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Energy landscape of small clusters of self-interstitial dumbbells in iron
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The activation-relaxation technique nouveau (ARTn), a method for the systematic search of the minima and
saddle-point configurations, is applied to the study of interstitial-cluster defects in iron. Some simple modifications
to improve the efficiency of the ARTn method for these types of applications are proposed. The energy landscapes
at 0 K of defect clusters with up to four self-interstitial atoms obtained using the Ackland-Mendelev potential
for iron are presented. The efficiency of the method is demonstrated in the case of monointerstitials. The number
of different bound configurations increases very rapidly with cluster size from di- to quadri-interstitials. All
these clusters can be analyzed as assemblies of dumbbells mostly with 〈110〉 orientation. The lowest-energy
configurations found with the present method and potential are made of parallel dumbbells. The mechanisms
associated with the lowest saddle-point energies are analyzed. They include local rearrangements that do not
contribute to long-range diffusion. The translation-rotation mechanism is confirmed for the migration of mono-
and di-interstitials. For the tri-interstitial the migration is dominated by three mechanisms that do not involve
the lowest-energy configuration. The migration of quadri-interstitials occurs by an on-site reorientation of the
dumbbells in the 〈111〉 direction, followed by the conventional easy glide. Finally, the minimum energy paths
are investigated for the transformation toward the lowest-energy configuration of two specific clusters, including
a quadri-interstitial cluster with a ring configuration, which was shown to exhibit an unexpected low mobility in
previous molecular-dynamics simulations.
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I. INTRODUCTION

The evolution of defects in materials is governed by events
that range from nearly athermal to highly infrequent, i.e.,
with activation energies from meV to eV.1 The atomistic
simulation of such processes becomes even more challenging
for irradiated materials owing to the increased diversity of
lattice defects. In the past few years substantial efforts have
been made to improve the efficiency in the simulation of
such thermally activated events. Several finite-temperature
methods have been proposed in the framework of molecular
dynamics (MD): hyperdynamics,2 parallel replica dynamics,3

temperature accelerated dynamics,4 action-derived molecu-
lar dynamics,5,6 or properly obeying probability activation-
relaxation technique (ART).7 These methods, which provide
recipes to accelerate the activated transition between local
minima of the system at finite temperature, have proven
to be very useful in radiation damage studies.8–11 Other
followed approaches are based on the reduction, at 0 K, of
the energy landscape to the local minima configurations and
the first-order saddle points that link them. This information is
sufficient, away from melting, to fully determine the system’s
thermodynamics and kinetics using transition-state theory
within, for example, the quasiharmonic approximation.

Algorithms for finding saddle points at 0 K can be divided
into two classes: (i) the ones based on an interpolation between
two known minima and (ii) those using only local information
around a given minimum. In the first class, an initial diffusion
pathway is first constructed and then optimized thanks to
algorithms such as the nudged elastic band (NEB) method.12,13

A review of such methods can be found in Refs. 14 and 15.
Algorithms for the second class are more complex because they

combine uphill climbs to escape from the minimum and relax-
ations in the perpendicular direction to find valleys bringing to
saddle points. The saddle point is generally found by following
the eigenvector corresponding to the lowest eigenvalue of the
Hessian. The efficiency of the initial algorithms15–18 has been
recently improved mainly by replacing the calculation of the
full Hessian matrix and its spectrum—which is a prohibitive
task for large systems—by that of only the lowest eigenvalue
and corresponding eigenvector. This includes the ART19 or
ART nouveau (ARTn),20–22 and the dimer18,23 and the hybrid
eigenvector-following methods.15,24

Interstitial-type defects formed by the clustering of self-
interstitials produced under irradiation have rather peculiar
properties in α-iron in comparison with other bcc metals,
where all interstitial-type defects are predominantly 〈111〉.
In α-iron, isolated self-interstitial atoms (SIAs) have a
rather large migration energy, ∼0.3 eV,25 instead of tens of
meV in other bcc metals. Density-functional theory (DFT)
calculations26–28 show that in bcc Fe, the 〈110〉 dumbbell
configuration is adopted while in all the other bcc transition
metals the 〈111〉 crowdion configuration has the lowest
formation energy.29 Nanometer size clusters—or dislocation
loops—have either 〈111〉 or 〈100〉 orientation in Fe.30–32 The
structure of interstitial clusters with an intermediate size is
largely unknown, although they play a key role in the loop
growth mechanism.31,33,34 The 〈111〉 loops can glide very
easily, as observed in MD simulations,33–35 with an activation
energy lower than 0.1 eV, whereas the 〈100〉 loops are
very weakly mobile, with an estimated activation energy
larger than 2.5 eV.33 The competition between these various
orientations raises the question of their relative stabilities as
functions of cluster size and temperature. Dudarev et al. indeed
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predicted that the 〈100〉 orientation should be favored at high
temperatures based on the magnetism-driven reduction of the
C ′ elastic constant.36

Ab initio calculations, as well as empirical potentials,
account for the stability of 〈110〉 dumbbells,26–28 and they
predict that the transition from 〈110〉 to 〈111〉 orientation
occurs typically at approximately five SIAs.28,37 The pur-
pose of the present paper is to investigate more deeply
the properties of SIA clusters with two to four defects.
Their structure and mobility are extremely important for the
kinetic evolution of iron-based materials and they clearly
need to be further investigated. Two types of studies have
been performed so far in this direction. The first consists in
letting the system evolve by standard MD simulations with
after-the-fact reconstruction of diffusion events. However,
because rather high activation energies are involved, quite
high temperatures, namely, up to 1200 K, are required to
explore the energy landscape.35,38 As a consequence, it is
difficult to identify the observed structures and migration
mechanisms that are relevant at lower temperatures, such as
reactor pressure vessel steel operating temperatures, ∼550 K,
or temperatures at which defect characterization experiments
such as resistivity recovery measurements are performed
(100–400 K).39 Moreover, on the MD time scale (a few ns)
the system can be be trapped easily in small regions of the
phase space. The second type of investigation is based on
the energy evaluation of a series of defect configurations
and migration pathways at 0 K. Until now, however, these
configurations were typically chosen based on intuition and
were normally restricted to configurations made of parallel
dumbbells. The limitation of this approach was illustrated
recently by the fact that unguessed low-energy configurations
made of nonparallel dumbbells were evidenced using high-
temperature MD simulations.34 However, these configurations
could be observed in MD simulations only because they have
large formation entropies and hence dramatically reduced
free energies at high temperature. Therefore, one cannot
exclude the existence of other important nonconventional
configurations or migration mechanism characteristics of low
temperature that cannot be observed in high-temperature
MD simulations. It was indeed shown by quasiharmonic
calculations that finite-temperature effects play an important
role in these defects, because, for instance, low-frequency
modes tend to stabilize 〈111〉 configurations over 〈110〉 ones
at high temperatures.40

The goal of the present paper is to investigate the low-
temperature properties of small SIA clusters in Fe using the
ARTn approach in order to cope with the limitations, on the one
hand, of the high-temperature MD simulations and, on the
other hand, of the intuition-based selection of configurations.
As in the MD studies by Terentyev et al.35 and Anento
et al.,38 the present work is based the Ackland-Mendelev
embedded atom method (EAM) potential for iron developed
in Ref. 41. It corresponds to an improved version of the
potential 2 developed by Mendelev et al.42 These potentials
were shown to perform quite well for point defects and point
defect clusters, when compared to ab initio calculations,28

although one must bear in mind that some limitations have
been pointed out concerning in particular the relative stability
of some nonparallel configurations.34

The paper is organized as follows. Section II gives a brief
presentation of the ARTn method, completed by Appendixes A
and B. The energy landscapes for interstitial defects containing
from one to four SIAs—denoted respectively, I , I2, I3, and
I4—are presented in Sec. III. In the last part of Sec. III the
transition pathways from ring configurations of I3 and I4 to
the lowest-energy configurations are investigated.

