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Temperature-disorder phase diagram of a three-dimensional gauge-glass model
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We investigate the temperature-disorder (T -σ ) phase diagram of a three-dimensional gauge glass model, which
is a cubic-lattice nearest-neighbor XY model with quenched random phase shifts Axy at the bonds. We consider the
uncorrelated phase-shift distribution P (Axy) ∼ exp[(cosAxy)/σ ], which has the pure XY model, and the uniform
distribution of random phase shifts as extreme cases at σ = 0 and σ → ∞, respectively, and which gives rise
to equal magnetic and overlap correlation functions when T = σ . Our study is mostly based on numerical
Monte Carlo simulations. While the high-temperature phase is always paramagnetic, at low temperatures there
is a ferromagnetic phase for weak disorder (small σ ) and a glassy phase at large disorder (large σ ). These
three phases are separated by transition lines with different magnetic and glassy critical behaviors. The disorder
induced by the random phase shifts turns out to be irrelevant at the paramagnetic-ferromagnetic transition line,
where the critical behavior belongs to the 3D XY universality class of pure systems; disorder gives rise only to
very slowly decaying scaling corrections. The glassy critical behavior along the paramagnetic-glassy transition
line belongs to the gauge-glass universality class, with a quite large exponent ν = 3.2(4). These transition lines
meet at a multicritical point M, located at TM = σM = 0.7840(2). The low-temperature ferromagnetic and glassy
phases are separated by a third transition line, from M down to the T = 0 axis, which is slightly reentrant.
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I. INTRODUCTION AND SUMMARY

Spin glass models are simplified, although still quite com-
plex, models retaining the main features of physical systems
which show glassy phases. They may be considered theoretical
laboratories where the combined effects of quenched disorder
and frustration can be studied. Their phase diagrams and
critical behaviors provide examples of possible scenarios
which can be used to interpret the experimental results of
complex materials. For example, Ising-type spin glasses,
such as the ±J Ising model,1 model disordered uniaxial
magnetic materials characterized by random ferromagnetic
and antiferromagnetic short-range interactions. While many
theoretical and numerical works have been devoted to the study
of the phase diagrams and the magnetic and glassy critical
behaviors of Ising-like spin glasses, see, e.g., Refs. 2–4 and ref-
erences therein, much less is known about the thermodynamic
properties of spin glass models with continuous symmetries.
In the case of the Heisenberg spin glass there is some evidence
for a glassy transition at finite temperature T , but its nature is
still debated, see, e.g., Refs. 5,6 and references therein.

Another physically interesting spin glass model is the XY
model with random phase shifts, also known as the gauge-glass
model, which is characterized by a global U(1) symmetry. It
has been proposed as a simplified model of disordered granular
superconductors to describe vortex-glass transitions.7–13 The
phase diagram and critical behaviors of two-dimensional
(2D) gauge glasses have been much investigated, see, e.g.,
Refs. 14,15 and references therein. It is now well established
that at weak disorder there is a low-T quasi-long-range order
phase separated by a Kosterlitz-Thouless transition line from
the paramagnetic phase; no glassy phase exists at finite T ,
but a T = 0 glassy critical behavior at sufficiently large

disorder. A discussion of the general temperature-disorder
phase diagram of the three-dimensional (3D) gauge glass
can be found in Refs. 16,17. The ferromagnetic phase of the
pure cubic-lattice XY model is expected to survive at weak
disorder,18 while it should disappear at large disorder, where a
low-T glassy phase may exist. Several numerical works have
addressed the existence of a vortex-glass phase at finite T in
the case of a uniform random-shift distribution,19–31 providing
evidence of a finite-T glassy transition. Apart from these
results for the extreme disordered case, the phase diagram
and the critical behaviors at the different transition lines have
not been numerically investigated yet. We also mention that
experimental results for vortex glass phases in superconductors
have been reported in Refs. 32–36, but the experimental
scenario for the behavior at the transition does not appear
settled yet.

In this paper we investigate the temperature-disorder phase
diagram of the 3D gauge glass and its critical behaviors along
the transition lines which separate the different phases.

The 3D gauge-glass model is defined by the partition
function

Z({A}) =
∫

[Dψ] exp(−H/T ),
(1)

H = −
∑
〈xy〉

Re ψ̄xUxyψy = −
∑
〈xy〉

cos(θx − θy − Axy),

where ψx ≡ eiθx , Uxy ≡ eiAxy , and the sum runs over the
bonds 〈xy〉 of a cubic lattice. The phases Axy are uncorrelated
quenched random variables with zero average. A Gaussian
distribution PG(Axy) ∝ exp[−A2

xy/(2σ )] is often considered
in the studies of gauge glasses. In this paper we consider a
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FIG. 1. (Color online) Sketch of the temperature-disorder (T -σ )
phase diagram of the 3D gauge glass.

slightly different cosine distribution

P (Axy) ∝ exp

(
cosAxy

σ

)
. (2)

Analogously to the Gaussian distribution, we recover the
pure cubic-lattice XY model for σ → 0 and uniformly dis-
tributed random phase shifts in the limit σ → ∞. The cosine
distribution is particularly interesting because it lends itself
to some exact relations along the so-called Nishimori (N)
line T = σ 16,17, such as the equality of the magnetic and
overlap correlation functions, which are useful to identify the
multicritical point where the transition lines meet in the T -σ
phase diagram.

