finally we note, that other types of phonon modes or
dispersions, e.g., half-space or slab modes,27 can easily be
handled by our approach as long as the modes form a
continuum which results into a finite memory time.

III. PATH INTEGRALS FOR DOT DYNAMICS

A. Discretized path integrals

The time evolution of the statistical operator ρ̂(t) of the
total system, i.e., the QD and its environment, can be obtained
from the Liouville–von Neumann equation

ih̄
dρ̂

dt
= [Ĥ ,ρ̂]. (7)

As usual we assume that the statistical operator initially is a
product of carrier and phonon operators,

ρ̂(0) = ρ̂(0) ⊗ 1

Z
exp

(
− 1

kBT

∑
q

h̄ωqb
†
qbq

)
, (8)

where Z is the normalization constant of the phonon distribu-
tion at temperature T , kB is the Boltzmann constant, and ρ̂(0)
is the initial statistical operator for the carrier subsystem. The
solution of Eq. (7) together with the initial condition Eq. (8),
traced over the phonon degrees of freedom, gives the dynamics
of the reduced density matrix for the carrier states as

ρ̂(t) = Trph[Û (t)ρ̂(0)Û †(t)], (9)

where the time evolution operator is given by

Û (t) = T̂ exp

(
i

h̄

∫ t

0
Ĥ (t)dt

)
, (10)

and T̂ is the time ordering operator.
As shown in the Appendix, Eq. (9) can be written in the

form of a path integral, where the trace over phonon variables
is readily evaluated. For numerical calculations one needs a
time discretized version of the functional integral with time
intervals ε = t/N , tn = εn, where N is the total number of
time slices. The discretized functional integral is defined in
Eqs. (A32)–(A36) in the Appendix. Here we write the final
expression for the reduced density matrix in the interaction
picture, where the nondiagonal elements oscillate with the

exciton transition frequency � and the frequency of the driving
pulse is shifted to ω − �:

ραN βN
= ei�t(βN −αN )

∑
{αn,βn}

N∏
n=1

Mαn−1
αn

M
βn∗
βn−1

×
n∏

n′=1

eSnn′ ρα0β0
(0). (11)

The configuration summation in Eq. (11) is over all αn, βn =
0, 1 with n = 0, . . . ,N − 1 and M

αn−1
αn

, M
βn

βn−1
are elements of

the field transformation matrix Mn at the nth time step, which
for small time steps, i.e., ε(ω − �) 	 1, reads

Mn =
(

cos fn −iei(�−ω)tn sin fn

−ie−i(�−ω)tn sin fn cos fn

)
,

fn = 1

2

∫ tn

tn−1

f (t)dt.

The condition ε(ω − �) 	 1 for the validity of Eq. (IIIA) is
always fulfilled at resonance � = ω and is easy to fulfill close
to resonance. In addition it should be noted that Eq. (IIIA) also
becomes exact in the limit of ultrashort pulses, as shown in
Eq. (A31).

The influence functional Snn′ in Eq. (11) is given by

Snn′ = −(αn − βn)(Kn−n′αn′ − K∗
n−n′βn′), (12)

where the phonon-induced memory kernel Km, that accounts
for influences that are retarded by m time steps, can be
expressed in terms of the function

�(t) =
∫ ∞

0
dωJ (ω)

[
cos(ωt) coth

(
h̄ω

2kBT

)
− i sin(ωt)

]
(13)

in the form

Km�=0 =
∫ (m+1)ε

mε

dτ

∫ ε

0
dτ ′�(τ − τ ′) = 2

∫ ∞

0
dω

J (ω)

ω2

× [1 − cos(εω)]
{

cos(εωm) coth

(
h̄ω

2kBT

)
− i sin(εωm)

}
, (14)

Km=0 =
∫ ε

0
dτ

∫ τ

0
dτ ′�(τ − τ ′) =

∫ ∞

0
dω

J (ω)

ω2

×
{

[1−cos(εω)] coth

(
h̄ω

2kBT

)
−iεω+i sin(εω)

}
.

(15)

It is worth mentioning that the discrete form of the
functional integral can also be obtained directly from the exact
solution of Eq. (7) for the TLIB model in the case that the
envelope function of a resonant excitation is a time equidistant
sequence of δ pulses.11,28

B. Memory length truncation

An efficient method for the evaluation of the sums in
Eq. (11) is obtained by introducing the so-called augmented
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density matrix.3,4 This procedure avoids the explicit summa-
tion of all terms, which is numerically prohibitive due to their
large number (4N for the two level system). It also bypasses
usual difficulties of Monte Carlo methods that arise due to
alternating signs in the discretized real-time path integrals. The
augmented density matrix method requires that the memory
kernel Km tends sufficiently fast to zero for large m such that
the memory can be truncated at a cutoff nc (Km>nc

= 0). The
applicability of the method therefore depends on the long time
asymptotics of the memory kernel and the related function
�(t) in Eq. (13).

At T = 0 K the main term in the asymptotic expansion of
�(t) with the coupling from Eq. (6) is obtained as

�(t → ∞) → t−4. (16)

The imaginary part in this expansion is exponentially small,
Im[�(t)] ∝ exp[−t2/(2τ 2

ph)], where τph is the maximum of
ae/vs and ah/vs , i.e., the time needed for a sound wave to
cross the QD (typically of the order of a few ps). Equation (16)
decays sufficiently fast to justify the truncation. At finite tem-
peratures the real part of the asymptotic expansion acquires an
additional temperature dependent term ∝ T exp[−t2/(2τ 2

ph)].
The relative weight of this additional term increases at higher
temperatures becoming dominant when kBT � h̄/τph. As the
additional term decays exponentially the long time asymptotic
is still given by the power law in Eq. (16). Nevertheless, the
combination of both terms behaves like a system with an
effectively shortened memory.