II. METHODOLOGY

A. ART nouveau (activation-relaxation technique)

The ARTn method is designed to explore the energy
landscape of the system using only the local information,
namely, the lowest eigenvalue and eigenvector of the Hessian,
according to a two-step process: activation and relaxation.

(1) The activation. Starting from the ith explored local
minimum, with coordinates qi0, the ith saddle point, with
coordinates qis , is searched for as follows.

(a) A random direction of deformation, δqi , is chosen, and
the system is slowly pushed in this direction. The idea is to
go uphill in this direction until reaching the inflexion point
of the energy surface. Successive images of the system are
constructed according to

qi
k = qi

k−1 + δxA

‖δqi‖δqi . (1)

The choices of displacement amplitude between images, δxA,
and random deformation, δqi , are discussed in Appendix A.
At each step, k, before constructing the next image, the system
is relaxed in the hyperplane orthogonal to δqi using damped
MD after which the lowest eigenvalue of the Hessian λ1 is
computed. If λ1 is positive, the deformation is increased one
step further. If λ1 is negative, or more precisely, if it becomes
lower than a negative threshold value, which is set at λc =
−0.5 eV/Å for the present study, the procedure described
below is applied. For a typical value of δxA=0.6 Å only four
to six steps are needed before λ1 � λc.

(b) Once λ1 is negative, the convergence to the saddle point
is achieved by going along the eigenvector corresponding to
this lowest eigenvalue v1:

qi
n = qi

n−1 − δxn
a

‖v1‖v1. (2)

The displacement amplitude between images (n − 1) and n,
δxn

a , needs to become smaller as the saddle point is approached;
it is chosen as δxn

a = δxa/n1/2, where δxa is smaller than
δxA to ensure convergence to the saddle point. In this paper
we have used a ratio δxa/δxA = 0.4. The average number of
activation steps is n ∼ 20. We have tested several values of
δxa without noticing major differences. Note that in more
difficult cases, it could be useful to update δxn

a using the
adaptative method proposed by Wales et al.15,24 in the hybrid
eigenvector-following method and by Cancès et al.43 in ARTn.
As in the previous step, each configuration qi

n is relaxed in the
hyperplane orthogonal to v1. If the lowest eigenvalue becomes
positive, procedure 1(a) is started again from configuration qi0

with a new random direction δqi .
(2) The relaxation. This straightforward step consists in

relaxing the system into the local minimum, q(i+1)0, on the
other side of the saddle point. It can be achieved with
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any standard minimization technique. We have used, again,
damped MD; i.e., the system is propagated with the Verlet
algorithm with a time step of 7 fs. Before applying this
algorithm, however, the configuration is normally pushed
slightly over the saddle point, away from the initial minimum,
to ensure that the relaxation will lead to a new local minimum.
The relaxation is considered to be achieved when all forces are
smaller than 10−4 eV/Å.

One of the central points of the ARTn method is that the
evaluation of λ1 and v1 is performed using the Lanczos method.
Its implementation in ARTn and the proofs of convergence
with a basis set size l = 15 used here are presented in
Appendix A.

B. Efficiency

The most important criterion to measure the efficiency of
the ARTn method is the total number of force evaluations per
successful saddle-point search. In some systems, this number
may depend weakly on the system size, as shown by Olsen
et al.17 using the dimer or ART methods for surface systems.
For large cells, Mousseau et al.20,21 noted that it is preferable
to use a local initial deformation instead of a global one to
prevent the simultaneous initiation of independent local basin
escape trajectories in different parts of the cell. From the
analysis of the results in Appendix A, we conclude that the
local deformation, centered on the defect, is indeed the most
efficient method. With this type of deformation, the number of
force evaluations is independent on the size of the system.

C. Analysis of the ARTn trajectories

Unless otherwise stated, the size of the system is 8a0 ×
8a0 × 8a0, where a0 is the lattice parameter, i.e., 1024
lattice sites. The statistic is made over 50 trajectories, which
are stopped after 2000 successful activation events. Each
simulation is started from the configuration with the lowest
known energy. With aggressive parameters, the system can
climb very high in energy during the activation process and
the saddle point that is found may not be directly connected to
the starting minimum. This is, for instance, obviously the case
when the saddle-point energy is lower than the starting point
energy. More generally, nudged elastic band calculations were
therefore performed between all initial and final configurations
in order to exclude events between minima that are not directly
connected. This procedure is not necessary if a small activation
step is chosen, e.g., δxA = 0.005 Å. However, as explained in
Appendix A, for efficiency reasons, δxA = 0.6 Å is used here.

The output of an ARTn simulation is a set of three
configurations minimum- saddle point-minimum which is
called event. This information can serve first to identify
low-energy configurations but also low-energy pathways that
are important for the kinetic evolution of the system. Our aim
is to explore states corresponding to clustered interstitials, and
not states made by separated defects, e.g., a In−1 cluster and a
self-interstitial. The difficulty is that these states are not very
far in energy from the lowest-energy configuration, because
the binding energy between I and In−1 is of the order of
1 eV. For this reason, the phase-space exploration is performed
using a Metropolis algorithm and a fictitious temperature. In

other words, the starting configuration for the next saddle-point
search is the new minimum if its energy is lower than that of
the previous minimum, or otherwise either of the two minima
with a probability proportional to their Boltzmann weights.
This favors low-energy configurations without systematically
rejecting the configuration that increase the energy. The value
of the fictitious temperature is a key parameter of the method.
If it is too high, most of the time is spent exploring dissociated
configurations. If it is too low, it could be the case that the
simulation misses clustered configurations belonging to an
energy basin separated from the initial one by a high-energy
saddle point. As a compromise, the fictitious temperature is
set to 1200 K in the present study. For the same reason,
if the current configuration has an energy 2 eV higher than
the lowest-energy configuration, it is replaced with the initial
configuration.

The interstitial atoms are localized using the Wigner-Seitz
method.35 Two configurations are considered as nonequivalent
if their energies differ by more than 10−2 eV and if the sum
of squares of the principal components of the inertia tensor of
the interstitial atoms are different.

The histograms of the energy distribution for a given
cluster size are plotted with 0.01 eV intervals. We denote
by I

〈hkl〉
n the lowest-energy In cluster formed by n parallel

dumbbells aligned along the 〈hkl〉 direction. A few other
specific configurations are discussed. They are labeled Im

n ,
where m denotes the energy interval (1,2,3, . . .). When more
than one configuration is present in the interval, a letter
(a,b,c, . . .) is added in the superscript.

III. RESULTS

A. Monointerstitials

The case of the monointerstitials is quite simple and it has
already been investigated in depth in several local minimiza-
tion studies.27,28 This section can therefore be considered as a
validation of the present methodology, i.e., to make sure that
all the configurations and migration pathways that have been
proposed are found, but in an automatic way.

