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Superelastic softening in perovskites
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Contrary to high frequency (MHz-GHz) elastic data, at low frequencies (0.1–50 Hz) huge elastic softening
(superelasticity) is usually found in the low symmetry improper ferroelastic phases (i.e., tetragonal or
rhombohedral) of perovskite structured materials including SrTiO3, KMn1−xCaxF3, and LaAlO3. This giant
elastic softening is caused by domain wall motion and can be suppressed with uniaxial stress. Taking into account
the long range interaction of needle shaped domains and the repulsion between domain walls of finite thickness
a free energy is constructed. The temperature variation of the elastic susceptibility is calculated which yields
perfect fitting of the data. Within this soliton model we can also describe the measured effect of applied stress.
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I. INTRODUCTION

Domain walls can contribute substantially to macroscopic
properties of materials. One of the earliest experiments showed
the influence of domain wall motion on the dielectric permittiv-
ity of ferroelectric KH2PO4.1 In subsequent years the dynam-
ical behavior of domain walls in ferroelectric materials was
extensively studied, e.g., in BaTiO3,2 KH2PO4,3–6 KH2AsO4,7

and TGS.8 Domain wall motion also contributes largely to
the electromechanical response in ferroelectric ceramics such
as Pb(Zr,Ti)O3.9 Nanodomains clearly play a key role in
disordered ferroic materials10 and even in strain glasses.11

An excellent overview on domains and their properties is
presented in the recent book of Tagantsev, Cross, and Fousek.12

The problem of domains and domain wall motion is also well
addressed in a review by Wadhawan.13

Theoretical calculations describing the influence of do-
main wall motion on the corresponding dynamic macro-
scopic susceptibilities exist mainly for ferroelectric14–16 and
ferromagnetic17,18 materials. This is because in these sys-
tems an equilibrium free energy can be constructed, since
a regular domain pattern is stable below Tc due to the
competition between the domain wall energy and the long
range depolarization19 or demagnetization field, respectively.
In ferroelastic crystals no analogous field exists, and as a result
ferroelastic domains are in general metastable. Nevertheless,
as many experiments have shown, ferroelastic domains appear
as a rule below a ferroelastic phase transition20,21 forming
rather long lived objects. Due to mechanical compatibility22

between adjacent domains they usually form well oriented
stripes. Very often needle or dagger shaped domains21,23–25

appear as will be discussed in detail below.
In recent years we have performed elastic measurements in

quite a number of perovskite structured materials. Perovskites
(ABX3) display a wide variety of physical properties such as
superconductivity, magnetism, ferroelectricity, and magneto-
electricity which make them very interesting for applications.
But also in the geological context, the elastic and seismic
properties of minerals with perovskite structure are important;
e.g., in the deep earth mantle domain wall motion may
influence their low frequency elastic and anelastic behavior
at seismic frequencies.

Here we review the experimental situation concerning the
low frequency elastic response of perovskites and present

a model to describe the influence of ferroelastic domain
wall motion to the low frequency elastic susceptibility of
proper or improper ferroelastic materials. Applying it to the
wealth of data on perovskite materials, i.e., on SrTiO3,26,27

KMn1−xCaxF3,28 and LaAlO3,29 we show that the present
model describes the observed superelastic softening perfectly
as a function of temperature and applied stress.

II. PHASE TRANSITIONS IN PEROVSKITES

The parent phase of the studied crystals has the cubic
perovskite structure with space group O1

h (Pm3̄m). The phase
transition of SrTiO3 at Tc = 105 K as well as the high tem-
perature phase transition in pure KMnF3 at Tc1 = 186.5 K are
accompanied by a symmetry reduction Pm3̄m → I4/mcm.
The phase transition in LaAlO3 at Tc = 813 K leads to a
reduction of symmetry from the cubic space group Pm3̄m

to the rhombohedral subgroup R3̄c.30 All phase transitions
are driven by rotations of BX6 octahedra, where adjacent
octahedra rotate in opposite senses, leading to a doubling of
the unit cell. For SrTiO3 and KMnF3 the octahedra rotate
around one of three equivalent 〈001〉 directions of the cubic
phase, whereas for LaAlO3 the rotation occurs around one of
the four 〈111〉 directions. Due to the coupling between the
primary order parameter and the strain components (square of
the order parameter, linear in strain), the phase transitions in
these systems are improper ferroelastic.31