Further analysis of Eqs. (11)–(15) reveals that the important
quantity that controls the dynamics of the system is

G(t = εm) =
m∑

n=1

n∑
n′=1

Kn−n′ , (17)

which, according to Eqs. (14) and (15), reads as

G(t) =
∫ t

0
dτ

∫ τ

0
dτ ′ �(τ − τ ′) =

∫ ∞

0
dω

J (ω)

ω2

×
{

[1 − cos(ωt)] coth

(
h̄ω

2kBT

)
− i[ωt − sin(ωt)]

}
.

(18)

Figure 1 displays the time dependence of Km (where m

has been taken as a continuous variable) and G(t) at different
temperatures. At T = 0 K G(t) becomes constant for times
longer than 4.5 ps, while at higher temperatures of T = 10 K
or T = 50 K the memory becomes shorter, taking values of
roughly 3.5 ps.

The quantity exp[−G(t)] controls the time evolution of
the nondiagonal density matrix element ρ01 after a single
ultrashort pulse. It coincides with the exact solution of Eq. (7)
for a single δ pulse excitation.11 Taking again the coupling
from Eq. (6) the long time asymptotic of Eq. (18) evaluates to

G(t → ∞) → G0 − i�pt,

G0 =
∫ ∞

0

J (ω)

ω2
coth

(
h̄ω

2kBT

)
dω = const.,

�p =
∫ ∞

0

J (ω)

ω
dω = const. (19)
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FIG. 1. Time dependence of the real part of the memory kernel
K(t) (left panel) and of the function G(t) defined in Eq. (17) (right
panel) for a ae = 5 nm spherical InGaAs quantum dot with ah =
0.87 ae at different temperatures. For a better comparison, the values
of G(t) have been multiplied by a factor of 4 for T = 10 K and by a
factor of 10 for T = 0 K.

Here �p is the standard polaronic shift, while G0 defines
the residual coherence that stays in the system in the long
time limit (measured, e.g., as the asymptotic amplitude of the
off-diagonal density matrix elements after a single δ pulse). At
nonzero temperature G0 increases with temperature, thereby
reducing the residual coherence (cf. Fig. 1).

In order to obtain also within the truncation approximation,
i.e., with Kc

m>nc
= 0, numerically an asymptotic behavior that

is consistent with the exact solution for δ pulses, the asymptotic
relations for the integral quantity G(t) in Eqs. (17)–(19) must
hold also for the truncated quantities. The long time asymptotic
of G(t) in Eq. (17) is obtained for the truncated memory kernel
Kc

n as

G(t → ∞) → Gc
0 + Gc

1t,
(20)

Gc
0 =

nc∑
n=1

n∑
n′=1

Kc
n−n′ , Gc

1 =
nc∑

n=0

Kc
n.

Comparing this with the exact asymptotic in Eq. (19) one
obtains the following constraint for the truncated memory
kernel:

nc∑
n=0

Kc
n = −iε �p, (21)

which is consistent with the exact identity:

∞∑
n=0

Kn =
∫ ∞

0
ε �(τ )dτ = −i

∫ ∞

0
ε

J (ω)

ω
dω. (22)

In the truncated memory approximation, it is most impor-
tant to enforce this constraint for the real part of the kernel,
i.e., to ensure that

nc∑
n=0

Re
[
Kc

n

] = 0. (23)

It should be noted that the constraint Eq. (21) and the
necessity of its enforcement is specific to the superohmic
case. For the two-level system this can be most elegantly
achieved by first noting that the polaronic shift �p effectively
leads to a renormalization of the transition frequency. It is
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thus convenient to add it to the transition frequency, so that
�̃ = � − �p replaces � in Eqs. (11) and (IIIA) and to remove
the constant −iε�p in Eq. (21) by modifying the kernel
according to K̃c

0 = Kc
0 + iε �p and K̃c

n = Kc
n for n > 0. With

this redefinition, Eq. (21) turns into
nc∑

n=0

K̃c
n = 0, (24)

which can be automatically fulfilled when we replace K̃c
n by

K̄c
n = K̃c

n − 1

nc + 1

nc∑
n=0

K̃c
n. (25)

It should be noted that if Eq. (23) is not enforced the long time
evolution of the system is dramatically altered by the truncation
approximation since the time evolution of the off-diagonal
density matrix elements acquires an additional exponential
factor exp(−Re[Gc

1]t). In this case Eq. (11) cannot reproduce
known exact results. To demonstrate the importance of this
constraint we show in Fig. 2 the polarization after a δ-like
π/2 laser pulse for different temperatures. The simulations
where Eq. (23) has been enforced by using Eq. (25) coincide
exactly with known analytical results for ultrashort pulses.
After a fast initial decay on a picosecond time scale we find a
remnant polarization, the value of which depends strongly on
the temperature. In contrast, simulations where this constraint
has not been enforced show a qualitatively different behavior.
Depending on the sign of Re[Gc

1] the long time behavior
exhibits an additional exponential decay or even an increase.
It should be noted that immediately after a π/2 pulse the
modulus of the nondiagonal density matrix element reaches
its maximal possible value, i.e., |ρ01| = 1. As the polarization
is proportional to |ρ01| it is therefore physically impossible that
the polarization can rise from this starting point. Thus, values
of |P (t)/P (0)|2 above one that show up in Fig. 2 after ∼ 15 ps
in the zero temperature curve calculated without enforcing the
constraint Eq. (23) are clearly unphysical.