The histogram of all the configurations found after 105

successful ARTn events is shown in Fig. 1. In this particular
case, it is actually sufficient to compute only a few hundred
events. In agreement with previous static calculations, the
I

〈110〉
1 dumbbell is the most stable configuration, with a

formation energy of 3.52 eV. It is followed, 0.42–0.43 eV
higher in energy, by a set of configurations close to the 〈111〉
dumbbell. This includes a dumbbell that is slightly tilted
toward the 〈110〉 direction, with a tilt angle ≈9.9◦. It will
therefore be denoted 〈11ξ 〉 in the following. It also includes
the so-called crowdion configuration, which is obtained by
placing one extra atom in between two nearest neighbors in
the 〈111〉 dense direction. Finally, 0.61 and 0.64 eV higher
are the tetrahedral (I tet

1 ) and octahedral (I oct
1 ) configurations,

respectively. In DFT calculations with cells with up to 251
atoms, the 〈100〉 dumbbell was also found to be a local
minimum. This configuration is also metastable with the
Ackland-Mendelev potential for small cell sizes.28 It is not
found here because it decays into the octahedral configuration
for cells with 1024 atoms or more. Note that the 〈100〉
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FIG. 1. (Color online) Histogram of the relative formation ener-
gies and their associated barrier energies for ARTn-generated events
of the monointerstitial in iron modeled by the Ackland-Mendelev
potential. The origin on the abscissa is the energy of the most stable
configuration, the I

〈110〉
1 dumbbell. The black bars, associated with

the vertical axis on the right-hand side, correspond to the occurrence
of the configurations in the 105 event ARTn trajectory. The red
squares represent the barrier energies of the saddle points linked to
the corresponding configuration. The barrier energy is the difference
between the saddle-point energy and the energy of the corresponding
local minima configuration. For I

〈110〉
1 , the exact values to each barrier

energy of the migration and on-site rotation mechanisms are reported
in Table I.

dumbbell is unlikely to decay to the octahedral configuration
at large cell sizes within DFT, because the DFT formation
energy of the octahedral configuration is larger than that of
the 〈100〉 dumbbell, at variance with the Ackland-Mendelev
potential behavior. This discrepancy comes from the fact
that the ab initio formation energies of the octahedral and
tetrahedral configurations were not used in the fit of the
Ackland-Mendelev potential.

For each configuration, the set of energy barriers found to
escape from the local minimum are also plotted in Fig. 1. All
the barriers that have been proposed from static calculations
starting from the 〈110〉 ground-state configuration are also
found here and summarized in the Table I. The lowest barrier
at 0.31 eV corresponds to the nearest-neighbor translation-

TABLE I. Calculated migration and on-site rotation energies of
the 〈110〉 monointerstitial obtained using ARTn with two supercell
sizes: 129 and 1025 atoms. For the schematic representation of the
I

〈110〉
1 → I

〈110〉
1 mechanisms, see Ref. 27.

Size

Mechanism 129 1025

NN translation-rotation 0.31 0.31
[110]-[011] 0.43 0.41
[110]-[11ξ ] 0.43 0.43
NN translation 0.46 0.43
Second NN 0.62 0.61
[110]-tetrahedral 0.64 0.62
[110]-octahedral 0.69 0.68
Third NN 0.87 0.83

rotation migration mechanism proposed by Johnson.44 The
next two barriers correspond to the on-site reorientation
into an equivalent 〈110〉 dumbbell and the 〈11ξ 〉 dumbbell,
respectively. Then come the migrations toward the nearest
neighbor by the translation mechanism, the second nearest-
neighbor 〈110〉 dumbbell, and the tetrahedral and octahedral
configurations. The latter two were not investigated before.
And finally comes the third nearest-neighbor jump.

In order to test the accuracy of the energy barriers found
in the ARTn simulations, we have recalculated them using
two-ended methods. We used both the drag method27,28 and
the NEB method.12,13 The results are found to be the same for
the three methods within, at most, 0.01 eV. This is also the
case when using smaller cell sizes (129 atoms). The results are
summarized in Table I.

Regarding the I
〈11ξ〉
1 configuration, the small barriers

correspond to the migration of the dumbbell in the 〈111〉
direction or to the reorientation of the dumbbell into the 〈110〉
direction. It is interesting to note that ARTn also finds some
paths to the tetrahedral and octahedral configurations, with
barriers of 0.25 eV.

From this analysis it is clear that the most important
mechanism in the monointerstitial migration for this potential
is the Johnson mechanism with a 0.31 eV activation energy.
The dumbbell can migrate to four nearest-neighbor sites and
for each of them it can adopt two final orientations. As a result
its motion is three dimensional (3D). Indeed, using MD and
the same potential, Terentyev et al.35 and Anento et al.38 found
that the migration path for the single SIA is fully 3D in the
300–1000 K range. Using a simple Arrhenius interpolation
from 400 to 1000 K, Terentyev et al.35 estimated the effective
migration barrier to be 0.31 eV.35 Thanks to better statistics,
Anento et al.38 were able to show that the Arrhenius curve
of the diffusion coefficient is in fact curved, with a slope of
0.30 eV below 500 K and 0.20 eV at higher temperatures.
The low-temperatures results are in perfect agreement with
the present 0 K calculations.

Terentyev et al.35 observed that the single SIA reorients
from the 〈110〉 → 〈11ξ 〉 configuration at high temperature,
with an effective reorientation energy of 0.69 eV, The discrep-
ancy with the present static calculation, 0.43 eV, can be owing
either to finite-temperature effects or to the fact that the MD
error bars are quite large for this infrequent event.

B. Di-interstitials

The energy distribution of all the configurations found by
ARTn at 0 K starting from a di-interstitial made of nearest-
neighbor parallel 〈110〉 dumbbells is represented in Fig. 2. The
lowest-energy configuration found with the present potential is
the nearest-neighbor parallel dumbbell, I 〈110〉

2 , with a formation
energy of 6.21 eV, i.e., a binding energy of 0.83 eV. There
are more than 200 distinct bound configurations, i.e., with an
energy strictly lower than that of two isolated 〈110〉 dumbbells.
However, only 80 of them are below 0.76 eV. More generally,
the broad peak at ∼0.83 eV contains hundreds of configura-
tions of two 〈110〉 separated dumbbells at various distances
and with various orientations. Only a small set of the bound
configurations is made of parallel dumbbells. Among them, the
first parallel metastable state, with an excess energy of 0.48 eV,
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FIG. 2. (Color online) Histogram of the relative formation ener-
gies and associated barrier energies (red squares and left vertical
axis) of the ARTn-generated configurations for di-interstitials in
iron modeled by the Ackland-Mendelev potential. The configuration
energies are taken with respect to the I

〈110〉
2 configuration. The vertical

axis on the right-hand side (associated with the bars) corresponds to
the number of distinct minima found by ARTn. Labels 1–5 denote
energy intervals with low-energy configurations. The quasicontinuum
of states starts at label 6. Label 7 corresponds to interval containing
the parallel configurations (I 〈111〉

2 ), and finally labels 8, 9, and 10
represent states with two separated dumbbells, oriented, respectively,
both along 〈110〉, one along 〈110〉 and the other along 〈111〉, and
both along 〈111〉. The peaks labeled 8, 9, and 10 are truncated on the
figure, and their maxima are 74, 211, and 55, respectively..

is the nearest-neighbor I
〈100〉
2 dumbbell configuration. With an

excess energy 0.53 eV, I
〈111〉
2 is made of two parallel 〈111〉

dumbbells at first- or second-nearest-neighbor distance; these
two configurations are nearly degenerate in energy. Between
the two lowest-energy configurations with parallel dumbbells,
I

〈110〉
2 (interval 1) and I

〈100〉
2 , there are several nonparallel

configurations. The configurations, associated with the six
filled lowest-energy intervals, are represented in Fig. 3.

The I 2a
2 configuration is formed by two dumbbells at

third-nearest-neighbor distance, a0

√
2: One is aligned along

[1-10] and the other one is aligned along [01-1]. This
configuration is important as it can be formed from I

〈110〉
2

by a Johnson jump (see the discussion of Fig. 5 below),
and it corresponds to the intermediate configuration for the
two-step migration mechanism of I2.27 The I 2b

2 , I 3a
2 , I 3b

2 , I 3c
2 ,

and I 4a
2 configurations belong to the same class of defects.