Detailed calorimetric measurements have shown that the
phase transitions in SrTiO3

32 and LaAlO3
33 are of second

order, whereas the phase transition in pure KMnF3
34 is weakly

first order and close to a tricritical point. Substitution of Ca for
Mn causes the transition to change from first to second order
via a tricritical point at ≈0.3 mol % Ca.35

III. MEASUREMENT TECHNIQUE

For the low frequency elastic measurements a dynamical
mechanical analyzer (DMA7, Perkin Elmer) was used. The
samples are exposed to a given static force Fstat which is
modulated by a dynamic force Fdyn of chosen amplitude and
frequency (f = 0.1–50 Hz). The force can be tuned between
1 mN and 2.5 N. The amplitude u and the phase shift δ

of the resulting elastic response of a sample are registered
via inductive coupling with a resolution of �u ≈ 10 nm and
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FIG. 1. Sketch of the measurement geometries for parallel plate
(PPS, left) and three point bending (TPB, right).

�δ ≈ 0.1◦. The knowledge of δ and u allows the determination
of both real and imaginary parts of the complex Young’s
modulus Y ∗ = Y ′ + iY ′′, where Y ′ = |Y ∗| cos δ and Y ′′ =
|Y ∗| sin δ, and tan δ = Y ′′/Y ′ measures the energy dissipation.
Measurements have been performed by a parallel-plate stress
(PPS) or three-point-bending (TPB) method (Fig. 1). For PPS
geometry

Y ∗(p) = Fdyn

u

h

A
exp(iδ), (1)

where h and A represent the sample thickness and area,
respectively, and Fdyn is the magnitude of the applied dynamic
force in the p direction. In our PPS measurements we
used samples with typical dimensions A ≈ 1 mm2 and h ≈
3–5 mm.

For TPB one obtains

Y ∗(q) ≈ Fdyn

u

L3

4bh3
exp(iδ), (2)

where L is the spacing between two bottom knife edges,
typically 5 mm, h is the thickness of the sample, and b is
the width of the sample. Here q points along the long axes
of the sample bar, i.e., perpendicular to the direction p of the
applied force. Typical sample thicknesses varied between 0.1
and 0.5 mm and b = 2 mm.

Equation (2) is an approximation; i.e., the complete formula
contains also the inverse shear modulus36 G(p,q)−1. But since
this term is multiplied by (h/L)2 ≈ 10−4 its contribution
can be neglected in the present study. There are however
cases where this part dominates the elastic behavior in TPB
geometry: Approaching a proper ferroelastic transition the
shear modulus G → 0 and therefore the part containing the
inverse shear modulus overcomes the longitudinal contri-
bution, making TPB a very convenient method to measure
ferroelastic softening. We have previously applied this tech-
nique to study the influence of discommensurations near the
lock-in transition of the incommensurate ferroelastic crystal
[N(CH3)4]2CuCl436, yielding a Curie-Weiss type anomaly of
the elastic susceptibility.

The absolute accuracy of DMA measurements is usually
not better than 20%, whereas the relative accuracy is within
0.2%–1%. For more details on the method and its application to
the investigation of phase transitions see also Refs. 37 and 38.

IV. MODELING THE DOMAIN WALL CONTRIBUTION TO
THE ELASTIC COMPLIANCE

The elastic behavior of SrTiO3, KMnF3, KMn1−xCaxF3,
and LaAlO3 crystals measured in the Hz region differs in their

ferroelastic phases drastically from the ultrasonic properties
measured at MHz frequencies. The high frequency elastic
response of these perovskite crystals is well described by
Landau theory27,28,39 whereas their low frequency elastic
behavior below Tc is dominated by domain wall motion.