It is instructive to analyze the consequences of the memory
truncation on the time evolution in Eq. (11) for phonon
couplings assumed to be either ohmic or subohmic, i.e., with
a low-frequency scaling J (ω) ∝ ωa , with a = 1 (ohmic case)
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FIG. 2. Time dependence of the optical polarization induced by
a δ-like π/2 pulse arriving at t = 0 ps at different temperatures. The
solid lines correspond to numerical results obtained by enforcing
Eq. (24) and are indistinguishable from analytically known exact
results, while simulations without this constraint (dashed lines) show
a qualitatively different long time behavior.

or with 0 � a < 1 (subohmic case). The corresponding long
time asymptotics are given by

�(a)(t → ∞) → γ (a)t−1−a, (26a)

G(a)(t → ∞) → G(a)t1−a − i�pt, (26b)

G(a=1)(t → ∞) → G(a=1) ln t − i�pt, (26c)

where γ (a) and G(a) are constants. Although �(a)(t) asymptoti-
cally decreases at long times for all 0 � a � 1, an assumption
of a finite memory length in the kernel Kn (and �) is not
consistent with the G(a)(t) asymptotic in Eq. (26). Indeed,
the asymptotic in Eq. (20) for the truncated memory kernel
always leads to a linear time dependence, which according
to Eq. (26) is found only for a = 0. Thus, for ohmic
and subohmic coupling the finite memory approximation
introduces qualitative changes in the long time behavior, and
this can significantly affect the long time evolution of the
system calculated according to Eq. (11). This contrasts to
the case of superohmic coupling in QD systems for which
the truncation cannot lead to qualitative changes of the system
dynamics, if Eq. (21) holds. Possible quantitative errors due to
the truncation can be well controlled by varying the time step
and the memory truncation length.

Finally, we note that a similar truncation procedure must be
followed when dealing with a multilevel system with super-
ohmic couplings, as considered in the Appendix. However, for
the case of different coupling constants one cannot introduce a
single polaronic shift and, therefore, the constraint on the real
parts in Eq. (23) must be enforced separately for all kernels
Kξnζn′ defined in Eq. (A35).

C. Numerical algorithm

The truncated memory length approximation enormously
reduces the numerical load for the calculation of the reduced
density matrix according to Eq. (11), or Eq. (A26) for the
multilevel case, especially when it is combined with the
so-called augmented density matrix formalism.3,4 The original
formulation of this method is somewhat cumbersome and
required multiple runs of the algorithm to obtain the complete
time evolution. Its subsequent improvement allowed an “on the
fly” path selection, i.e., the most relevant paths are selected
in the course of the time propagation in a single run. Here
we present a brief summary of the method, adapted for the
calculation of the QD dynamics.

To make the introduction of the algorithm most transparent
we start from Eq. (11) to obtain the reduced density matrix
at the time t = tn corresponding to the nth time slice with
n � N :

ραnβn
= e−i�t(αn−βn)

∑
{αm<n,βm<n}

Rn({αm,βm}), (27)

where Rn is a function of all variables {αm,βm} with m = 0...n

which is defined by the recurrence-like relation

Rn = TnRn−1, (28a)

Tn = Mαn−1
αn

M
βn∗
βn−1

exp

{
n∑

n′=1

Snn′

}
, (28b)

R0 = ρα0β0
(0). (28c)
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This is not a true recurrence since Rn−1 and Rn are functions
of different numbers [2n and 2(n + 1)] of the time slice
variables {αm,βm}. When the memory has a finite length, nc,
then Tn can be written as

Tn = Mαn−1
αn

M
βn∗
βn−1

exp

⎧⎨⎩
n∑

n′=n−nc

Snn′

⎫⎬⎭ , (29)

which depends on 2(nc + 1) time slice variables. At step n Tn

introduces connections between variables αn, βn and αi, βi in
the time interval n − nc � i � n − 1, while the variables in the
interval 0 � i � n − nc − 1 are not coupled. This allows us to
sum Rn over the variables in the interval 0 � i � n − nc − 1,
which introduces the augmented density matrix Rn as

Rn =
∑

α0,...,αn−nc−1

∑
β0,...,βn−nc−1

Rn, at n > nc,

(30)
Rn = Rn, at n � nc.

This implies that Rn depends on the same number of variables
for all n � nc. Using Eqs. (28) and (30) we obtain a true
recurrence relation for Rn>nc

as

Rn =
∑

αn−nc−1

∑
βn−nc−1

TnRn−1, (31)

while for n � nc Eq. (28) is used. The summation in
Eq. (31) eliminates the dependence of Rn on the variables
αn−nc−1,βn−nc−1, while Tn adds the dependence on the vari-
ables αn,βn. Therefore, Rn−1 and Rn depend on the same
number of variables, or in other words Rn−1 and Rn are objects
of the same rank. Equation (31) is effectively a dynamical
equation for the augmented density matrix, which in a sense
does not have a memory as the matrix is fully defined by its
values on the previous step. The price for a recurrence without
memory is the increased dimensionality of the matrix. Figure 3
illustrates the structure of Eq. (31) for nc = 2.

The reduced carrier density matrix at time step n, which is
the real target of the calculation, is found from the augmented
density matrix by summing over all those variables that
correspond to times previous to tn

ραnβn
= e−i�t(αn−βn)

∑
αn−1,...,αn−nc

∑
βn−1,...,βn−nc

Rn. (32)

Writing the functional integral as a recurrence according
to Eq. (31) reduces the number of required summations
substantially. For n � nc we now have to account for 4nc con-
figurations instead of 4n which increases exponentially. Thus,
the truncated memory approximation allows to calculate the
time evolution for long times, if one can store and manipulate
augmented density matrix tensors with a dimensionality of 4nc .