Our study of the T -σ phase diagram, and the magnetic
and glassy critical behaviors along its transition lines, is
mostly based on numerical Monte Carlo (MC) simulations.
Supplementing the numerical results with renormalization-
group (RG) and finite-size scaling (FSS) analyses, we arrive at
the phase diagram sketched in Fig. 1. In Fig. 2 we show where
we performed the MC simulations in the T -σ plane. Our main
results are the following.

While the high-T phase is always paramagnetic, at low T

we have a ferromagnetic phase for weak disorder (small σ )
and a glassy phase at sufficiently large disorder (large σ ).
These three phases are separated by different transition

T

σ

FIG. 2. (Color online) The dashed lines sketch the T and σ values
of our MC simulations.

lines: a paramagnetic-ferromagnetic (PF) transition line, a
paramagnetic-glassy (PG) transition line, and a ferromagnetic-
glassy (FG) transition line, meeting at a multicritical point
M located along the N line. The phase diagram of 3D
gauge glasses presents several analogies with the temperature-
disorder phase diagram of 3D ±J Ising spin glasses,3,4 where
analogous phases and transition lines appear.

The 3D gauge glass shows different magnetic and glassy
critical behaviors at the transition lines separating the different
phases.

We argue that the disorder induced by the random phase
shifts is irrelevant at the PF transition line starting from the
pure XY transition point for σ = 0, at37 TXY = 2.201 842(5).
Thus the asymptotic critical behavior belongs to the 3D
XY universality class of pure systems with U(1) symmetry,
characterized by the correlation-length critical exponent37

νXY = 0.6717(1). Analogously to randomly dilute 3D XY
models,38 the disorder induces new scaling corrections which
get suppressed very slowly, as O(ξ−ωd ) where ξ is the
critical length scale and ωd = 3 − 2/νXY = 0.0225(5). A FSS
analysis of MC simulations at σ = 0.35, up to L = 30,
supports this critical behavior. The PF transition line ends at
the multicritical point M located at TM = σM ≈ 0.784 along
the N line. For comparison, we mention that, unlike the
gauge-glass model, the quenched disorder is relevant at the
PF transition line of the 3D ±J Ising models, giving rise to a
new universality class, which is the same universality class of
the 3D randomly dilute Ising systems.38,39

A low-T glassy phase appears for sufficiently large disorder,
i.e., σ � σM , separated by a finite-T PG transition line from
the paramagnetic phase. A reasonable hypothesis is that the
glassy critical behavior is universal along the PG transition
line, up to σ → ∞ (i.e., the model with uniform disorder
distribution), and belongs to the 3D gauge-glass universality
class. This is supported by MC simulations for σ = 4/3 and
for the uniform random-shift distribution, up to lattice size
L = 20, which provides clear evidence of finite-T transitions
in both cases, and of the universality of their glassy critical
behaviors. Moreover, their FSS analyses give Tc = 0.475(10)
and Tc = 0.46(1) respectively for σ = 4/3 and σ → ∞, and
the estimates ν = 3.2(4) and η = −0.47(2) for the universal
exponents describing the critical overlap correlations. These
critical exponents may be compared with those of the glassy
transition in Ising-like spin glasses, where4,40–42 ν = 2.45(15)
and η = −0.375(10).

The PF and PG transition lines meet at the critical point M
along the N line, see Fig. 1. Actually, M is a multicritical point,
characterized by a magnetic-glassy multicritical behavior with
two relevant perturbations (in the absence of external fields).
The tangents at M of the transition lines are parallel to the
T axis. Indeed, as proved in Ref. 16, σM is an upper bound
for the values of σ where the ferromagnetic phase can exist.
A FSS analysis of MC simulations along the N line, up to
L = 20, locates the point M at TM = σM = 0.7840(2) and
provides the estimates y1 = 0.93(3) and y2 = 0.56(3) for the
RG dimensions of the relevant perturbations, thus a crossover
exponent φ ≡ y1/y2 = 1.7(1). Moreover, the exponent η

associated with the spin and overlap correlation functions
is η = −0.121(1). Again, these critical exponents may be
compared with those at the multicritical point of the phase
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diagram of the 3D ±J Ising model where the PF and PG
transition lines meet, which are43 y1 = 1.02(5), y2 = 0.61(2),
φ = 1.67(10), and η = −0.114(3).

A transition line separating the low-T ferromagnetic and
glassy phases starts from the multicritical point M toward the
T = 0 axis, see Fig. 1. The order parameter is provided by
the magnetic variables and their correlations, which become
effectively paramagnetic in the glassy phase. We present FSS
analyses of MC simulations at fixed T < TM up to L = 12.
They show that the FG transition line runs almost parallel to the
T axis. It is slightly reentrant; indeed, we find σc = 0.777(2)
at T = 0.376. The magnetic critical behavior varying T is
compatible with a universal critical behavior along the FG
transition line, with critical exponent ν = 1.0(1).

The main features of the phase diagram and the universality
classes of the magnetic and glassy critical behaviors at the
different transition lines are expected to be largely independent
of the detail of the distribution. For example, they are expected
to apply to the case of random phase shifts with Gaussian
distribution.

The paper is organized as follows. Section II provides the
definitions of the quantities considered in our work. In Sec. III
we discuss the phase diagram at low disorder and the critical
behavior at the PF transition line. In Sec. IV we focus on the
the phase diagram at large disorder, i.e., large values of σ ,
where the low-T phase is glassy, and study the glassy critical
behavior at the PG transition line. In Sec. V we study the
multicritical behavior at the point M of the phase diagram,
where the different transition lines meet. Finally, in Sec. VI
we investigate the FG transition line, which runs from M down
to the T = 0 axis.