The influence of domain wall motion on macroscopic
elastic29,40–42 and dielectric properties5,8,43,44 of materials is
a rather complex mesoscopic problem which involves many
length scales. It is a matter of active experimental and theoret-
ical research45 and is far from being completely understood.
Nevertheless, as we shall see below, the experimental situation
in perovskites is rather clear and the data can be well described
in terms of a relatively simple model.

The symmetry reduction Pm3̄m → I4/mcm which be-
longs to the ferroic species m3̄mF4/mmm leads to three
possible domain states, say, O1,O2,O3, where the spontaneous
strains εs(Oi) are in Voight notation given as46

εs(O1) = (εs,εs, − 2εs,0,0,0),

εs(O2) = (−2εs,εs,εs,0,0,0), (3)

εs(O3) = (εs, − 2εs,εs,0,0,0).

Here εs =
√

2
3 (e1 − e3) =

√
1
3

a−c
a0

< 0 since c > a in the
whole tetragonal phase of SrTiO3

47 and KMnF3.48 The per-
missible orientations of domain walls can be calculated using
Sapriel’s approach22 with the solutions x = ±z for O1/O2,
y = ±z for O1/O3, and x = ±y for O2/O3. To calculate the
domain wall contribution to the elastic susceptibility we use
a simplified configuration of the domain structure containing
only two types of domains, e.g., in the O1 and O2 states.

For LaAlO3 the symmetry reduction Pm3̄m → R3̄c leads
to four domain states with 12 nonequivalent twin orienta-
tions of the form {100} and {110}.29,33 The spontaneous
strain components in this case are ε1 and ε4, corresponding
to nonsymmetry breaking and symmetry breaking strains,
respectively.49

To calculate the macroscopic elastic response of a multido-
main crystal one has to calculate the corresponding effective
spring constant for an array of ferroelastic twins from the
corresponding free energy expression. However, unlike ferro-
electric or ferromagnetic domains the ferroelastic domains are
generally speaking metastable objects. Moreover, in contrast
to the statements of some other works,5,8 for perfectly planar
ferroelastic domain walls of zero thickness which intersect
the crystal completely, there is no elastic interaction which
is sufficiently strong to matter in these considerations. As
a result one cannot deduce an equilibrium configuration of
ferroelastic domains for this case. However, there are several
possible reasons for the appearance of ferroelastic domains
below Tc. For specific boundary conditions Roytburd50,51 has
shown that the crystals can break into ferroelastic domains to
reduce elastic energy at the phase front of a first order phase
transition and that dynamical restoring forces exist. They will
however vanish when the crystals leave the phase coexistence
region.

At second order phase transitions the situation is quite
different. There exists no long range elastic field and the
domains simply appear for statistical reasons. If we envisage
the domain wall energy which close to a second order
phase transition scales as21 Ew ∝ (Tc − T )3/2 as the activation
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FIG. 2. (Color online) Sketch of needle domains of length l and
width x− and their movement at applied static stress σs ∝ Fs .

energy which has to be overcome to create a domain wall, we
observe that the number of twin walls Nw ∝ exp[− (Tc−T )3/2

T
]

will increase exponentially upon approaching Tc. But even
so one does not get an equilibrium domain configuration.
A loophole can be found by inspecting the real domain
structure in perovskites which usually consists of needle
shaped domains.28,41 A sketch of such needle domains is shown
in Fig. 2.