At a large memory length the efficiency of the method can
be further improved, if one combines Eq. (31) with an “on-fly”
path selection algorithm, similar to the one used in Ref. 5. To
implement this selection algorithm it is convenient to represent
the augmented density matrix Rn−1 as a function of paths Wk ,
k = 1, . . . ,kmax, where a path is a particular configuration of
the variables {αm,βm} within the memory length, i.e., it is of the
form (αn−1, . . . ,αn−nc−1,βn−1, . . . ,βn−nc−1). In the two-level
system each path can thus be represented as a 2(nc + 1) long

FIG. 3. Schematic representation of the truncation approximation
for the recurrence sequence given in Eq. (30). The circles indicate
time points tn. Solid circles correspond to points within the memory
length nc = 2. Hollow circles are the time steps m with n − m � nc,
for which the corresponding paths have been summed out. The solid
lines indicate the carrier paths included in Rn, while the dashed lines
indicate eliminated paths by summation.

sequence of 0’s and 1’s. At times that exceed the memory
length n > nc the algorithm can be described in three steps:

1. We assume that at step n − 1 we know all paths Wk , k =
1, . . . ,kmax, of the length 2(nc + 1) that contribute noticeably
to Rn−1, i.e., paths that satisfy the condition Rn−1(Wk) > δ,
where δ is a chosen threshold that sets the accuracy of the
calculation.

2. We construct a product R′
n = TnRn−1(Wk) as in Eq. (31).

By comparing all possible values of R′
n for all possible

newly added variables αn = 0,1 and βn = 0,1 we find
all new noticeably contributing paths Wk , k = 1, . . . ,kmax,
of the form (αn, . . . ,αn−nc−1,βn, . . . ,βn−nc−1) that satisfy
R′

n(Wk) > δ.
3. We sum those R′

n, that are relevant according to step 2,
over the last variables αn−nc−1,βn−nc−1 in the paths Wk , as
prescribed by Eq. (31). In the paths language this means
the summation of R′

n for paths in which all values of
(αn, . . . ,αn−nc

,βn, . . . ,βn−nc
) are the same. The summation

procedure yields the augmented density matrix Rn at the next
time step. At n � nc this step is omitted.

The procedure defined by steps 1–3 finds the most relevant
paths by a recursive construction starting from some point. It
is done “on the fly” and allows us to obtain the entire time
evolution in a single run.

The accuracy of the numerical results depends on the
time increment ε, the memory cutoff nc, and the parameter
δ to select the contributing paths. The maximal accuracy
of the calculation is O(ε). However, a slight modification
of the procedure3,4 (setting ε/2 time slices at both ends of
the time interval) improves this accuracy to O(ε2). The choice
of the cutoff nc is dictated by the effective temporal extension
of the memory kernel, which follows from the dot geometry
and the coupling mechanism. It can roughly be estimated
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by τph. The parameter δ can be fixed by comparing a few
runs with different values until the results do not change with
further decreasing δ. The choice of δ can be further checked
by requiring that the calculation correctly reproduces cases,
where exact solutions are known, e.g., the dynamics of a QD
dot excited by a field with constant amplitude in the absence
of phonons. A combination of nc and δ determines the total
number of paths that need to be stored in the computer memory.
The large number of paths that need to be memorized is the
main limitation of the algorithm, especially for models with
larger numbers of carrier levels.

IV. NUMERICAL RESULTS

A few numerical applications of our implementation of
the path integral approach to quantum dots have already been
published without detailed explanation of the algorithm.29,30

These studies revealed an interesting undamping effect of Rabi
rotations at high-pulse areas. The corresponding calculations
have been performed for the two-level model presented in
Sec. II and rectangular pulse envelope functions f (t). Of
course, our algorithm is not restricted to rectangular pulses
and can be used for pulses of any shape. This shall be
illustrated here by simulations for Gaussian pulses that are
more common in experiments. The results are in many respects
qualitatively similar to those in Ref. 29. The remaining
noticeable differences, in particular their physical origin, shall
be analyzed in detail elsewhere. Here, we are mainly interested
in the interrelation between changing physical excitation
conditions and the efficiency and convergence properties of
our algorithm.

To be specific we calculate the time evolution of the reduced
electronic density matrix of a spherical tightly confined
InGaAs QD with ae = 5 nm and ah = 0.87 ae that is resonantly
excited by a Gaussian pulse. The material parameters for
the coupling between the dot and the longitudinal acoustic
phonons are the same as in Ref. 11. It turns out that the
results are converged for a time slice of ε = 0.4 ps using a
memory length of nc = 10 and a path selecting parameter of
δ = 10−9. A comparison with the plots in Fig. 1 shows that
the memory kernel has practically vanished at the cut-off time
ε nc = 4.0 ps. It is, however, surprising that the rather coarse
grained time step of 0.4 ps is sufficient to achieve convergence.
We have checked that taking finer time slices does indeed not
change our results.

Figure 4 displays the time evolution of the occupation of
the upper state, ρ11(t), for two representative temperatures
of T = 10 K and 50 K at a total pulse area of α = 40π .
Clearly seen are decaying Rabi oscillations with a period
that changes with time following the field intensity. The
decay rate notably increases with temperature. However, the
observation of Rabi oscillations in the time regime is often not
convenient experimentally. Therefore, in many experiments
the final occupation after the pulse is recorded as a function
of the total pulse area α. Corresponding numerical results are
plotted in Fig. 5 again for temperatures of T = 10 K and 50 K.
The amplitude of the oscillations in Fig. 5 is a nonmonotonous
function of the pulse area. For weak fields it decays with
increasing field strength, while for strong fields it increases.
This is the reappearance of Rabi rotations at high intensities
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-200 -100 0 100

ρ
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T = 10 K T = 50 K

-200 -100 0 100 200

t (ps)

T = 10 K T = 50 K

FIG. 4. Occupation ρ11 of the upper electronic state as a function
of the time t for a Gaussian pulse with pulse area α = 40π , pulse
maximum at t = 0 and total duration of 140 ps (full width half
maximum of the intensity) calculated for temperatures of T = 10 K
and T = 50 K.

that has been discussed for rectangular pulses in Ref. 29.
Despite some differences we conclude that the phenomenon is
in essence also present for excitations with Gaussian pulses.