II. NOTATIONS

We consider the gauge-glass model (1) defined on cubic
lattices of size L3 with periodic boundary conditions. We
define the magnetic correlation function

G(x − y) ≡ [〈ψ̄x ψy〉] (3)

and the overlap correlation function

Go(x − y) ≡ [〈q̄x qy〉] ≡ [ |〈ψ̄x ψy〉|2 ], (4)

where qx is the overlap variable defined as

qx = ψ̄ (1)
x ψ (2)

x (5)

using two copies ψ (1)
x and ψ (2)

x for the same disorder config-
uration. The angular and square brackets indicate the thermal
average and the quenched average over disorder, respectively.
We define the magnetic and overlap susceptibilities as

χ ≡
∑

x

G(x), χo ≡
∑

x

Go(x), (6)

and the magnetic and overlap second-moment correlation
lengths

ξ 2 ≡ G̃(0) − G̃(qmin)

q̂2
minG̃(qmin)

, ξ 2
o ≡ G̃o(0) − G̃o(qmin)

q̂2
minG̃o(qmin)

, (7)

where qmin ≡ (2π/L,0,0), q̂ ≡ 2 sin q/2.

We also consider quantities that are invariant under RG
transformations in the critical limit, such as the ratios

Rξ ≡ ξ/L, Ro
ξ ≡ ξo/L, (8)

and the cumulants

U4 ≡ [〈|μ|4〉]
[〈|μ|2〉]2

, U22 ≡ [〈|μ|2〉2] − [〈|μ|2〉]2

[〈|μ|2〉]2
, (9)

and

Uo
4 ≡ [〈|μo|4〉]

[〈|μo|2〉]2
, Uo

22 ≡ [〈|μo|2〉2] − [〈|μo|2〉]2

[〈|μo|2〉]2
, (10)

where μ ≡ ∑
x ψx and μo ≡ ∑

x qx . Finally, given two repli-
cas of the system with spins ψ (1)

x and ψ (2)
x , we consider the

quantity28

Io = β
√

[〈I (1)〉〈I (2)〉], (11)

where β ≡ 1/T , and

I (i) ≡ 1

L

∑
x

Im ψ̄ (i)
x Ux x+ê1ψ

(i)
x+ê1

(12)

is the derivative of the free energy with respect to a twist along
one direction ê1 of the lattice.

III. THE PARAMAGNETIC-FERROMAGNETIC
TRANSITION LINE

The random phase shifts of the gauge glass model (1) vanish
when σ → 0, thus recovering the pure cubic-lattice nearest-
neighbor XY model, which undergoes a continuous transition
at37 TXY = 2.201 842(5) between the high-T paramagnetic
phase and a low-T ferromagnetic phase with long-range
order. The critical behavior belongs to the 3D XY universality
class,38 characterized by the symmetry U(1), which also
describes transitions related to the formation of Bose-Einstein
condensates in interacting quantum particle systems, the
superfluid transition in 4He, transitions in easy-plane magnets,
etc. The critical exponents, which determine the asymptotic
behaviors of the critical correlations, are37,38 νXY = 0.6717(1),
ηXY = 0.0381(1), αXY = 2 − 3νXY = −0.0151(3), etc.

The low-T ferromagnetic phase is expected to be stable
with respect to the presence of a weak disorder respecting the
global U(1) symmetry, such as that arising in the gauge glass
model for nonzero values of σ (see also Ref. 18), analogously
to the 2D gauge glasses44 (where actually we have a low-T
quasi-long-range order phase), and the 3D ±J Ising model,39

where the disorder does not break the global Z2 symmetry.
Therefore we expect that a paramagnetic-ferromagnetic (PF)
transition line starts from the pure XY critical point P ≡ (σ =
0,T = TXY ), where the relevant symmetry is still U(1).

A. Irrelevance of the disorder at the PF transition

The critical behavior along the PF line can be inferred by
studying the relevance of the RG perturbation induced by the
random phase shifts at the pure 3D XY fixed point. Since the
random phase shifts preserve the global U(1) symmetry, we
argue that the leading disorder RG perturbation gets effectively
coupled to the energy density at the PF transition line, as in
the case of randomly dilute spin models.38,45 This implies
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that the relevance of the disorder is related to the sign of the
specific-heat exponent of the pure system.45,46 If it is positive,
like the case of 3D Ising-like models, the disorder provides
a relevant perturbation, which changes the asymptotic critical
behavior, giving rise to a new universality class.39 On the
other hand, if the specific-heat exponent is negative, as in
the case of the 3D XY models where αXY = −0.0151(3) [but
also for any 3D model with symmetry O(N ) and N � 238],
the disorder is irrelevant in the RG sense, which implies that
the critical behavior belongs to the same universality class
of the pure system, and the asymptotic power-law behaviors
remain unchanged.

However, disorder gives rise to scaling corrections which
get suppressed very slowly and are absent in the pure system.
Analogously to randomly dilute 3D XY models,38 they are
O(ξ−ωd ) where ξ is the critical length scale and

ωd = −αXY

νXY

= 3 − 2

νXY

= 0.0225(5), (13)

to be compared with the leading scaling correction of pure XY
systems which are O(ξ−ω) with37,38 ω = 0.785(20).