Such needle shaped domains are formed in ferroelastic
crystals due to mechanical incompatibilities of the lattice
occurring around domain wall intersections.21 Rotational
defects (wedge disclinations) located at the domain wall
junctions create long range stresses, which lead to phenomena
such as humping and wiggling of neighboring domain walls,
the formation of needle tips, and splitting of needle tips.21

Bornarel3,52 has done beautiful work in KH2PO4, showing
that domain tips produce long range interactions between
domains. Torrès et al.53 have shown that these long range
elastic stress fields can stabilize an array of ferroelastic needle
domains. Their free energy [Eq. (44) of Ref. 53] contains a
term ∝ε2

s x0, where x0 = 1
2 (x+ + x−) is the average domain

width. This term, which arises from the long range elastic
interactions between needle shaped domains, is reminiscent
of the term ∝P 2

s x0, which appears in the free energy of an
array of ferroelectric domains19 due to long range electrostatic
forces.

Generally we have to distinguish between two types
of domain boundary motion: Domain boundaries can shift
“sideways” under external stress, i.e., along the normal to
their domain boundaries with amplitude ξ . The second type of
movement of such needles is that of retraction and progression
of the needle tip with amplitude λ. However, one should
also note that for long needles the lateral displacement ξ of
domain walls causes a much larger change in cross-sectional
area as does λ, and therefore the contribution of lateral
movement to the macroscopic susceptibility may overcome the
longitudinal one. Such situation was previously observed for
KH2PO4.52

Now one could proceed in a similar way as for ferroelectric
crystals,9,19 resulting in a domain wall contribution to the
elastic compliance �SDW

11 of the form

�SDW
11 = εs

x0

∂ξ

∂σ
. (4)

Torrès et al.53 have calculated the average domain size x0

for an array of needle shaped domains as

x0 ∝
√

Ewl

εs

, (5)

where l is the length of the needles and Ew the domain wall
energy. With Eq. (4) and ∂ξ

∂σ
= εs/q, where q is an effective

spring constant, one obtains

�SDW
11 ∝ ε3

s√
Ewl

. (6)

Since for all the measured perovskites in the improper
ferroelastic phases the relation εs ∝ Q(T )2 holds,27,28,39 one
obtains for a second order phase transition, with the primary
order parameter Q ∝ (Tc − T )1/2 and Ew ∝ (Tc − T )3/2,

�SDW
11 ∝ (Tc − T )9/4 ∝ Q4

√
Q. (7)

Although Eq. (7) describes the superelastic softening
qualitatively well, it fails for a quantitative fit of the data. In fact
all measurements clearly show that for perovskites the domain
wall contribution to the elastic response is proportional to the
square of the order parameter; i.e., �SDW ∝ Q2. This very
robust result was found for SrTiO3,27 KMn1−xCaxF3,28 and
LaAlO3.29 It can be most clearly seen in the example of LaAlO3

in Fig. 6 of Ref. 29, which displays �SDW ∝ Q2 ∝ (Tc − T ).
To overcome this discrepancy, we recall that most of the

theories of domain wall motion effects neglect the thickness w

of domain walls. However, it has been shown that ferroelastic
domain walls are rather thick (e.g., w ≈ 3 and 10 times
the lattice spacing normal to the twin plane for SrTiO3

and LaAlO3, respectively),54 displaying a critical temperature
dependence, when approaching Tc. For example, for LaAlO3

the domain wall width varies between 10 nm (300 K) and
50 nm (800 K).54 To account for the finite width of
domain walls we adapt the phenomenological Landau-
Ginzburg-Lifshitz model which was previously used for
the description of incommensurate-commensurate (INC-C)
phase transitions55 and originally developed for magnetic
phase transitions.56,57 Sannikov55 mentioned the similarity of
the solutions of the Euler-Lagrange equations for incommen-
surate systems and domain structures, due to the absence of the
coefficient of the Lifshitz term in these equilibrium equations.
In fact Shirobokov58 has already calculated the effect of an
external magnetic field on the magnetic domain structure
of ferromagnetics by analyzing the so called Bloch-Landau-
Lifshitz model.