It is instructive to analyze how different physical excitation
conditions affect the efficiency of our on-the-fly path selection
algorithm. To this end, we performed calculations with and
without path selection. Comparing results calculated with the
on-the-fly algorithm for different values of the path selecting
parameter δ with those, obtained by keeping all possible paths
within the memory length, i.e., 4nc , reveals, how many paths
have to be kept to achieve converged results. The black solid
line in Fig. 6(a) shows as a function of the pulse area and for
a fixed pulse duration of 18 ps (full-width half-maximum of
the intensity) the fraction μ of all possible paths that has to
be taken into account to achieve an error in ρ11 that is below
0.01. The corresponding path selecting parameter δ is plotted
as a grey dotted line and shows a nonmonotonic behavior.
Obviously, above α ∼ 20π practically all paths have to be
kept, and the on-the-fly selection algorithm is inefficient in
highly nonlinear regimes. In contrast, below α ∼ 5π less than
20% of the paths are relevant leading to a large speed-up of the
numerics due to the path selection. In previous applications to
ohmic systems without optical driving even higher efficiencies
have been reported5 with values of μ � 0.1%. Consistent with

0.0
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FIG. 5. Occupation ρ11 of the upper electronic state after excita-
tion with a Gaussian pulse of 7 ps duration (full-width half-maximum
of the intensity) as a function of the pulse area α calculated for
temperatures of T = 10 K and T = 50 K.
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FIG. 6. Efficiency of the on-the-fly-algorithm. (a) fraction μ

(black solid line) of all possible paths, that has to be taken into
account to achieve an error in ρ11 below 0.01 as a function of the
pulse area α at T = 10 K for a Gaussian pulse of 18 ps duration.
The grey dotted line displays the corresponding values of the path
selection parameter δ. (b) shows the required fraction μ of all possible
paths corresponding to an error smaller than 0.01 for a 10 π -pulse of
18 ps duration as a function of the temperature (solid, lower x axis)
and as a function of the coupling constant γq at T = 10 K (dashed,
upper x axis). Here γq,0 is the coupling constant of GaAs, which has
been used for all other plots shown in this work.

these findings, we obtain similar low values in the limit of
vanishing pulse areas.

Besides the external driving, the temperature and the
coupling strength significantly influence the efficiency of our
algorithm. Shown in Fig. 6(b) is μ as a function of the
temperature (solid, lower x axis) for α = 10π and a fixed pulse
duration of 18 ps and also as a function of the carrier-phonon
coupling strength (dashed, upper x axis) for the same pulse
and at T = 10 K. In order to explore the dependence on the
coupling strength we have scaled the γq values that correspond
to our standard GaAs parameters by a factor indicated on
the upper axis. It has been noted before29 that increasing
the temperature and increasing the carrier-phonon coupling
act in many respects in similar ways on the system. This is
also reflected in Fig. 6(b), where μ shows similar tendencies
as a function of T and γq. At low temperatures or weak
couplings between 60 and 70% of the paths are relevant,
while for temperatures above 80 K or couplings about 10 times
stronger than in GaAs less than 35% are needed. We note that
GaAs corresponds rather to the low-coupling limit. Effective
couplings to acoustic phonons that are 10 times stronger are
found, e.g., for the piezoelectric coupling in GaN.31

The efficiency of the path selection algorithm is primarily
defined by the number of paths necessary for the accurate
description of oscillating functions. Rabi oscillations of higher
amplitude and frequency generally require a larger number of

contributing paths. We have seen this already in discussing
the decreased efficiency at higher Rabi frequencies, shown in
Fig. 6(a). Now at increased temperatures the amplitude of the
oscillations decays faster, as shown in Fig. 4, also leading
to a decreased number of relevant paths. A similar decay
of Rabi oscillations is observed at larger coupling strengths,
resulting in a similar efficiency increase, shown in Fig. 6(b).
An additional factor that may influence the number of paths
is the effective memory length. It is affected by temperature,
which generally shifts the relevant features of the memory
kernel toward earlier times, as shown in Fig. 1. However,
when scaling the coupling, as done in Fig. 6(b), the form
of the memory kernel is not changed and thus the memory is
not shortened. Therefore, a change of the memory length is
not responsible for the reduction of required paths in this case.

V. CONCLUSION

We have presented a numerical real time path integral
approach that is specially adapted to systems with superohmic
system bath coupling. As a prototype for such a system we
have considered a laser-driven strongly confined quantum dot
coupled to acoustic phonons via the deformation potential
coupling. Based on the augmented density matrix formalism,
explicit formulas for the discretized propagation of the reduced
electronic density matrix are given for two- and multilevel
electronic models. In addition, it is described how this
propagation scheme can be combined with an on-the-fly path
selection method to further enhance the numerical efficiency.
Our implementation accounts for arbitrary driving forces
by external laser fields while previous studies with similar
approaches have concentrated on initial value problems for
cases with ohmic or subohmic couplings. We have demon-
strated that for systems with superohmic coupling the propa-
gation yields the correct asymptotic long time behavior when
constraints, that hold exactly in the continuous formulation of
the path integral, are enforced in the discretized form with a
truncated memory that is used in the numerical implementa-
tion. In contrast, for systems with ohmic or subohmic coupling
the memory truncation introduces qualitative changes of the
long time asymptotics.