B. Monte Carlo simulations at σ = 0.35

We support the above scenario by a FSS analysis of
MC simulations at σ = 0.35, up to lattice size L = 30. In
the simulations we use both Metropolis and overrelaxed
microcanonical local updatings. One single step of the Monte
Carlo update is composed by one Metropolis sweep followed
by five overrelaxed microcanonical sweeps. See Ref. 14 for
more details. We average over a large number of samples, from
Ns = 16000 for L = 6 decreasing to Ns = 3000 for L = 30.
The equilibration is carefully checked by monitoring the MC
time evolution of the observables which we consider.

The FSS of the RG invariant quantities, such as Rξ , U4,
Ro

ξ , and Uo
4 , show clear evidence of a continuous transition,

see, e.g., Fig. 3. A standard FSS analysis gives Tc = 1.7103(3)
from the crossing point of their data for different values of L,
and ν = 0.68(1) from their slope at Tc (using data for L �
Lmin � 12). This estimate of ν is in good agreement with the
exponent νXY = 0.6717(1) of the 3D XY universality class.
Indeed, Fig. 4 shows that a good collapse of the MC data of
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R
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σ=0.35

FIG. 3. (Color online) MC data of Rξ at σ = 0.35.
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FIG. 4. (Color online) Io (top), Uo
4 (middle) and Uo

22 (bottom) vs
Ro

ξ for σ = 4/3 and the uniform distribution (denoted by u).

Rξ is achieved by plotting them versus (T − Tc)L1/νXY with
νXY = 0.6717, thus supporting the universality with the pure
3D XY model. Analogous results are obtained for the other RG
invariant quantities.

Given two generic RG invariant quantities R1 and R2, the
relation

R1 = fR1 (R2) (14)
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FIG. 5. (Color online) Uo
4 vs Ro

ξ at σ = 0.35 and for the pure XY
model (σ = 0).

is asymptotically universal, i.e., independent of the model
within the given universality class, apart from scaling cor-
rections. This fact provides further stringent checks of univer-
sality. As an example, Fig. 5 shows a plot of Uo

4 versus Ro
ξ

from MC simulations of the gauge glass with σ = 0.35 and of
the pure XY model, i.e., σ = 0. The data appear to approach a
unique universal curve in the large-L limit, providing further
strong evidence of universality. Analogous results are obtained
for other combinations of Rξ , Ro

ξ , U4, and Uo
4 .

These numerical results provide strong evidence that the
critical behavior along the PF transition line belongs to the 3D
XY universality class of pure systems. The above-mentioned
slowly decaying scaling corrections are best observed in the
quantity U22, cf. Eq. (9), which is trivially zero in pure systems.
In Fig. 6 we show U22 versus Rξ for several values of L.
The data of U22 at σ = 0.35 are very small, U22 < 0.03,
but nonzero. U22 is expected to vanish for L → ∞, but very
slowly, as

U22 ∼ L−ωd f̄U22 (Rξ ), ωd = 0.0225(5), (15)

where f̄22(Rξ ) is a universal function apart from a trivial
overall normalization. Without taking into account Eq. (15),
the data of U22 in Fig. 4 might be considered evidence of
an unexpected scaling behavior and, therefore, of a different
universality class. However, one can easily check that they are
still compatible with a very slow suppression in the large-L
limit, such as Eq. (15). Indeed, with increasing the size from
L = 10 to L = 30, the expected variation should be just a few
percent, which is within the typical statistical error of the data
in Fig. 6. A check of the vanishing large-L limit of U22 would
require much larger lattices and higher statistics. A similar
situation has been met at the PF transition line of the 2D ±J

Ising model, where U22 vanishes logarithmically, as shown in
Ref. 47.

IV. THE PARAMAGNETIC-GLASSY TRANSITION LINE

In the case of a uniform distribution of random phase shifts,
which is formally represented by the limit σ → ∞, there is
already good numerical evidence, see, e.g., Refs. 25,28, for a

0 0.5 1 1.5
Rξ

0

0.01

0.02

0.03

U
22

L=10
L=12
L=14
L=20
L=24
L=30

σ=0.35

FIG. 6. (Color online) U22 vs Rξ at σ = 0.35.

finite-T PG transition between the high-T paramagnetic phase
and a low-T glassy phase. The glassy phase is expected to
persist when we consider finite large values of σ ; thus, a PG
transition line is expected for sufficiently large values of σ .
More precisely, it is expected to run from the large disorder
limit down to the multicritical point M, see Fig. 1, at TM =
σM ≈ 0.784, see the next section. Our working hypothesis
is that the critical behavior along this PG line is universal,
belonging to the 3D gauge-glass universality class.

A. Monte Carlo simulations

In order to investigate the glassy critical behavior at large
disorder, we present FSS analyses of MC simulations for
σ = 4/3 and for uniformly distributed phase shifts, formally
corresponding to σ → ∞, up to lattice sizes L = 16 and
L = 20, respectively. We perform averages over 104 disorder
configurations for all the lattice sizes and temperatures
considered.