Including the repulsion between extended domain walls59,60

and taking into account the long range elastic interactions
between needle shaped domains53 in the free energy density
f , one obtains in the presence of an applied stress σ

f (σ ) = fL + kε2
s (x+ + x−)

+ 1

x+ + x−
[Ew + b exp(−x+/w) + b exp(−x−/w)]

+ 2εsσ
x+

x+ + x−
, (8)

where x+ and x− denote the widths of the two different
domains, w is the domain wall width (Fig. 2), and the
approximation works well if x+ � w and x− � w. The
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term Ew > 0 represents the domain wall energy (per unit
area) and the term with b describes the repulsion (b > 0)
between domain walls. fL is the homogeneous part of the
Landau-Ginzburg potential including order parameter strain
coupling terms, which was published in a number of papers for
the cubic to tetragonal31 as well as the cubic to rhombohedral39

transition, respectively. Equation (8) differs from the free
energy density used for the description of solitons55 of an
incommensurate phase near the lock-in transition. Due to the
Lifshitz term in the free energy of incommensurate phases the
energy of discommensurations in the incommensurate phase
near the lock-in transition is negative, whereas the domain
wall energy Ew is positive. This leads to a stable soliton lattice
sufficiently near the lock-in transition with an equilibrium
distance between discommensurations, which is strongly tem-
perature dependent. One of the most interesting consequences
from this is the well known Curie-Weiss type anomaly of
the dielectric susceptibility61 or the elastic susceptibility36

when approaching the improper ferroelectric or ferroelastic
lock-in transition, respectively. In contrast to this, due to the
positive domain wall energy contribution, ferroelastic domains
are generally metastable objects. However, the long range
elastic interactions between needle shaped domains, which
in Eq. (8) enter through the term kε2

s (x+ + x−), stabilize a
ferroelastic domain structure in the present case. It turns out
that Eq. (8) is very useful for the description of the observed
superelastic softening in perovskites and one can proceed as
follows. Under applied stress σ = σs + δσ (σs and δσ static
and dynamic components of stress, respectively) the width
x+ of domains with εs(+) enlarges, while the width x− of
domains with εs(−) shrinks (Fig. 2). This leads to a new period
x0(σ ) = x+(σ ) + x−(σ ) of the domain lattice under applied
stress. The macroscopic deformation εDW of the crystal due to
domain wall motion under applied stress is

εDW = εs

x+ − x−
x+ + x−

= εs

(
1 − x−

x0

)
. (9)

Assuming that x0 is a function of the static stress σs

only and does not depend on the oscillating part, i.e., the
so called clamped compliance condition60 (∂x+/∂σ )x0 =
−(∂x−/∂σ )x0 , one obtains the domain wall contribution to
the elastic compliance:

�SDW = − εs

x0

(
∂x−
∂σ

)
x0

. (10)

The equilibrium conditions ∂f (σ )/∂x± = 0 lead with Eq. (8)
to the following two transcendental equations:

kε2
s − 1

4x2
0

[Ew + b exp(−x+/w) + b exp(−x−/w)]

− b

2wx0
exp(−x+/w) + εsσ

x0
− εsσx+

2x2
0

= 0,

(11)

kε2
s − 1

4x2
0

[Ew + b exp(−x+/w) + b exp(−x−/w)]

− b

2wx0
exp(−x−/w) − εsσx+

2x2
0

= 0.

Combining both equilibrium conditions yields

exp(−x−/w) − exp(−x+/w) = 2σεsw

b
. (12)

Using Eq. (12) and the clamped compliance condition we
obtain ∂x−/∂σ = − 2εsw

2

b exp(−x−/w)+b exp(−x+/w) which together
with Eq. (10) leads to

�SDW = 2ε2
s w

2

bx0(σ )[exp ( − x−(σ )/w) + exp ( − x+(σ )/w)]
.