Let us start with the I 3b
2 , which can be seen as three 〈110〉

dumbbells and one vacancy. This configuration was reported
first by Gao et al.45 from MD simulations of a displacement
cascade using another potential, and it was observed recently to
form spontaneously from 〈110〉 dumbbells in MD simulations
using the Ackland-Mendelev potential.34 This configuration
is very close in geometry to either two nearest-neighbor
perpendicular 〈110〉 dumbbells (configuration I 2b

2 ) or two
third-nearest-neighbor nonparallel dumbbells (configuration
I 3a

2 ). These two configurations are local minima for the present
potential, as well as their respective two slightly tilted analogs,
I 4

2 and I 3c
2 . Note that the I 3b

2 configuration was found to have
an energy even lower than that of I

〈110〉
2 in DFT calculations.34

FIG. 3. (Color online) Schematic representation of the lowest-
energy configurations (below the quasicontinuum) of the
di-interstitial.

This may have consequences on the mobility of I2 because
no straightforward mechanism exists for the migration of this
configuration. Because this type of defect was first observed
by Gao et al.,45 it will be referred to as a Gao-type defect in
the following.

Configurations I 5
2 , I 6a

2 , and I 6b
2 are other second- or third-

nearest-neighbor configurations of nonparallel 〈110〉 dumb-
bells (see Fig. 3). Above 0.42 eV (interval 6) the distribution
of states becomes quasicontinuous. For energies higher than
the binding energy, namely, 0.83 eV, the configurations found
by ARTn are not relevant for di-interstitials, because they
are made of two separated self-interstitials. However, the
energy spectrum is interesting because it reveals the capacity
of ARTn to capture the three families of pairs of stable or
metastable self-interstitial configurations. As discussed above,
the broad peak at 0.83 eV, labeled 8 in Fig. 2, is populated
by configurations made of two I

〈110〉
1 dumbbells. Similarly,

the broad peaks labeled 9 and 10 correspond to separated
dumbbells, the first one being I

〈111〉
1 and the second one being,

respectively, I
〈110〉
1 and I

〈111〉
1 .

The spectrum of energy barriers is also quasicontinuous.
However, not all barriers are important for long-range diffu-
sion: The small barriers (in the meV range) often correspond
to a transition from high-energy configurations to the lower-
energy configurations, e.g., from I

〈111〉
2 to I

〈110〉
2 . What is more

relevant for the migration behavior is the saddle-point energy,
i.e., the energy difference of the saddle point with respect
to the ground-state configuration and not with respect to the
initial configuration of the jump. As shown in Fig. 4, the
three lowest saddle-point energies E

αβγ

s,2 are 0.28, 0.33, and
0.47 eV. The corresponding mechanisms are represented in
Fig. 5. The lowest saddle-point energy ones, Eα

s,2 = 0.28 eV,
do not contribute to the migration. They indeed corre-
spond (1) to simultaneous double Johnsson jumps between
two I 2b

2 configurations, (2) to small local reorientations
between I 2b

2 and I 3a
2 configurations, where the barrier is
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FIG. 4. Histograms of the energies of saddle points for I2, I3, and
I4. The zero energy is the energy of the most stable configuration for
the corresponding cluster (I 〈110〉

2 , I
〈110〉
3 , and I

〈ζς0〉
4 , respectively).

only 35 meV, and (3) to mechanisms linking I 3a
2 → I 3b

2 and
I 3a

2 → I 3c
2 (not shown) with a barrier lower than 10 meV, i.e.,

at the limit of accuracy of the method. The saddle-point energy
E

β

s,2 of 0.33 eV is associated with the migration of I
〈110〉
2 by

two nearest-neighbor translation-rotation jumps, as suggested
by Johnson.44 The two dumbbells can jump sequentially, i.e.,
one after the other, or simultaneously, and the barrier is almost

FIG. 5. (Color online) Schematic representation of the events cor-
responding to the three lowest-energy saddle points for I2 appearing
in the histogram of Fig. 4. From left to right: Migration mechanism of
I

〈110〉
2 by successive Johnson jumps via the I 2a

2 configuration and by
simultaneous Johnson jumps; transition from the I

〈110〉
2 energy basin

to the I 2b
2 -I 3a

2 -I 3b
2 energy basin via the I 6a

2 configuration; and local
and very-low-energy reorientations linking I 2b

2 , I 3a
2 , and I 3b

2 .

the same in both cases. Note that the simultaneous jump could
not be obtained with the Ackland-Mendelev potential using
the constrained relaxation method28 because the procedure
decays to a successive-jump path. The fact that it is found
here therefore attests to the efficiency of the ARTn method.
It is also found with the NEB method, which is indeed more
reliable than the drag method in this particular case. Finally,
the saddle-point energy E

γ

s,2 at 0.47 eV is related to the

transformation from I
〈110〉
2 to I 3b

2 by a transitory configuration
(see Fig. 5).

Using MD and the same potential, Terentyev et al.35 found
the migration path for the di-interstitial to be fully 3D with
an effective migration barrier of 0.33 eV, which is perfectly
consistent with the lowest-energy static barrier.

Anento et al. reported that the di-interstitial performs 3D
migration via translation-rotation jumps, in agreement with
the present findings. The simultaneous jump mechanism is less
frequently observed, although it is shown here to have a similar
activation energy than the successive jump one. They also
observed that the di-interstitial dissociates after nanoseconds
above 800 K, which is consistent with the value of 0.83 eV
for the binding energy. Quite interestingly, they noticed
that between two migration sequences the di-interstitial can
be trapped for periods of up to a few nanoseconds in a
configuration, which they call sessile because it does not
migrate. This configuration, 0.3 eV higher in energy than
the parallel dumbbell configuration, corresponds precisely
to a Gao-type configuration from the I 3a

2 -I 2b
2 energy basin.

This is again perfectly consistent with the present energy
landscape. Unlike Terentyev et al., they obtained from MD a
diffusion coefficient that deviates from the Arrhenius law with
a significant difference between low-temperature (350–500 K)
and high-temperature (500–1000 K) activation energies, 0.44
and 0.19 eV, respectively. As suggested by Anento et al., it
is clear that the temperature-dependent spontaneous transfor-
mation into immobile Gao-type configurations will induce
a deviation from Arrhenius law. Further investigation is
required to explain the origin of the discrepancy between their
low-temperature activation energy, 0.44 eV, and the present
lowest-energy barrier, 0.33 eV, noticing that their diffusion
prefactor is also unusually large.

C. Tri-interstitials

The results obtained for the tri-interstitial are presented in
Fig. 6. The lowest-energy configuration corresponds to three
〈110〉 parallel dumbbells at first- and third-nearest-neighbor
distances (see Fig. 7). This configuration was not considered
in Refs. 27 and 46. It has a formation energy of 8.84 eV,
and hence the binding energy between I

〈110〉
2 and I

〈110〉
1 is

0.89 eV. Before the beginning of the quasicontinuum of states
at 0.23 eV, there is only a small set of configurations with
parallel or nonparallel dumbbells—all of them but two being
〈110〉. These configurations are represented in Fig. 7. I 2

3 and
I 3

3 are two configurations with parallel 〈110〉 dumbbells. I 4
3

can be obtained from I 3
3 by a Johnson jump. I 5a

3 and I 5b
3

can be obtained also from I 3
3 , but with an on-site rotation

of a dumbbell, toward, respectively, 〈111〉 and another 〈110〉
directions. I 6a

3 and I 6b
3 can be seen as a 〈110〉 dumbbell
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FIG. 6. (Color online) Histogram of the relative formation ener-
gies and associated barrier energies of ARTn-generated configura-
tions for I3. The same convention as in Fig. 2 is applied. The zero
energy of the abscissa corresponds to the most stable configuration,
I

〈110〉
3 . Labels 1–6 denote the first states before the quasicontinuum;

the corresponding configurations are illustrated in Fig. 7. Label 7
corresponds to the 〈111〉 parallel configuration, I

〈111〉
3 .

added to a Gao-type defect, respectively, I 2b
2 and I 3b

2 . More
than 1000 distinct bound configurations were found for I3,
as illustrated in Fig. 6. As in the case of I2 there are many
nonparallel configurations between I

〈110〉
3 and the first 〈111〉

parallel configuration, I
〈111〉
3 , which lies at 0.54 eV.