In these MC simulations we supplement the local MC
updating method, used at the PF transition line, with the
random-exchange or parallel tempering method, see, e.g.,
Ref. 48, which allows us to reliably simulate small values of T ,
in particular, below the N line T = σ . In the parallel-tempering
simulations we consider NT systems at the same value of σ and
at NT different temperatures in the range Tmax � Ti � Tmin,
with Tmax ≈ 0.87 and Tmin ≈ 0.37. The value Tmax is chosen
so that the thermalization at Tmax is sufficiently fast, while
the intermediate values Ti are chosen so that the acceptance
probability of the temperature exchange is at least 5%.
Moreover, we require that one of the Ti be along the N line, i.e.,
Ti = σ , where the known exact results allow us to check the
MC code and the thermalization. The thermalization is further
checked by verifying that the averages of the observables
remain stable for all Ti after a sufficiently large number of MC
steps for each disorder realization. The overlap correlations
and the corresponding χo and ξo are measured by performing
two independent runs for each disorder sample. In the case of
observables requiring the computation of the disorder average
of products of thermal expectations, such as the case of Uo

22,
we use unbiased estimators as explained in Refs. 4,49 (a naive
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FIG. 7. (Color online) Ro
ξ for σ = 4/3 (top), and Ro

ξ (middle) and
Io (bottom) for the uniform random-shift distribution.

application of the disorder average would introduce a bias,
thus a systematic error).

B. Finite-size scaling analysis

In Fig. 7 we show the MC data of Ro
ξ and Io, cf. Eq. (11).

Their crossing points provide strong evidence of a finite-T
transition for both σ = 4/3 and σ = ∞. A large exponent ν

is already suggested by the slow rising of the slopes at the
crossing point with increasing L.

-10 -5 0 5 10 15

(T-T
c
)L1/ν

0

0.5
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1.5

R
ξ
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L=14
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L=20
L=24
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ν=ν
XY

=0.6717,   T
c
=1.7103

FIG. 8. (Color online) Rξ vs (T − Tc)L1/νXY with νXY = 0.6717,
for σ = 0.35.

To begin with, we address the universality issue, i.e.,
whether the transitions at σ = 4/3 and σ = ∞ have the
same universal critical behavior. For this purpose, in Fig. 8
we plot data of Io, Uo

4 , and Uo
22 versus Ro

ξ at σ = 4/3 and
σ = ∞. They appear to converge toward the same universal
large-L limit, providing strong evidence of universality. These
results support our working hypothesis that the glassy critical
behavior is universal along the PG transition line from large
disorder to the multicritical point M.

The FSS behavior of the RG invariant quantities allows us
to estimate Tc and ν:

R(T ,L) = f (utL
1/ν) = R∗ + c1(T − Tc)L1/ν

+ c2(T − Tc)2L2/ν + · · · , (16)

where R indicates the generic RG invariant quantity, such as
Ro

ξ and Io, ut is the temperature scaling field, ut ∼ T − Tc, and
we neglect scaling-correction terms. We check the stability of
the fits by increasing the minimum size Lmin of the data used
in the fit, varying the range of values of T around Tc [we use
self-consistent windows around Tc limiting the allowed range
of values of (T − Tc)L1/ν , which corresponds to the range
of values of any R around R∗], and the number of terms in
Eq. (16). We use the comparison of the results using different
quantities as a check of the relevance of the neglected scaling
corrections. Some results of fits of the data of Rξ and Io, using
the ansatz (16), are reported in Table I.

In the case of the uniform distribution we have data up
to L = 20. The fits of the data of Ro

ξ are reasonably stable.
We note some oscillations in the estimates of Tc, which may
reflect the difficulty of estimating Tc when the critical exponent
ν is large. From these results one may get the estimates
Tc = 0.46(1), 1/ν = 0.31(4), and Ro∗

ξ = 0.70(2), where errors
take also into account the stability with respect to changes
of Lmin, from Lmin = 6 to Lmin = 12, and the range of T

around the crossing point. The results using Io are definitely
consistent, although they appear less precise (also because they
correspond to less statistics, we started later collecting data for
Io). They suggest the estimates Tc = 0.47(2), 1/ν = 0.30(5),
and I ∗

o = 1.7(1). The fits of the data for the cumulants Uo
4 and
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TABLE I. Results of fits to R∗ + ∑n

i=1 ci(T − Tc)iLi/ν of the
data of Ro

ξ and Io, with respect to variations of the range of T (taking
data for |Ro

ξ − Ro∗
ξ | � �Ro

ξ to have a self-consistent scaling cut, with
Ro∗

ξ ≈ 0.7), the number n of terms in the fit ansatz, and Lmin, which
is the minimum size allowed by the data.

σ R �Rξ n Lmin Tc 1/ν R∗ χ 2/dof

∞ Ro
ξ 0.07 1 8 0.467(2) 0.27(3) 0.684(5) 3.1

10 0.477(3) 0.29(4) 0.665(7) 2.9
12 0.458(4) 0.31(7) 0.703(9) 1.8

0.1 1 8 0.465(2) 0.27(2) 0.689(4) 3.6
10 0.475(2) 0.29(2) 0.669(5) 3.5
12 0.455(4) 0.29(4) 0.712(9) 2.1
14 0.461(5) 0.33(6) 0.698(11) 1.8

0.1 2 8 0.466(2) 0.29(8) 0.687(3) 3.2
0.2 2 6 0.463(1) 0.31(2) 0.690(2) 3.3

8 0.460(1) 0.32(2) 0.698(2) 3.0
10 0.469(2) 0.32(2) 0.680(3) 2.8
12 0.450(3) 0.29(3) 0.721(6) 1.6
14 0.456(4) 0.31(4) 0.708(9) 1.3

Io 0.1 1 8 0.467(5) 0.26(4) 1.74(5) 1.4
10 0.472(6) 0.27(5) 1.69(5) 1.5
12 0.488(7) 0.33(7) 1.53(7) 0.8