(13)

At this point Eq. (13) is identical to the form of the
elastic compliance near the lock-in transition to an improper
ferroelastic INC-C lock-in phase [see Eq. (19) of Ref. 36].
The difference to our case however comes from the different
temperature dependence of the domain width x0 as compared
to the width of the soliton lattice. For vanishing applied static
stress σs → 0 the condition x− = x+ = x0 holds and

�SDW = ε2
s w

2

bx0 exp(−x0/w)
. (14)

For further evaluation we calculate the equilibrium domain
width x0 from Eq. (11) at σ = 0 according to

x2
0 4kε2

s − 2b exp(−x0/w)

[
1 + x0

w

]
− Ew = 0. (15)

For the general case the transcendental equation (15) can only
be solved numerically. Before doing this, it is instructive to
look first at the solution neglecting the repulsion between
domain walls, as has been done by Tórres et al.,53 yielding

x0 =
√

Ew

2
√

kεs

. (16)

Although the repulsion term between domain walls is
neglected here, this relation may be used for a qualitative
understanding of the differences in the temperature evolution
observed in various ferroelastic materials. For example in
the proper ferroelastic phase of NdP5O14 a regular striped
pattern was observed, where the number Nw of domains
increases drastically with approaching Tc from below.20,62 In
contrast for KMnF3,63 SrTiO3,64 and LaAlO3

65 no such strong
variation of the domain wall density is observed in their whole
improper ferroelastic phase (see also Fig. 3). Since for a proper
ferroelastic crystal the spontaneous strain is the primary order
parameter21 varying close to a second order phase transition as
εs ∝ (Tc − T )1/2 and Ew ∝ (Tc − T )3/2, according to Eq. (16)
the number of twin walls Nw ∝ 1/x0 ∝ (Tc − T )−1/4 is in-
creasing with increasing temperature, i.e., is diverging at Tc.
In contrast, for an improper ferroelastic phase transition the
spontaneous strain is proportional to the square of the order
parameter and thus varies as εs ∝ Q2 ∝ (Tc − T ). Inserting
this into Eq. (16) leads to Nw ∝ 1/x0 ∝ (Tc − T )+1/4. This
opposite temperature dependence of the number of domain
walls or equivalently the average domain width for proper and
improper ferroelastic crystals may well explain the different
observed temperature evolutions of ferroelastic domains.

Now let us return to describe the elastic measurements
on perovskites. As already mentioned above, x0 cannot be
calculated analytically, but a numerical solution of Eq. (15)
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100 μm

FIG. 3. (Color online) Needle-shaped ferroelastic domains in
KMn0.983Ca0.017F3 at T = 193 K and 165 K observed with polarizing
microscope.

shows that one can find a reasonable set of parameters where
x0 exp(−x0/w) is almost independent of temperature, except
for a very small temperature range close to Tc (Fig. 4). (Note
that for INC-C transitions x0 exp(−x0/w) = wEw, i.e., is
strongly temperature dependent, which is the origin for the
Curie-Weiss type anomaly in the susceptibility close to the
lock-in transition [see, e.g., Eq. (25b) of Ref. 59].) Therefore
the temperature dependence of �SDW in Eq. (14) is determined
by the temperature dependencies of εs ∝ Q2(T ) and the square
of the domain wall width w(T ), which was shown21 to vary as
w2 = 2g

BQ2+2CQ4 , where B and C are the fourth and sixth order
expansion coefficients of the Landau free energy and g is the
coefficient of the gradient term. Inserting these relations into
Eq. (14), we obtain

�SDW ∝ Q4

BQ2
(
1 + 2C

B
Q2

) . (17)

The Landau expansion coefficients for the present per-
ovskites have been previously determined35,54 with great
accuracy and are collected in Table I. For LaAlO3 the
agreement of the present model with the experimental data
can be most easily demonstrated. Since the phase transition
in LaAlO3 is continuous and well described by a 2-4 Landau
expansion, i.e., with C = 0 (Table I), according to Eq. (17)
�SDW ∝ Q2 ∝ (Tc − T ) (inset of Fig. 4), which is in perfect
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FIG. 4. (Color online) Temperature dependencies of x0 (red line),
x−1