The barriers associated with I
〈110〉
3 are more complex than

for I 〈110〉 and I
〈110〉
2 . First, performing the same Johnson

translation-rotation jumps for the three dumbbells yields a
configuration with parallel dumbbells, an energy of 0.41 eV,
which is obviously different from I

〈110〉
3 , and a barrier height of

FIG. 7. (Color online) Schematic representation of the tri-
interstitial configurations below the quasicontinuum from Fig. 6. The
same convention as in Fig. 3 is used.

FIG. 8. (Color online) Schematic representation of three energy
basins of the energy landscape of tri-interstitials. The first two basins
involve low-energy configurations and the third one involves mixed
configurations composed of 〈111〉 and 〈110〉 dumbbells, Im

3 and
I n

3 . The lowest saddle-point energies, E
α,β,γ

s3 , from Fig. 4 are also
represented.

0.62 eV. No combination of two or three jumps transforming
an I

〈110〉
3 state into another I

〈110〉
3 configuration could be found.

The two lowest-energy barriers of I
〈110〉
3 are illustrated in

Fig. 8. They correspond to the jump of only one SIA by the
Johnson mechanism. The lowest one is 0.42 eV high and it
connects to a configuration at 0.34 eV, which is already in the
continuum of states. The second highest barrier, at 0.46 eV,
yields a configuration which is an intermediate state for the
transformation into I 2

3 (see Fig. 8). The activation energy
for the I

〈110〉
3 -to-I 2

3 transformation is 0.78 eV. Unlike I
〈110〉
3 ,

I 2
3 can migrate with the Johnson mechanism with the same

barrier energy as I
〈110〉
2 , i.e., 0.33 eV. Note that ARTn and

NEB provide the same value but that the barrier obtained with
the drag method is 0.48 eV.

The situation in the energy basin around I 3
3 is quite

interesting. First, I 3
3 can easily transform into I 4

3 , by a
nearest-neighbor translation-rotation jump of one of the 〈110〉
dumbbells to a 〈111〉 dumbbell, with a barrier energy of
0.08 eV (see Fig. 8). More generally, configurations I 3

3 , I 4
3 ,

I 5a
3 , I 5b

3 , I 6a
3 , I 6b

3 , and I 6c
3 (see Fig. 7) are connected by rather

low-energy barriers. For instance, the barriers for I 4
3 → I 5a

3 ,
I 5a

3 → I 6a
3 , and I 4

3 → I 6c
3 are, respectively, 0.11, 0.13, and

0.17 eV. The last one is illustrated in Fig. 8. All these barriers
correspond to local rearrangements, which do not yield any
long-range diffusion. However, I 4

3 can migrate as a unit in
the 〈111〉 direction by a low-energy mechanism, namely,
0.20 eV. This mechanism, illustrated in Fig. 8, consists of
two simultaneous Johnson jumps of the 〈110〉 dumbbells, and
a glide of the 〈111〉 dumbbell. The saddle-point energy of this
mechanism, 0.36 eV, is almost the same as that of the migration
of I 2

3 by the Johnson mechanism (0.38 eV).
Finally, an analysis of the ARTn trajectories revealed that

the lowest saddle-point energy migration mechanism (0.33 eV)
is associated with a configuration in the continuum of states,
i.e., with an energy of 0.29 eV, which can migrate with a
very low barrier (35 meV). This configuration, denoted Im

3 ,
is made of two 〈111〉 dumbbells and one 〈110〉 dumbbell.
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The migration mechanism, illustrated in Fig. 8, involves an
intermediate configuration with an energy of 0.32 eV, I n

3 , with
two nonparallel 〈110〉 dumbbells and one 〈111〉 dumbbell.
This mechanism involves a pure translation of one of the 〈111〉
dumbbells and nearest-neighbor translation-rotation jumps of
the other dumbbells.

In summary, the energy landscape of tri-interstitials can be
schematized as follows. There is no simple mechanism that
brings the lowest-energy configuration, I

〈110〉
3 , into an equiva-

lent configuration. On the other hand, three energy basins with
migration mechanisms having a saddle-point energy in the
range 0.33–0.38 eV have been identified. The first one involves
the I 2

3 configuration, which can migrate by simultaneous or
successive Johnson jumps of the aligned and parallel 〈110〉
dumbbells. A two-jump transformation linking I

〈110〉
3 to I 2

3 with
a barrier of 0.78 eV has been found. The second basin involves
the seven other configurations before the continuum of states.
These configurations are linked by low-energy barriers and
they can migrate by first transforming to I 4

3 , which can
jump into a nearest neighbor I 4

3 . The third basin involves
an even higher-energy minimum (0.30 eV) corresponding to
a mixed 〈110〉-〈111〉 configuration, which can glide easily
in the 〈111〉 direction via another mixed configuration. The
saddle points with lower energies (Fig. 4) correspond to local
rearrangements that do not yield any long-range diffusion;
for instance, Eα

s,3, at 0.18 eV, corresponds to the saddle point
between I 3

3 and I 4
3 .

Using MD and the same potential, Anento et al.38 observed
that during diffusion the tri-interstitial goes through several
configurations, which include 〈110〉 and 〈111〉 dumbbells, in
agreement with the present energy landscape. They describe
the migration process as 〈111〉 one-dimensional (1D) glides
with occasional rotations to more stable 〈110〉 configurations.
They report activation energies for diffusion and rotation
ranging from 0.1 to 0.16 eV. On the other hand, Terentyev
et al.35 found that below 600 K the migration of the tri-
interstitial is fully 3D and that at higher temperatures it
includes 〈111〉 glides with an effective migration energy of
0.16 eV. The present energy landscape is more compatible with
the latter analysis, considering that migration is dominated
by the 2D-3D mechanisms from the first two basins at low
temperature and by the 1D mechanism of the third basin at high
temperature. It is indeed very likely that the excess vibrational
entropy of 〈111〉 dumbbells40 stabilizes the configurations of
the third basin, Im

3 and I n
3 , at high temperature. In order to make

a closer and more quantitative comparison, it is necessary, on
the one hand, to better analyze the low-temperature MD con-
figurations, and, on the other hand, to perform kinetic Monte
Carlo (kMC) type simulations on the present energy landscape.

D. Tetra-interstitials

The same ARTn simulations performed for I4 yield an
even larger number of configurations (Fig. 9), with more
than 1500 distinct bound configurations. The lowest-energy
configuration is made of 〈ζς0〉 parallel dumbbells that are
slightly tilted from 〈110〉 (see Fig. 10). It has a formation
energy of 10.94 eV and hence the binding energy between
I

〈110〉
3 and I

〈110〉
1 is 1.4 eV. The next two configurations are

FIG. 9. (Color online) Histogram of the local minimum configu-
rations and their respective barrier energies for I4. The configuration
energies are taken with respect to the energy of most stable
configuration. The same convention is applied as in Fig. 2.

obtained by on-site rotations of the dumbbells, respectively,
to the 〈110〉 and 〈111〉 directions. The latter configuration, at
0.20 eV, is the beginning of the continuum of states.

As shown in Fig. 4, the lowest-energy saddle points are
at 0.25, 0.28, 0.31, and 0.34 eV. The lowest one corresponds
to a 〈111〉 glide of I

〈111〉
4 with an energy barrier of 50 meV.