0.3 2 8 0.463(2) 0.38(12) 1.77(2) 1.6
4/3 Ro

ξ 0.1 1 6 0.486(2) 0.31(2) 0.669(4) 2.7
8 0.477(2) 0.31(2) 0.685(5) 1.5

10 0.478(5) 0.28(5) 0.683(10) 1.8
0.1 2 8 0.476(3) 0.31(11) 0.686(4) 1.0
0.2 2 6 0.479(1) 0.33(2) 0.682(2) 3.1

8 0.471(2) 0.33(2) 0.695(3) 1.4
10 0.471(3) 0.31(3) 0.695(6) 1.6

Uo
22 do not provide sufficiently stable results, but they scale

consistently as shown by Fig. 8.
In the case of the distribution with σ = 4/3, whose data are

up to L = 16, we obtain Tc = 0.475(10), 1/ν = 0.32(4), and
Ro∗

ξ = 0.69(1) from the fits of the data of Ro
ξ . For σ = 4/3 we

have only few data for Io, see Fig. 8, which do not allow us to
obtain an independent estimate of ν.

The above results for ν are consistent and thus in agreement
with universality. We consider

1/ν = 0.31(4), ν = 3.2(4), (17)

our final estimate. Figure 9 shows the collapse of the data
of Ro

ξ and Io for the gauge glass with uniform distribution,
when they are plotted versus (T − Tc)L1/ν , with Tc = 0.46 and
1/ν = 0.31. Note that ν is quite large but still comparable to
the value ν = 2.45(15) of the glassy transition in 3D Ising-like
spin glasses.4,40,41 We should also say that the accuracy and the
relatively small lattice size of the available data do not allow
us a robust control of the neglected scaling-corrections, as was
achieved for the Ising-like spin glass models.50 Therefore,
further numerical work is required to substantiate the above
results.

We compute the exponent η associated with the overlap cor-
relation (4) by analyzing the data of the overlap susceptibility
χo, which is expected to behave as4

χo = u2
hL

2−ηof (utL
1/ν). (18)

-0.2 0 0.2 0.4

(T-T
c

)L
1/ν

0.4

0.6

0.8

R
 ξ

o

L=6 
L=8 
L=10 
L=12 
L=14 
L=16 
L=20 

T
c
=0.46,    1/ν=0.31

uniform distribution

-0.2 0 0.2 0.4

(T-T
c

)L
1/ν

1

2

3

I o

L=8 
L=10 
L=12 
L=14 
L=16 
L=20 

T
c
=0.46,   1/ν=0.31

uniform distribution

FIG. 9. (Color online) Io (top) and Ro
ξ (bottom) vs (T − Tc)L1/ν

for the uniform distribution, with Tc = 0.46 and 1/ν = 0.31.

Here uh is related to the external overlap scaling field uh as-
sociated with the overlap variables by uh = huh(T ) + O(h2).
Thus, neglecting nonanalytic scaling corrections, we fit the
data of χo to

ln χo = a ln L + b0 + b1(T − Tc) + · · ·
+ c1(T − Tc)L1/ν + · · · , (19)

fixing the values of Tc and ν as obtained above. We obtain

η = −0.47(2) (20)

for the uniform distribution and η = −0.46(2) for the distri-
bution with σ = 4/3, where the error takes also into account
the uncertainty on Tc and ν.

Finally, we compare our results with earlier numerical
works for the gauge-glass model with uniformly distributed
random phase shifts. Earlier estimates of Tc, i.e., Tc = 0.47(3)
from Ref. 25 and Tc = 0.48(2) from Ref. 30, are consistent
with ours. Our result ν = 3.2(4) is significantly larger than
the estimates obtained by earlier FSS analyses, ν = 1.3(4)
from Ref. 19, ν = 1.39(20) from Ref. 25, and ν = 1.62(20)
Ref. 30. These smaller values of ν appear excluded by our
FSS analyses. This discrepancy may be explained by the
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small lattice sizes, up to L = 12, of their data. We also
mention that our estimate is larger than the experimental
estimate at the vortex-glass transition in the (K,Ba)BiO3 cubic
superconductor reported in Ref. 33, i.e., ν = 1.0(2), which has
been often compared with the glassy transition of the gauge
glass with uniform distribution. Finally, our estimate (20) of η

agrees with the result η = −0.47(7) reported in Ref. 25.

V. THE MULTICRITICAL POINT ALONG THE N LINE

In the case of the cosine distribution (2), the N line plays
an important role in the phase diagram, because it marks
the crossover between the magnetic-dominated region and
the disorder-dominated one. We conjecture that the PF and
PG transition lines meet at a multicritical point M, which
coincides with the critical point along the N line, analogously
to the phase diagram of the 3D ±J Ising model.4,17,43 It is
worth mentioning that the critical point along the N line shows
a multicritical behavior also in the 2D ±J Ising model and
2D gauge glass, see, e.g., Refs. 14,51,52, even though these
models do not have a low-T glassy phase.

We shall support the above scenario by a FSS of MC
simulations of the 3D gauge glass along the N line.

A. The Nishimori line

The cosine distribution (2) lends itself to some exact
calculations along the N line.16,17 For example, the energy
density is16 E = −3I1(1/T )/I0(1/T ) when T = σ , where Ii

are modified Bessel functions. Moreover, the spin and overlap
correlation functions are equal:

[〈ψ̄xψy〉] = [|〈ψ̄xψy〉|2]. (21)

Along the N line we also have Rξ = Ro
ξ and U4 = Uo

4 .
As proved in Ref. 16, the critical value σM of σ along

the N line is an upper bound for the values of σ where the
ferromagnetic long-range order can exist. Therefore, at the
critical point M ≡ (σM,TM ) the tangent to the transition line
limiting the ferromagnetic phase must be parallel to the T

axis; moreover, the critical value σD where the ferromagnetism
disappears at T = 0 must satisfy σD � σM .