0 ex0/w (green line), and �SDW (blue line of inset) calculated from
Eq. (15) for a second order phase transition.

agreement with the experimental data (Fig. 6 of Ref. 29). For
SrTiO3 it has been shown24,35 that

Q2 = − B

2C

+
√(

B

2C

)2

− Aθs

C

[
coth

(
θs

T

)
− coth

(
θs

Tc

)]
,

(18)

with θs = 60.75 K and A, B, and C from Table I, whereas
for pure and mixed fluoroperovskites the classical order
parameter solution of the 2-4-6 Landau expansion is used.35

We have fitted our experimental data according to equation
Y r = (1 + �SDW + �SLK)−1, where �SDW and �SLK are the
domain wall and the Landau-Khalatnikov (LK) contributions,
respectively. The LK contributions for SrTiO3

27,31 as well as
for KMnF3

28 have been determined previously and it was
shown that they are very small (<10%) compared to the
domain wall contribution (up to about 80%). Figures 5 and
6 show that the data for σs = 0 can be perfectly fitted with
Eqs. (17) and (18) and the parameters of Table I.

To describe the stress dependence of �SDW we have to
calculate x0(σs) from Eq. (11). Again this cannot be solved
analytically, but we can perform a rough approximation.
For increasing stress, x+ increases and x− decreases which
according to Eq. (12) saturates at

exp(−x−/w) = 2σεsw

b
, (19)

TABLE I. Landau coefficients for the Pm3̄m–I4/mcm phase
transition of some perovskites.

A (J/mol K) B (J/mol) C (J/mol)

KMnF3 2.72 −57.38 573
KMnF3 1.7% Ca 2.87 20 540
SrTiO3 0.7 31.22 42.2
LaAlO3 4.49 3670 0
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whereas exp(−x+/w) → 0 for σ → ∞. Inserting this into
Eq. (13) we obtain

�SDW = ε2
s w

2

bx0(σ )
[
exp(−x+(σ )/w) + σεsw

b

] . (20)

In the same limit of high stress we obtain for the average
domain size

x0(σ ) =
√

Ew + 2σεsw
[
1 − ln

( 2σεsw

b

)]
4kε2

s

. (21)

Inserting x0 into Eq. (20) we get

�SDW = ε2
s w

2√
Ew+2σεsw

[
1−ln

(
2σεsw

b

)]
4kε2

s

[
e−x+(σ )/w + σεsw

b

] . (22)

Figure 5 shows that the present model fits the data for
SrTiO3 perfectly in the whole measured temperature and stress
range. For KMn0.983Ca0.017F3, however, the agreement is not so
good. The inset of Fig. 6 shows a fit of the data using Eq. (22).
Although the data are well described for small applied static
load (stress), the fits worsen with increasing load (stress). The
origin of this difference with SrTiO3 is presently not clear.
One possibility is that the strong nonlinearity of �SDW with
respect to σs is due to a strong suppression of the number of
domain walls as has been described by a coarse-grained Ising
type model with spin-strain coupling.20,28 It may however also
be described in the frame of the present continuum model,
if we take into account that even a very small applied stress
leads in KMnF3 to a retraction of the needle shaped domains
as we have observed in polarizing microscopy under applied
stress. In a very simplified model we can calculate the effect
of needle retraction to the elastic susceptibility by multiplying
�SDW of Eq. (22) with l−(σ ). Since in first approximation
l− ∝ 1/σ , this increases the nonlinearity of �SDW with respect
to σ , which leads to a much better agreement with the
data (Fig. 6).
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FIG. 5. (Color online) Temperature dependence of the relative
Young’s modulus of SrTiO3 crystals measured by the three point
bending method with different static loads Fs ∝ σs at f = 11 Hz.
Sample size: 6.7 × 1.5 × 0.44 mm3. The lines are the fits using
Eq. (22) and Y r = (1 + �SDW + �SLK)−1.
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FIG. 6. (Color online) Temperature dependence of the relative
Young’s modulus of KMn0.983Ca0.017F3 crystals measured by the
parallel plate method with different static loads Fs ∝ σs at f = 13 Hz.
Sample size: 1 × 1 × 3 mm3. The lines are fits with Eq. (22) and Y r =
(1 + �SDW + �SLK)−1, assuming an additional stress dependence of
the length of needle shaped domains as described in the text. Inset:
Fit with Eq. (22) assuming constant length of the needles.