For a system driven by a sequence of ultrashort pulses
the formulas provided by our discretized propagation scheme
coincide with known exact analytical results for this case.
For pulses of arbitrary shape the algorithm yields results
with a well-controlled numerical error. As an illustration we
have calculated the time evolution of a quantum dot system
after excitation with a Gaussian pulse. Similar to previous
studies with rectangular pulses we find a revival of Rabi
rotations at high pulse areas. Our studies also reveal a strong
dependence of the efficiency of the on-the-fly path selection
on physical excitation conditions. The algorithm turns out
to be highly efficient only for not too strong laser-induced
nonlinearities. Interestingly, the efficiency of the path selection
rises considerably for high temperatures and strong carrier-
phonon couplings. We believe that the method developed in
this paper will pave the way toward many new studies of
quantum dissipative systems with superohmic coupling, in
particular quantum dots, in regimes that have so far been out
of reach with other methods. This includes highly nonlinear
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dynamics as well as high-temperature and/or strong-coupling
scenarios.

ACKNOWLEDGMENTS

M.D.C. is grateful for the support of the Alexander von
Humboldt Foundation.

APPENDIX: DISCRETIZED PATH INTEGRALS
FOR MULTILEVEL SYSTEMS

In this appendix we derive a discretized path integral
representation of the dynamics for a laser-driven multilevel
carrier system that is coupled to acoustic phonons by pure-
dephasing type interactions. The derivation relies on the
linear carrier-phonon coupling, which allows to eliminate the
phonon related degrees of freedom exactly and to construct
an effective Feynman-Vernon–like functional for the carrier
states. Although this type of procedure is well established
in the literature there are several reasons why it is worth
presenting here. Most derivations concentrate on the two-level
case and explicit formulas for the multiple level case are rarely
found. Finally, details of the numerical procedure are strongly
connected with the derivation of the path integral itself and
therefore, presenting the derivation will make these procedures
more transparent.

We shall focus on a quantum dot system described by the
following generic Hamiltonian:

Ĥ = Ĥ0 + Ĥ1, Ĥ0 = h̄�̂ + h̄M̂(t),
(A1)

Ĥ1 = h̄
∑

q

(γ̂qb
+
q + γ̂ ∗

q bq) + h̄
∑

q

ωqb
†
qbq,

where the hat sign stands for matrix operators, acting in
the space of carrier states, h̄�̂ is a diagonal matrix with
the energies of the states on the diagonal, M̂(t) describes
transitions between the carrier states induced by the coupling
with external light, and γ̂q is a diagonal matrix accounting for
the coupling of phonons to the different electronic levels.

The dynamics of the system is given by the Liouville–von
Neumann equation. From its solution the dynamics of the
reduced carrier density matrix is obtained according to Eq. (9).
Thus, the path integral representation for the reduced carrier
density matrix follows from that for the evolution operator
given by Eq. (10). The latter is obtained by following several
standard steps. First, the evolution operator which corresponds
to the Hamiltonian in Eq. (A1) is discretized using the Trotter
formula,

Û (t) = lim
N→∞

N∏
n=1

e−iεĤ (tn)/h̄, (A2)

where tn = εn, t0 = 0, tN = t , and the product is time
ordered, with decreasing n from left to right. For numerical
calculations one approximates Eq. (A2) with finite N and ε.
The product in Eq. (A2) is converted into a summation over
a multidimensional configuration space by inserting identity
operators În as

Û (t) ≈ e−iεĤ (tN )/h̄ÎN−1, . . . ,Î1e
−iεĤ (t1)/h̄. (A3)

Each of the identity operators În is constructed as a direct
product of identity operators in the space of carrier states,
|αn〉, and coherent phonon states, |Zn〉, defined by bq|Zn〉 =
zqn|Zn〉, so that

În = Î α
n ⊗ Î z

n , Î α
n =

∑
αn

|αn〉〈αn|, Î z
n =

∫
dμn|Zn〉〈Zn|,

(A4)

dμn =
∏

q

e−zqnzqn
dzqndzqn

π
,

where the integration is done on the complex plane of the
conjugate variables zqn and zqn = z∗

qn. In this representation
the matrix elements of the evolution operator in Eq. (A3)
read as

〈αN,ZN |Û (t)|α0,Z0〉
=

∑
α1

· · ·
∑
αN−1

∫
dμ1 · · ·

∫
dμN−1 UN UN−1 · · · U1,

(A5)
Un = 〈αn,Zn|e−iεĤ (tn)/h̄|αn−1,Zn−1〉.

Keeping the accuracy of the discretization O(ε), the operator
exponent in Eq. (A2) can be written as

e−iεĤ (tn)/h̄ ≈ e−iεĤ1(tn)/h̄e−iεĤ0(tn)/h̄, (A6)

and the matrix element Un reads

Un = 〈Zn,αn|e−iεĤ1(tn)/h̄|Zn−1,αn〉
〈αn|e−iεĤ0(tn)/h̄|αn−1〉, (A7)

where we have used the fact that Ĥ0 is diagonal in the phonon
sub space and that Ĥ1 is diagonal in the subspace of carrier
states. Using a standard result for matrix elements of a normal-
ordered phonon operator function,

〈Z|F (b†q,bq)|Z ′〉 = e
∑

q zqz′
qF (zq,z

′
q), (A8)

and again keeping the accuracy O(ε) we evaluate the first
matrix element in Eq. (A7) as

〈Zn,αn|e−iεĤ1/h̄|Zn−1,αn〉 ≈ 〈αn|eŜn |αn〉, (A9)

where

Ŝn =
∑

q

zqnzqn−1 − iε
∑

q

(γ̂qnzqn + γ̂ ∗
qnzqn−1)

− iε
∑

q

ωqzqnzqn−1. (A10)

The index n in the matrix γ̂qn is introduced to stress that it acts
on carrier states of the nth time slice.