The N line T = σ is also characterized by an extension
of the replica symmetry. The quenched average over disorder,
which implies the average of the free energy, can be formally
reconstructed by introducing n replicas of the system, taking
the limit n → 0 after the disorder average. We write the
disorder average over the partition function of n replicas as

[Z(n)(A)] =
∫

[DA] exp

[
(1/σ )

∑
〈xy〉

cosAxy

] ∫ ∏
n

[Dψ (n)]

× exp

[
(1/T )

∑
〈xy〉

cos
(
θ (n)
x − θ (n)

y − Axy

)]
. (22)

Let us perform the gauge transformation

ψx → eiϕx ψx, Uxy → e−iϕx Uxye
iϕy . (23)

We obtain

[Z(n)(A)]

=
∫

[DA] exp

[
(1/σ )

∑
〈xy〉

cos(ϕx − ϕy − Axy)

]

×
∫ ∏

n

[Dψ (n)] exp

[
(1/T )

∑
〈xy〉

cos
(
θ (n)
x − θ (n)

y − Axy

)]
.

(24)

Since a further integration with respect to φx ≡ eiϕx gives
rise only to a trivial constant factor, we have that the gauge
variables φx correspond to another identical replica when T =
σ , extending the original replica symmetry.

B. Scaling behavior at the multicritical point

As a working hypothesis, we assume that the critical point
along the N line is a multicritical point, analogously to the
case of the 3D ±J Ising model.43 We derive some predictions
which are then verified by a FSS analysis of numerical MC
simulations.

In the absence of external fields, the critical behavior at
the multicritical point M is characterized by two relevant RG
operators. The singular part of the free energy averaged over
disorder in a volume of size L can be written as

Fsing(T ,σ,L) = L−df (u1L
y1 ,u2L

y2 ,{uiL
yi }), (25)

with i � 3, where y1 > y2 > 0, yi < 0 for i � 3, ui are the
corresponding scaling fields, and u1 = u2 = 0 at M. In the
infinite-volume limit and neglecting subleading corrections,
we have

Fsing(T ,σ ) = |u2|d/y2f±(u1|u2|−φ) (26)

around M, with φ = y1/y2 > 1, where the functions f±(x)
apply to the parameter regions in which ±u2 > 0. Close to
M, all transition lines correspond to constant values of the
product u1|u2|−φ and thus, since φ > 1, they are tangent to the
line u1 = 0.

The relevant scaling fields u1 and u2 can be inferred by
using the following facts: (i) Since σM is an upper bound for
the values of σ where the ferromagnetic phase can exist, the
transition line at M must be parallel to the T axis; (ii) the
condition T = σ at the N line is RG invariant, because it is
protected by the extension of the replica symmetry, as shown
in Sec. V A. We therefore have

u1 = σ − σM + · · · , (27)

where the dots indicate nonlinear corrections, which are
quadratic in �σ ≡ σ − σM and �T ≡ T − TM , so that the
line u1 = 0 runs parallel to the T axis at M. Moreover, we
choose

u2 = T − σ, (28)

so that the N line corresponds to u2 = 0.
These results give rise to the following predictions for

the FSS behavior around M. Let us consider a RG invariant
quantity R, such as Rξ , U4, U22, defined in Sec. II. In general,
in the FSS limit R obeys the scaling law

R = R(u1L
y1 ,u2L

y2 ,{uiL
yi }), i � 3. (29)
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Neglecting the scaling corrections which vanish in the limit
L → ∞, we expect

R = R∗ + b11u1L
y1 + b21u2L

y2 + · · · . (30)

Along the N line, the scaling field u2 vanishes, so that we can
write

RN = R∗ + b11u1L
y1 + b12u

2
1L

2y1 + · · · , (31)

where the subscript N indicates that R is restricted to the N
line. Differentiating Eq. (30) with respect to β ≡ 1/T , we
obtain

R′ = b11u
′
1L

y1 + b21u
′
2L

y2 + · · · . (32)

If Eq. (27) holds, then u′
1 = O(T − TM ), so that the leading

behavior along the N line is

R′
N = b21u

′
2L

y2 + · · · . (33)

The magnetic susceptibility along the N line behaves as

χN = eL2−η(1 + e1u1L
y1 + · · ·). (34)

Note that there is only one η exponent which characterizes the
critical behavior of both the magnetic and overlap correlation
functions, since they are equal along the N line.

C. MC results

In the following we present a FSS analysis of MC
simulations along the N line. The MC algorithm was a
mixture of standard Metropolis and overrelaxed microcanon-
ical updates, as in the MC simulations at the PF transition
line reported in Sec. III. In order to locate the multicriti-
cal point we simulated several temperatures ranging from
T = 0.773 to T = 0.797, for lattice sizes 6 � L � 20. The
number of disorder configurations ranged from 4 × 105 to
2 × 107 for the largest lattices. This large statistics was
necessary to achieve a convincing evidence of the multicritical
nature of M.