V. SUMMARY

We have performed a detailed analysis of the “superelastic
softening” measured recently by dynamic mechanical analysis
in quite a number of various perovskite structured materials
including SrTiO3,26,27 Ca1−xSrxTiO3,66 LaAlO3,40,41 KMnF3,
KMn1−xCaxMnF3,28 and BaCeO3.67 This pronounced soft-
ening, which is observed in the improper ferroelastic phases
of the crystals at low measurement frequencies (0.1–50 Hz)
originates from the movement of thousands of ferroelastic
twin boundaries in response to the externally applied dy-
namic stress. To calculate the domain wall motion induced
contribution to the elastic susceptibility �SDW we first had
to overcome the stability problem of ferroelastic domains.
This was done by considering the real domain structure
of perovskites. Practically in all the measured crystals the
domains in the ferroelastic phases form needle shapes. The
tips of these needles produce long range stresses3,52 which
lead to long range interactions between domain walls53

that are formally identical to the long range interactions in
ferroelectric or ferromagnetic systems and are therefore in
a similar way stabilizing an array of ferroelastic domains.
The corresponding free energy can be used to calculate the
average domain width x0 and the effective “spring constant”
of the domain array, which yields an elastic softening with
a magnitude proportional to the square of the spontaneous

strain, i.e., �SDW ∝ ε2
s

x0
, which is again formally identical to

the domain wall contribution to the dielectric susceptibility of
ferroelectrics.19 Since for the improper ferroelastic perovskites
the spontaneous strain itself is proportional to the square of the
order parameter, �SDW ∝ Q(T )4 would hold. But this result is
in contradiction to the fact that all measured perovskite crystals
yield a domain wall contribution �SDW ∝ Q(T )2. Up to this
point all calculations were performed with the assumption of
infinitely thin domain walls. However, it was impressively
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shown54 that ferroelastic domain walls have a finite thickness
w which increases as w ∝ 1/Q(T ) when approaching Tc.
Taking into account the repulsion between domain walls
of finite width w, the elastic susceptibility is multiplied by

w2 ∝ 1/Q2, leading to �SDW ∝ ε2
s w2

x0
∝ Q(T )2, which then

perfectly fits the data for small applied stress. For higher
external stresses, the width of ferroelastic domains decreases,
leading to a nonlinear stress dependence of the domain wall
contribution to the elastic compliance. At very high stress
the whole crystal is switched to a (nearly) single-domain
state and the elastic compliance approaches the monodomain
value, which is determined by the Landau-Khalatnikov (LK)
contribution �SLK.

At ultrasonic frequencies (f = 15 MHz) the domain walls
can no longer follow the stress field and the superelastic
softening vanishes. The remaining elastic anomalies can then
be well fitted within Landau theory taking into account the

coupling terms between the order parameter and the strain
components (LK contribution).

We can conclude that for understanding of the domain
wall contributions of ferroic materials to the corresponding
macroscopic susceptibilities the effect of domain wall thick-
ness and its critical temperature dependence have to be taken
into account. The present results may also serve as a basis
for further investigations of domain or nanodomain induced
effects in other materials, e.g., with proper ferroelastic phase
transitions, martensitic phase transitions, or even strain glasses.
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