The second one is similar, but it involves configurations close
to I

〈111〉
4 . The third and fourth ones correspond to on-site

reorientations of the dumbbells from the I〈ζς0〉
4 configuration

to, respectively, a distinct I〈ζς0〉
4 configuration and a I

〈110〉
4

configuration.
Anento et al.38 and Terentyev et al.35 MD analyses of the

tetrainterstitial show well-defined 1D-3D motions in the range
of 300–1000 K with long 1D-glide stretches, during which
the cluster adopts mostly the 〈111〉 orientation, interrupted by
rare transformations into I

〈110〉
4 , or more likely I〈ζς0〉

4 , according
to the present results. These MD results are perfectly consistent
with the ARTn energy landscape: (1) There is no low-energy
mechanism for I〈ζς0〉

4 to migrate as a unit; (2) the energy barrier
for the I

〈111〉
4 → I〈ζς0〉

4 on-site rotation is 0.16 eV, i.e., much
larger than the migration energy of I

〈111〉
4 (0.05 eV); I

〈111〉
4 will

therefore perform several jumps in the 〈111〉 direction before
returning to I〈ζς0〉

4 and then rotating to another 〈111〉 direction
(or the same direction). The low-temperature limit of the
activation energy for diffusion in the present energy landscape
is the saddle-point energy of the 〈111〉 glide of I

〈111〉
4 , i.e.,

0.25 eV. It can be shown that the Arrhenius slope will decrease
with increasing temperature. These results are consistent with
the MD results of Anento et al., which also show a decrease
of the activation energy with increasing temperature and an

FIG. 10. (Color online) Schematic representation of the lowest-
energy configurations of I4 (below the quasicontinuum).
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FIG. 11. (Color online) Unfaulting mechanisms of the tri-
interstitial ring configuration, I

ring
3 , into the I

〈110〉
3 configuration:

(a) 2 Johnson-rotation, (b) 2 Johnson-dissociation, and (c) 3
Johnson.

average value of 0.16 eV in the 300–500 K temperature range.
Anento et al. also measured the rotation frequency between
various 〈111〉 directions. The corresponding activation energy
is reported to be temperature dependent, but taking the average
over the 300–900 K range, one obtains 0.36 eV. This value is
in very good agreement with the present activation energy for
the I〈ζς0〉

4 → I
〈111〉
4 on-site rotation, i.e., 0.36 eV.

E. Transition pathways

It is also possible to use ARTn coupled with the Metropolis
algorithm for finding transition pathways47 from high-energy
configurations to lower-energy configurations. Recently, self-
trapped configurations were proposed for the interstitial
clusters:34 for the I2, the configuration I 3b

2 seen in Fig. 3;
for the tri-interstitial, the ring configuration I

ring
3 made of three

nonparallel 〈110〉 dumbbells in a 〈111〉 plane (see Fig. 11);
and, in the I4 case, the ring configuration I

ring
4 , obtained

from I
ring
3 by adding a 〈111〉 dumbbell at the center of the

ring. These configurations, being composed of nonparallel
dumbbells, can be considered as faulted loops that cannot
migrate by the simple step mechanism. The unfaulting energy
barrier can be very large and in MD simulations the pathway is
difficult to identify at high temperature, but too rare to observe
at low temperature.34 For example, the unfaulting activation
energies are estimated at 0.43 ± 0.08 and 0.15 ± 0.04 eV
for the I 3b

2 and the I
ring
3 , respectively, giving an average

lifetime of less than 1 ns at 450 and 300 K, respectively,
but increasing rapidly with falling T. The lifetime of the
I

ring
4 configuration is much longer—even in multiple ns MD

simulations, this configuration often does not unfault—so the
unfaulting activation energy is still a matter of debate, with an
estimated value of 1.68 ± 0.3 eV given by Terentyev et al.34

and 0.8 ± 0.1 eV given by Fan et al.11

At 0 K, the case of the I 3b
2 configuration was already

discussed in Sec. III B. This configuration lies in a flat

energy basin together with other configurations and can easily
transform into the parallel configuration, I

〈110〉
2 (see Fig. 5).

The barrier of the mechanism I 3b
2 → I

〈110〉
2 is 0.2 eV.

Performing ARTn simulations with different values of
the fictitious Metropolis temperature, namely, 100, 400, and
800 K, we ensure a broader exploration of the different ways
to escape from the starting minima. Hence, we are able to
provide the complete path for the unfaulting mechanisms
of the I

ring
3 and I

ring
4 into the parallel configurations I

〈110〉
3

and I
〈ζς0〉
4 , respectively. For each Metropolis temperature

and each trapped configuration we performed 103 ARTn

trajectories. Each trajectory is stopped once it reaches the
desired configuration. In the random paths generated by ARTn,
some configurations can be redundant and do not contribute
to the net transition. Consequently, we illustrate only the
lowest barrier energy paths and the shortest as the number
of jumps. These successive jumps for I3 and I4 are presented
in Figs. 11–13, respectively.

It is interesting to note that all the 3 × 103 unfaulting
mechanisms found by ARTn for I

ring
3 begin with the same

succession of two or three Johnson jumps. The shortest
sequence starts with two successive Johnson jumps, followed
by an on-site rotation of the dumbbell perpendicular to the
other two. The intermediate configurations are labeled R1 and
R2 to characterize this “2 Johnson + 1 rotation” sequence (see
Figs. 11 and 12). The second sequence shown in Fig. 11 starts
with the same two initial Johnson jumps, but the high-barrier
energy on-site rotation is replaced by a sequence of Johnson
jumps, the first three being simultaneous. The label D is
used for the intermediate configurations, because the cluster
looks almost dissociated. The third sequence starts with three
simultaneous Johnson jumps, followed by a series of single
Johnson jumps. The intermediate configurations are labeled J.

Energy profiles along the reaction coordinate of these
three sequences are shown in Fig. 12. The most energetically

FIG. 12. Energy landscape for the three sequences of unfaulting mechanism of the tri-interstitial ring configuration, I
ring
3 , into the I

〈110〉
3

configuration shown in Fig. 11.
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FIG. 13. (Color online) Transition pathway for the unfaulting
mechanism of the ring configuration of the tetrainterstitial, I

ring
4 , into

the most stable configuration, I
〈ζς0〉
4 .

favorable is the 2 Johnson-dissociation mechanism: The
difference between the highest saddle point—between D1 and
D2—and the initial configuration is 0.23 eV, but it corresponds
to a barrier of 0.38 eV.

In the unfaulting sequences starting from I
ring
3 , we have

observed (not shown) other pathways leading to the mobile
configurations I 2

3 , I 3
3 , I

〈111〉
3 , etc. All these trajectories start

with the sequence I
ring
3 → D1 → D2 and have their highest

saddle point between D1 and D2.
The shortest and lowest-energy unfaulting mechanism in

the case of I
ring
4 is presented in Fig. 13. It resembles the

2 Johnson-rotation sequence identified for the tri-interstitial.
After the two first Johnson jumps, the 〈111〉 dumbbell rotates
into 〈110〉, and then the perpendicular dumbbell performs two
jumps to realign to the other dumbbells. The highest barrier,
which reaches 0.5 eV, occurs in the first part of the pathway,
between I

ring
4 and C1. Using the autonomous basin climbing

method, Fan et al.11 found a path with a higher barrier, 0.86 eV.
The 0 K lowest unfaulting energies of I 3b

2 , 0.2 eV, and
I

ring
3 , 0.23 eV, are not far from the 300–550 K MD values,

0.43 ± 0.08 and 0.15 ± 0.07, respectively. On the other hand,
in the case of I

ring
4 , the unfaulting energy estimated here,

from 0 K simulations, to be 0.5 eV, is significantly lower
than the 1.7 ± 0.3 eV deduced from the lifetime of the
configuration obtained in MD simulations at 700–800 K
by Terentyev et al.,34 but it is quite close to the improved

FIG. 14. Vibrational free-energy differences between the two highest saddle points, S1 (left-hand side) and S2 (right-hand side), and the
intermediate-energy minima of the pathway for the unfaulting mechanism of I

ring
4 → I

〈ζς0〉
4 from Fig. 13.