In the limit (N → ∞, ε → 0, Nε = t) the matrix elements
of the evolution operator, defined in Eqs. (A5)–(A10), become
a path integral over phonon variables, formally written as

〈Zf ,αf |Û (t)|Zi ,αi〉 = 〈αf |
∫

DZT̂[eŜ]|αi〉, (A11)

where initial and final states are denoted by indices i(n = 0)
and f (n = N ). T̂ is the time ordering operator for the operators
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in the carrier state space and the “action” Ŝ is also an operator
in the same space given by

Ŝ =
∑

q

zq(t)zq(t) − i

h̄

∫ t

0
Ĥ0(τ )dτ

−
∫ t

0
dτ

∑
q

[zq(τ )żq(τ ) + iωqzq(τ )zq(τ )

+ iγ̂q(τ )zq(τ ) + iγ̂q(τ )∗zq(τ )]. (A12)

In deriving Eq. (A12) we have used the identity

N∑
n=1

zqnzqn−1 −
N−1∑
n=1

zqnzqn = zqNzqN

− ε

N∑
n=1

zqn

zqn − zqn−1

ε
. (A13)

The definition of the path integral is complete with the
boundary conditions

zq(0) = zqi , zq(t) = z∗
qf . (A14)

The matrix elements of the statistical operator are obtained
by performing the matrix products in Eq. (9) in the chosen
representation for the phonon and carrier states. The reduced
carrier density matrix then follows after taking the trace over
the phonon degrees of freedom. Here this is equivalent to
integrations over the phonon variables zqf as

ρ̂αf ,βf
(t) =

∑
αi ,βi

∫
dμf dμidμ′

i〈Zf ,αf |Û (t)|Zi ,αi〉

× 〈Zi ,αi |ρ̂(0)|Z ′
i ,βi〉〈Z ′

i ,βi |Û †(t)|Zf ,βf 〉,
(A15)

where the matrix elements of the operator Û †(t) read

〈Z ′
i ,βi |Û †(t)|Zf ,βf 〉 = 〈βi |

∫
DZ ′T̂′[eŜ ′

]|βf 〉, (A16)

with

Ŝ ′ =
∑

q

z′
q(t)z′

q(t) + i

h̄

∫ t

0
Ĥ ′

0(τ )dτ

−
∫ t

0
dτ

∑
q

[
z′

q(τ )ż
′
q(τ ) − iωqz

′
q(τ )z′

q(τ )

− iγ̂ ′
qz

′
q(τ ) − iγ̂ ′∗

q z′
q(τ )

]
. (A17)

The trajectories in Eq. (A17) satisfy the boundary conditions

z′
q(t) = zqf , z′

q(0) = z′∗
qi . (A18)

The initial statistical operator ρ̂(0) is defined by Eq. (8), which
in the phonon coherent states representation assumes the form

〈Zi ,αi |ρ̂(0)|Z ′
i ,βi〉 = 1

Z
exp

[ ∑
q

e
− h̄ωq

kB T z∗
qiz

′
qi

]
ρ̂αiβi

(0).

(A19)

Since the action in Eqs. (A12) and (A17) is quadratic in the
phonon variables the corresponding path integrals can be cal-
culated analytically. This can be done either in the discretized

representation defined in Eqs. (A5)–(A10) or, alternatively, in
the continuous formulation given in Eqs. (A11)–(A14) and
(A16)–(A18). In the latter approach the path integral for the
evolution operator is defined by the “classical” trajectories,
found from the condition of extremal action, so that

〈Zf ,αf |Û (t)|Zi ,αi〉 ∝ 〈αf | exp(Ŝcl)|αi〉, (A20)

where Ŝcl is the extremal action. Accounting for deviations
from those trajectories yields a nonessential time dependent
factor, which is absorbed by a normalization, when the
result is substituted to calculate the final density matrix.
The trajectories for the extremal action are determined by
the equations

∂S

∂zq
= żq + iωqzq + iγ̂q = 0,

(A21)
∂S

∂zq
= żq − iωqzq − iγ̂ ∗

q = 0,

that are complemented with the boundary conditions in
Eq. (A14). The corresponding solutions are

zq(τ ) = e−iωqτ zqi − i

∫ τ

0
e−iωq(τ−τ ′)γ̂q(τ ′)dτ ′,

(A22)

zq(τ ) = eiωq(τ−t)z∗
qf − i

∫ t

τ

eiωq(τ−τ ′)γ̂ ∗
q (τ ′)dτ ′.

We note, that these solutions are operators in the carrier state
space. Also, it is easily seen, that now they are not complex
conjugate which justifies the notation z.

The extremal action Ŝcl is obtained by substituting
Eq. (A22) into Eq. (A12), which yields

Ŝcl(t) = − i

h̄

∫ t

0
Ĥ0(τ )dτ +

∑
q

z∗
qf zqie

−iωqt

−
∑

q

∫ t

0
dτ

∫ τ

0
dτ ′eiωq(τ ′−τ )γ̂ ∗

q (τ )γ̂q(τ ′)

− i
∑

q

z∗
qf

∫ t

0
eiωq(τ−t)γ̂q(τ )dτ

− i
∑

q

zqi

∫ t

0
e−iωqτ γ̂ ∗

q (τ )dτ. (A23)

For the path integral in Eq. (A16) the extremal action is found
along the same lines as

Ŝ ′
cl(t) = i

h̄

∫ t

0
Ĥ ′

0(τ )dτ +
∑

q

zqf z′∗
qie

iωqt

−
∑

q

∫ t

0
dτ

∫ τ

0
dτ ′e−iωq(τ ′−τ )γ̂ ′

q(τ )γ̂ ∗′
q (τ ′)

+ i
∑

q

zqf

∫ t

0
e−iωq(τ−t)γ̂ ∗′

q (τ )dτ

+ i
∑

q

z′∗
qi

∫ t

0
eiωqτ γ̂ ′

q(τ )dτ. (A24)

Both Ŝ and Ŝ ′ in Eqs. (A23) and (A24) are operators in the
space of carriers states, denoted by indices α and β for Ŝ
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and Ŝ ′, respectively. Substituting Eqs. (A23) and (A24) into
Eq. (A15) we obtain the reduced carrier density matrix as