The MC data of Rξ are shown in Fig. 10. There is clearly
a crossing point at T ≈ 0.784. Analogous results are obtained
from U4 and U22. In order to estimate TM and y1, we fit the

0.780 0.782 0.784 0.786 0.788 0.790
 T

0.52

0.54

0.56

0.58

0.60

R
ξ

L=6
L=8
L=10
L=12
L=14
L=16
L=20

along the N line

FIG. 10. (Color online) Rξ along the N line T = σ .

RG invariant R to

R = R∗ + a1(T − TM )Ly1 + a2(T − TM )2L2y1 + · · · .
(35)

Note that this functional form relies on the property that
u2 = 0 along the N line. Otherwise, an additional term of the
form (T − TM )Ly2 should be added. We also neglect scaling
corrections which are O(Ly3 ) with y3 < 0. We check their
relevance by comparing results from the analyses of different
quantities.

Our best estimates are

TM = σM = 0.7840(2), (36)

y1 = 0.93(3), (37)

and also R∗
ξ = 0.5594(4), U ∗

4 = 1.226(1), and U ∗
22 =

0.128(4). The errors take into account the stability of the results
with respect to the minimum size Lmin allowed in the fits
(typically from Lmin = 6 to Lmin = 12), the range of values of
T around Tc [we use again self-consistent windows around
Tc limiting the allowed range of values of (T − TM )Ly1 ],
and the number of terms in Eq. (35). Scaling corrections
are apparently small. We find some evidence of scaling
corrections only in the analysis of U22, but they appear to
decay quite fast, suggesting a relatively large scaling correction
exponent, i.e., y3 ≈ −2.

The derivative R′ with respect to β can be estimated
by computing appropriate connected correlations of R and
the Hamiltonian in the MC simulations along the N line.
According to the multicritical scenario outlined above, R′ is
expected to behave as Ly2 at TM with y2 < y1. In order to
determine y2, we fit the data to

ln R′ = a + y2 ln L + b(T − TM )Ly1 , (38)

keeping TM = 0.7840 and y1 = 0.93 fixed. We obtain

y2 = 0.56(3) (39)

from R′
ξ (the error includes the uncertainty on TM and y1). The

data of U ′
4 are not sufficiently precise to provide a stable result.

The above estimate of y2 nicely supports the multicritical
scenario, since it shows that y2 < y1. Therefore the crossover
exponent, cf. Eq. (26), is

φ = y1

y2
= 1.7(1). (40)

We determine the exponent η from the FSS of the ratio
Z ≡ χ/ξ 2 ∼ L−η at the critical point. We fit its MC data along
the N line to

ln Z = a − η ln L + b(T − TM )Ly1 + c(T − TM ), (41)

where the last term takes into account possible analytic terms
coming from the scaling fields.4 analogously to Eq. (18). We
obtain

η = −0.121(1). (42)

It is worth noting that the above estimates of the mul-
ticritical exponents are quite close to those found for the
3D ±J Ising model, at the multicritical point along its N
line, where43 y1 = 1.02(5), y2 = 0.61(2), φ = 1.67(10), and
η = −0.114(3).
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FIG. 11. (Color online) Rξ (bottom) and Ro
ξ (top) at T = 0.376

across the FG transition line. The vertical dashed lines show the
estimate of σM , i.e., σM = 0.7840(2), with its uncertainty.

VI. THE FERROMAGNETIC-GLASSY TRANSITION LINE

The FG transition line runs from the multicritical point
down to T = 0, with σc � σM , since σM provides a bound
for the region where the magnetic order can exist. The order
parameter along this transition is provided by the magnetic
variables and their correlations.

Reference 16 argues that this transition line runs parallel to
the T axis, thus σc = σM for T < TM . An analogous prediction

for the 2D ±J Ising model turns out to fail, although it provides
a good approximation, because the low-T transition line where
ferromagnetism disappears turns out to be slightly reentrant,
see, e.g., Refs. 52,53 and references therein.

We investigate this issue by numerical MC simulations
up to lattice sizes L = 12, using the same MC method
employed at the glassy transitions. Using random-exchange
MC simulations, we collect data down to T = 0.376 for several
values of σ in the range 0.75 � σ � 0.85. Our results are
obtained by averaging over a large number of of disorder con-
figurations: Ns = 16000, 8000, 6000, 4000 respectively for
L = 6, 8, 10, 12. Figure 11 shows the data of Rξ and Ro

ξ at
T = 0.376. The set of data of Rξ for different lattice sizes show
a crossing point, confirming the existence of FG transition. On
the contrary, the data of Ro

ξ do not show crossings, which
may reflect the fact that such transition separates two ordered
phases with respect to the overlap variables.

The crossing points of the Rξ data appear to cluster at a
value of σ which is slightly smaller than σM = 0.7840(2).

Indeed, fitting them to

Rξ = R∗
ξ + a1(σ − σc)L1/ν + a2(σ − σc)2L2/ν + · · · , (43)

we obtain

σc = 0.777(2), ν = 1.0(1), (44)

and R∗
ξ = 0.73(1). These estimates should be taken with some

caution, in particular that of ν, due to the small size of the
available lattices, which does not allow us to perform stringent
checks of stability. The analysis of the data of U4 gives
consistent results, but less precise. We also mention that an
analogous FSS analysis of the data at a larger temperature
T = 0.437, but still smaller than TM , gives σc = 0.782(2),
ν = 1.1(1), and R∗

ξ = 0.71(1), which supports the universality
of the magnetic critical behavior along the FG transition line.

According to the above results, the critical values of the
disorder parameter at T < TM are very close to but smaller
than σM = 0.7840(2), indicating a slight reentrant transition
line.
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