value of 0.8 ± 0.1 eV obtained by Fan et al.11 using a broader
temperature range, namely, 875–1050 K, and better statistics.
The discrepancy between the present 0 K estimate and the latter
high-temperature value probably arises, on the one hand, from
anharmonic effects and, on the other hand, from the limitation
in the fit to MD.48–50

The free-energy landscape of the unfaulting mechanism
of I

ring
4 is expected to evolve with temperature because the

initial configuration, I
ring
4 , has a larger vibrational formation

entropy than the final one, I
〈ζς0〉
4 .34 We have therefore

determined the temperature dependence of the free-energy
differences between the maxima S1,2 and the local minima
C1,2,3 and I

ring
4 using the transition-state theory in the harmonic

approximation50,51 at constant volume.40

The results, displayed in Fig. 14, show a striking difference
between I

ring
4 and C1,2,3: Whereas the free-energy differences

involving C1,2,3 decrease with temperature—indicating that
the free-energy landscape becomes flatter with increasing
temperature—it increases when the local minima is I

ring
4 ,

leading to an increase of the unfaulting free energy. Another
interesting feature stems from the fact that S1 has a larger
vibrational entropy than S2. As a consequence, the saddle-point
free energy of S2, which is lower than that of S1 by 0.1 eV at
0 K, becomes actually higher above 320 K. More precisely, at
900 K, a temperature typical of the MD simulations of Refs. 11

and 34, 
F
I

ring
4 →S1

vib = 0.41 eV and 
F
I

ring
4 →S2

vib = 0.71 eV,
giving free-energy differences with respect to I

ring
4 of 0.91

and 1.11 eV for S1 and S2, respectively.
These results demonstrate that there is a pronounced

entropic effect along the transition pathway of the unfaulting
mechanism from I

ring
4 to I

〈ζς0〉
4 . This indicates that when

performing kMC simulations on this type of energy landscape
to deduce the mean time of the transformation from I

ring
4

to I
〈ζς0〉
4 , or I

〈111〉
4 as in Ref. 11, one should take different

prefactors for the jump frequencies between local minima.
This may slightly affect the activation energy for the whole
process. On the other hand, when considering the lifetime
of the detrapping event only, as in Ref. 34, this harmonic
entropic effect does not change the activation energy. More
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sophisticated techniques should be used to investigate possible
anharmonic effects.15,52,53

IV. CONCLUSION

A systematic study of the energy landscape of small intersti-
tial clusters in iron modeled by the Ackland-Mendelev poten-
tial has been performed using the ART nouveau method.20,21

We find that the number of bound configurations increases
rapidly with cluster size, exceeding 400, 1100, and 1500
distinct bound configurations for I2, I3, and I4, respectively.
These leads to the appearance of a quasicontinuous band of
states at relatively low energy above the ground state—at
0.42, 0.23, and 0.20 eV for I2, I3, and I4 respectively—with
only a few isolated metastable configurations in between.
Focusing on the states below the quasicontinuum, we identify
all the low-energy configurations as well as the most relevant
pathways that link them. For I and I2, the lowest saddle-point
energy migration mechanisms transform the lowest-energy
configuration by a translation-rotation jump of the 〈110〉
dumbbells. For I3 and I4, migration is more complicated
and takes place via a series of jumps between configurations
with higher energies. Three such mechanisms are identified
for I3, including one that involves a configuration with
〈110〉 and 〈111〉 dumbbells, 0.29 eV above the lowest-energy
configuration, which can glide easily in the 〈111〉 direction.

The ARTn was also used to characterize the unfaulting
of the I

ring
3–4 ring configurations. The results are in qualitative

agreement with the brute-force MD calculations performed
at higher temperature.11,34 A different unfaulting pathway,
with a lower activation energy than in a previously proposed
mechanism, namely, 0.5 eV, is obtained for I

ring
4 . We find that

the free energy of this barrier increases with the temperature
owing to the large formation entropy of the I

ring
4 configurations.

The combination of ARTn with entropy calculations can thus
provide a complete picture of the energy barrier evolution.

A detailed knowledge of the potential energy surface of
point defects can be a valuable input for larger scale in space
or time simulations.46,54 The results of this paper open unique
ways of studying the complex mechanisms responsible for
defect diffusion using the ARTn method combined with good
empirical potential and ab initio calculations.

APPENDIX A: GLOBAL VERSUS LOCAL DEFORMATION

This Appendix describes how the initial ARTn displace-
ment direction, used in Eq. (1), can be chosen. It is defined by
the δqi = (δqi

1,δqi
2, . . . ,δqi

N ) vector, where the j th component
δqi

j = (qi
jx,q

i
jy,q

i
jz) is a displacement applied to the j th atom

of the crystal. We have tried two types of initial deformations:
(i) a global deformation, where the random direction involves
all the components of δqi ; and (ii) a local, defect-centered
deformation, where the random deformation concerns only the
atoms inside a sphere centered on the defect. Unless otherwise
stated, a value of Rc = 6 Å is taken for the sphere radius for
the monointerstitial test case.

The efficiency of the ARTn method for both types of
deformations and several values of the δxA displacement are
presented in Table II for the case of the self-interstitial and
a 1025-atom system. As a general trend, the total number of

TABLE II. Efficiency of the ARTn method tested in the
case of a self-interstitial in Fe for two types of deformations
and various displacement amplitudes, δxA, expressed in Å. For
each case the statistics is made for a total of 103 success-
ful trajectories. ηt is the trajectory efficiency, the number of
successful trajectories over the total number of trajectories. ηf

is the force efficiency, the number of force evaluations performed
within the successful trajectories over the total number of force
evaluations. nf is the average total number of force evaluations
over the number of successful trajectories. The force evaluations
to check for connectivity between initial and final configurations are
not included in ηf and nf . nm is the number of distinct minima.

δxA ηt ηf nf nm

Global deformation

0.05 0.77 0.78 3180 2
0.10 0.78 0.80 1744 3
0.20 0.78 0.79 1049 3
0.40 0.75 0.76 709 2
0.60 0.73 0.72 623 3
0.80 0.70 0.70 613 2
1.00 0.64 0.65 661 4

Defect-centered deformation

0.05 0.71 0.78 1579 1
0.10 0.83 0.87 965 2
0.20 0.88 0.92 553 2
0.40 0.86 0.90 404 3
0.60 0.85 0.90 382 4
0.80 0.84 0.89 424 4
1.00 0.85 0.87 505 4

force evaluations per saddle point, nf , increases when δxA

decreases, simply because more steps are needed to reach the
saddle point when the amplitude of the steps decreases. In the
case of global deformation and defect-centered deformation,
the optimal value of δxA is between 0.6 and 1.0 Å. The most ef-
ficient deformation is the defect-centered one: For δxA = 0.6 Å
only 400 force evaluations are needed as compared to twice
as many in the case of global deformation. The superiority of
the defect-centered deformation can be seen on three criteria
listed in Table II: (1) the increase of the trajectory efficiency,
ηt , defined as the number of successful trajectories over the
total number of trajectories; (2) the increase of the force
efficiency ηf , defined as the number of force evaluations
performed within the successful trajectories over the total
number of force evaluations; and (3) the overall larger number
of distinct configurations found, nm. Note that for nm the
parameter δxA also matters: For both types of deformation,
some configurations are not found after 103 activation events
if δxA is too small. For instance, the tetrahedral configuration
is missing for δxA < 0.6 Å.

The superiority of the local deformation can be interpreted
in terms of the nature of the normal modes involved in the
activation process. The local deformation excites preferentially
the local phonons, whereas the global deformation excites
both local and delocalized modes. Delocalized modes or long-
wavelength phonons will induce only global displacements.
Following a delocalized mode deformation, ARTn needs many
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FIG. 15. Dependence with system size of the efficiency of the
ARTn method: Comparison between the global deformation and the
defect-centered deformation with two different deformation-sphere
radii.

steps to escape from the harmonic basin and therefore many
of these events are rejected. The superiority of the local
deformation shows that the displacement toward the saddle
point is mostly composed of local normal modes.