ρ̂αf ,βf
(t) =

∑
αi ,βi

∫
dμf dμidμ′

i〈αf ,βf |T̂ T̂ ′eŜcl+Ŝ ′
cl |αi,βi〉

× exp

(∑
q

e
− h̄ωq

kB T z∗
qiz

′
qi

)
ρ̂αi ,βi

(0). (A25)

After integration over zqi , zqf , and z′
qi one obtains finally

ρ̂αf βf
(t) =

∑
αi ,βi

〈αf ,βf |T̂ T̂ ′eŜ0+Ŝinf |αi,βi 〉̂ραiβi
(0), (A26)

where

Ŝ0 = −i

∫ t

0
[M̂(τ ) − M̂ ′(τ )]dτ (A27)

describes field-induced rotations in the carrier state space and
the influence functional Ŝinf is given by

Ŝinf = −i(�̂−�̂′)t −
∑

q

{
nq

∫ t

0
dτe−iωqτ [γ̂ ∗

q (τ ) − γ̂ ′∗
q (τ )]

×
∫ t

0
dτ ′eiωqτ ′

[γ̂q(τ ′)−γ̂ ′
q(τ ′)]−

∫ t

0
dτ

∫ t

0
dτ ′eiωq(τ−τ ′)

× γ̂q(τ )γ̂ ′∗
q (τ ′)+

∫ t

0
dτ

∫ τ

0
dτ ′[e−iωq(τ−τ ′)γ̂ ∗

q (τ )γ̂q(τ ′)

+ eiωq(τ−τ ′)γ̂ ′
q(τ )γ̂ ′∗

q (τ ′)]
}
, (A28)

where nq = [exp(h̄ωq/kBT ) − 1)]−1. Equation (A28) can be
written in a simpler form, when the coupling constants satisfy
certain symmetry conditions. For example, when all γqα are
purely real or imaginary, or the system contains only two
carrier states and γq0 = 0, then Eq. (A28) can be written as

Ŝinf = −i(�̂ − �̂′)t −
∑

q

∫ t

0
dτ

∫ τ

0
dτ ′[γ̂ ∗

q (τ ) − γ̂ ′∗
q (τ )]

× [ηq(τ − τ ′)γ̂q(τ ′) − η∗
q(τ − τ ′)γ̂ ′

q(τ ′)], (A29)

where we have introduced the notation

ηq(τ ) = coth

(
h̄ωq

2kBT

)
cos(ωqτ ) − i sin(ωqτ ). (A30)

Equations (A26)–(A30) define the path integral expressed
using continuous time ordered products of operators in the car-
rier state space. In order to develop a numerical algorithm for
practical calculations we shall return to a suitable discretized
representation. Since the main steps in this procedure are
analogous to the construction of the original path integral with
phonon variables, we only highlight the essential differences.

As before we use Eq. (A2), with finite time slices ε.
The identity operators are then inserted as in Eq. (A3). As
the system is now described by two sets of carrier states,
|αn〉 and |βn〉, for the forward and for the backward time
propagation, respectively, the identity operators are a direct
product În = Î α

n ⊗ Î
β
n . In order to calculate matrix elements

of the operator exponents between states at time slices n and
n−1 we approximate the matrix exponent as in Eq. (A6).
The first part contains the influence functional Ŝinf , that has
only diagonal phonon coupling matrices, while the second
part contains Ŝ0, with nondiagonal operators in the carrier
state space.

Here, integrals of Ŝinf and Ŝ0 over the time slices appear
in the exponents, not their first order approximation as in
Eq. (A6). This yields a considerable improvement of the
accuracy for the diagonal part Ŝinf , which yields an exact
solution in the absence of the external driving. It is easy to
see that this discretization scheme for the path integral in
fact gives the exact solution in the case when the external
driving is given by a sequence of delta pulses arriving at
times tn = εn:

M̂(t) = ε

N∑
n=1

M̂(tn)δ(t − εn). (A31)

When the influence functional reduces to the form in Eq. (A29)
the discretized version of Eq. (A26) becomes

ρ̂αN βN
=

∑
{αn,βn}

{
N∏

n=1

Mαn−1
αn

M
βn∗
βn−1

e−i(�αn −�βn )ε

×
n∏

n′=1

eSnn′ ρ̂α0β0

}
, (A32)

where the configuration summation is over all αn, βn = 0, 1
with n = 0, . . . ,N − 1 and matrices M describe external field
influences and are defined as

M
αn−1
αn

= 〈αn|e−iεM̂(tn)|αn−1〉, (A33)

while the discretized form of the influence functional is

Snn′ = −Kαn′ αn
− K∗

βnβn′ + K∗
αnβn′ + Kαn′βn

. (A34)

Here, the kernel Kξζ (indices ξ,ζ denote arbitrary combina-
tions of indices α,β) is calculated according to

Kξnζn′ =
∫ tn

tn−1

dτ

∫ tn′

tn′−1

dτ ′ �ξnζn′ (τ − τ ′), n �= n′,

(A35)

Kξnζn
=

∫ tn

tn−1

dτ

∫ τ

tn−1

dτ ′ �ξnζn
(τ − τ ′),

where

�ξζ (t) =
∑

q

γqξ γ
∗
qζ ηq(t), (A36)

and γqξn
are the diagonal elements of the carrier-phonon

coupling matrix. Equations (A32)–(A36) define the discretized
time evolution of the reduced density matrix in a model with
an arbitrary number of carrier states having purely real or
imaginary coupling constants. For the two-level model of
excitons in a quantum dot the indices αn, βn assume only
the values 0,1, the phonon coupling is absent in the absence
of excitons, i.e., γq,0 = 0, γq,1 = γq, and Eqs. (A32)–(A36)
reduce to Eqs. (11)–(15) in the main text.
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