The most important improvement of the defect-centered
deformation over the global deformation is seen in the depen-
dence with system size of the number of force evaluations per
saddle point, nf , for a constant number of defects (i.e., a linear
decrease in defect density). The number of force evaluations
in global moves is independent of system size, for example,
in amorphous materials. Here, for the global deformation, nf

increases continuously with the number of atoms in the system.
On the other hand, for the defect-centered deformation nf is
almost constant from 129 atoms (4a0 × 4a0 × 4a0 cell) to 5489
atoms (14a0 × 14a0 × 14a0 cell) (see Fig. 15). Note, however,
that nf is not an increasing function of the number of atoms
that are implied in the deformation: nf is indeed larger for
Rc = 3 Å than for Rc = 6 Å (see Fig. 15). This reflects the
fact that the normal modes involved in the activation process
have significant components outside the sphere Rc = 3 Å.

In a study on surface adatom diffusion Pt/Pt(111) using the
dimer and ARTn methods,17 Olsen et al. also showed that nf

increases with the number of atoms in the system, in agreement
with our result for the global deformation. Furthermore, they
reported that the number of distinct minima, nm, depends on
δxA. They mention that for small values of δxA the system can
be trapped in bottlenecks and some saddle points are never
reached. In our system of crystal defects, there is no obvious
correlation between nm and δxA. This correlation is observed
only in the case of local deformation.

APPENDIX B: LANCZOS METHOD IN ARTn

Let H[q0] be the Hessian matrix of the system at the phase-
space point q0:

Hiα,jβ [q0] = ∂2E[q0]

∂qiα∂qjβ

, (B1)

where E[q0] is the energy of the system at point q0. H is a
real and symmetric matrix. For ARTn we need only the lowest
eigenvalue, λ1, and its eigenvector, v1. The Lanczos algorithm
is an efficient way to extract a limited spectrum of eigenvalues
and eigenvectors and it does not require evaluating the full
3N × 3N matrix H. The diagonalization of the full Hessian
matrix is replaced by that of a l × l trigonal matrix (l � 3N ),
and the H matrix needs to be known only in the l-dimensional
space of the Lanczos vectors.

In the following we describe how the Lanczos scheme is
used to calculate λ1 and v1. First of all, we must build the
Lanczos basis in which the H matrix is trigonal. Consider
u0 a random normalized vector in R3N space. The result of
the application of H on u0 can be decomposed as a linear
combination of this random vector and a second normalized
one, u1, orthogonal to u0:

Hu0 = a0u0 + b1u1. (B2)

The application of the Hessian on u1 becomes

Hu1 = a1u1 + b′
1u0 + b2u2, (B3)

where u2 is a normalized vector that is orthogonal to the first
two. Because H is a symmetric matrix,

u1 · (Hu0) = u0 · (Hu1), (B4)

and therefore b1 = b′
1. The full recursion scheme becomes

Huk = akuk + bkuk−1 + bk+1uk+1 (B5)

for 0 < k < l − 1 and the closure of the recursion for k =
l − 1:

Hul−1 = al−1ul−1 + bl−1ul−2. (B6)

In this l-dimensional basis (u0,u1, . . . ,ul−1) the H matrix is
trigonal:

Tl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b1 0 · · · 0

b1 a1 b2 · · · 0

0 b2 a2 · · · 0

0
. . .

. . . · · · 0

0 bl−2 al−2 bl−1

0 0 bl−1 al−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

The central point of the Lanczos method is that it can be
demonstrated that the lowest eigenvalue of the H matrix,
λ1[H], is the limit of the series λ1[Tl] with l → 3N . Finally,
the eigenvector v1[H] corresponding to the lowest eigenvalue
λ1[H] can be approximated by the eigenvector associated with
the lowest eigenvalue of the Tl , v1[Tl].

The vectors H[q0]u can be calculated by the finite differ-
ence on the forces by performing a Taylor expansion of the
forces around q0 + δLu (δL � 1), a point in the neighborhood
of q0 in the direction u:

H[q0]u = − f(q0 + δLu) − f(q0)

δL

+ O
(
δ2
L

)
. (B8)

This expansion can also be made, O(δ3
L):

H[q0]u = − f(q0 + δLu) − f(q0 − δLu)

2δL

+ O
(
δ3
L

)
. (B9)
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It is important to note that using this O(δ3
L) approximation

requires two times as many force evaluations than Eq. (B8):
Both f(q0 + δLu) and f(q0 − δLu) must be evaluated compared
to only f(q0 + δLu) in the case of Eq. (B8), because f(q0) is
computed anyway at every step for the minimization in the
hyperplane orthogonal to v1 and for the test of convergence to
the saddle point.

The parameters that must be optimized for the calculation of
the Lanczos coefficients (ak,bk) and vectors uk from Eqs. (B2),
(B5), and (B6) are the size of the Lanczos basis set, l, and the
step of the numerical derivative of forces for the Hessian, δL. In
this paper we have used l = 15 and δL = 10−3 Å with an O(δ2

L)
expansion. This choice results from an analysis performed on
a test system with 1025 atoms (one self-interstitial defect in a
8a0 × 8a0 × 8a0 bcc cell). A random deformation is applied
to the minimum energy configuration (〈110〉 orientation of the
dumbbell) in order to induce an imaginary frequency. Taking
l = 15, we have calculated λ1 using an expansion of order
either 2 [Eq. (B8)] or 3 [Eq. (B9)], and three different values
of δL = 10−2, 10−3, and 10−4 Å. The numerical stability of
the algorithm is tested by performing an iterative Lanczos
diagonalization. Successive iterations of l Lanczos steps are
performed, where each new iteration, i, is started by taking for
u0 the last vector of the Lanczos basis set, ul−1, of the previous
Lanczos iteration, i − 1. As illustrated in Fig. 16, in both cases
δL = 10−4 Å shows numerical instabilities as functions of the
number of Lanczos iterations, in particular, for the order 2
expansion. For δL = 10−2 Å some numerical noise appears
only in the case of O(δ2

L) force derivatives. But for δL = 10−3

Å the same accuracy is obtained in both cases. In conclusion,
the maximum efficiency can be obtained using Eq. (B8) and
δL = 10−3 Å.

In a method such as ARTn, where successive Hessian
matrices of systems that differ by only small displacements
must be evaluated, the efficiency of the Lanczos method can
be considerably improved by optimizing the choice of the first
vector, u0 in Eq. (B2). As for an iterative diagonalization, the
idea is to take for u0 at every ARTn step, i, the last vector of

FIG. 16. Convergence as a function of the number of Lanczos
iterations of the smallest eigenvalue of the Hessian, λ1, for a system
with 1025 iron atoms using a Lanczos basis of size l = 15. The
Hessian is computed using (a) order 2 derivatives as in Eq. (B8) or
(b) order 3 derivatives as in Eq. (B9).

the Lanczos basis set, ul−1, of the previous ARTn step, i −
1. If the displacements between ARTn steps are small, the
convergence with the size of the Lanczos basis, l, after i ARTn

steps is close to that of a basis set of size i × l using a random
u0 vector. The convergence with the size of the Lanczos basis
set is therefore not a problem. In practice, l = 15 provides a
good accuracy after i ∼ 4 ARTn steps and excellent accuracy
after 20 steps, as illustrated in Fig. 16. Another proof of the
good convergence with respect to l can be seen from the fact
that the discrepancy between the Lanczos and NEB values
of the barrier energies of the self-interstitial summarized in
the Table I are less than 0.01 eV, even when the system size
increases from 129 to 1025 atoms. Indeed, the error in the
estimation of the lowest eigenvalue varies as N/(l × i).
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