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Yukawa particles confined in a channel and subject to a periodic potential: Ground state
and normal modes
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We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive
Yukawa potential exp(−r/λ)/r , and confined in a parabolic channel that limits the motion of the particles in the y

direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations
and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the
periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first-
or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the
x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has
a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A
localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic
potential, and a tunable gap in the phonon spectrum is found as a function of V0.
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I. INTRODUCTION

A two-dimensional system (2D) is often created in the
presence of a substrate,1 which may induce a periodic potential
on the particles. In the pioneering experimental work of
Chowdhury et al.,2 a 2D colloidal system under the influence
of a one-dimensional (1D) periodic potential was studied.
An optical tweezer has been used to trap the colloids by
laser beams. For very high values of the light intensity,
crystallization of the colloidal suspension was observed in the
case in which the periodicity of the substrate (i.e., the periodic
potential) was commensurate with the mean particle distance.
Laser-induced freezing, which is caused by the suppression of
thermal fluctuations transverse to the 1D periodic substrate,
was found (liquid-solid transition).3 The system studied in
Ref. 2 is related to a colloidal molecular crystal (CMC) which
received attention recently due to important applications in
photonic and phononic crystals.4–6

Specifically, CMC occurs when the number of colloids is an
integer multiple of the number of substrate minima, which has
been investigated numerically5,7 and realized experimentally.8

CMC is an interesting experimental system to study order
and the dynamics in 2D since the typical particle size and
relaxation times permit the use of digital video-microscopy
to track particle trajectories, allowing a deeper study of the
physical behavior of the system.9

Originally, CMC was proposed for a 2D system in the
presence of a 2D periodic potential (substrate). As is known,
the dimensionality of the system plays an important role in
many physical properties of distinct physical phenomena.
In this sense, an interesting question is how the ordered
structures and physical properties would be influenced by the
dimensionality of the periodic substrate. Recently, Herrera-
Velarde and Priego10,11 studied a 1D system of repulsive
colloidal particles subject to an external 1D periodic potential,
which is thus the 1D version of the CMC. The main focus
of this study was the role of the substrate on the mechanisms
that lead to a variety of commensurate and noncommensurate

phases, its effect on the the single-file diffusion regime, and
the pinning-depinning transition.

In the present paper, we study the ordered configurations
and the phonon spectrum of a 2D system of repulsive (Yukawa
interaction) particles confined in a parabolic channel and
subjected to a 1D periodic potential along the channel. Our
study is a generalization of Refs. 10 and 11 to quasi-1D (Q1D)
in the sense that particles are still allowed to move freely in
the perpendicular direction of the confinement potential. This
extra degree of freedom leads to a much higher set of possible
ground-state configurations.

The interplay between the repulsive interparticle interaction
and the periodic potential results in different ground-state
configurations. For example, in the present paper we found
a structural phase transition where the number of particles in
the unit cell is changed. This implies that the number of phonon
branches changes, and this is an interesting feature relevant for
applications in phononics. In general, the configurations can
be tuned according to the strength of the periodic substrate
V0, leading to arrangements with controlled porosity. We find
in some cases that for a critical V0, particles become aligned
along the y direction in each minimum of the substrate. For
such a configuration, we find that the normal-mode frequencies
are independent of the wave vector, and thus the normal mode
does not propagate along the channel.

Our model system of Yukawa particles can be realized
experimentally using (i) a dusty plasma,12–14 (ii) colloidal
systems,15,16 and (iii) electrons on liquid helium.17,18 A dusty
plasma consists of interacting microscopic dust particles
immersed in an electron-ion plasma. The dust particles acquire
a net charge and the Coulomb interaction between the dust
particles is shielded by the electron-ion plasma resulting
in a Yukawa or screened Coulomb interparticle interaction.
The dust particles are confined to a two-dimensional layer
through a combination of gravitational and electrical forces.
By microstructuring a channel in the bottom electrode of the
discharge, it is possible to laterally confine the dust particles,
as was realized in Refs. 19–23. The strength of the 1D
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confinement potential can be varied by the width of the channel
or the potential on the bottom electrode. When the width of the
channel is microstructured into an oscillating function along
the channel, it will result in a periodic potential along the
channel.

Alternatively, one can confine charged colloids, which
move in a liquid environment containing counterions, into
microchannels, as was recently realized experimentally in
Ref. 24. In this case, the intercolloid interaction can be modeled
by a screened Coulomb interaction and the confinement
potential is a hard-wall potential. By changing the depth
profile of the microchannel, it was shown in Ref. 25 that the
confinement potential can be tuned into a harmonic potential.
Microstructuring the width of the channel into an oscillating
function along the channel will result in an additional periodic
potential along the channel.

In a previous work,26 the ordered configurations of Yukawa
particles confined to Q1D were studied. A phase diagram was
obtained as a function of the particle density and the inverse
Debye screening length, which is a measure of the strength
of the interparticle interaction. The competition between the
lateral confinement and the screened Coulomb interaction
resulted in different phases where the particles are ordered
in chains. The most well studied phases are the one- and
two-chain configurations, where the transition between those
two phases occurs through a zigzag transition. The latter is a
continuous transition as found theoretically for mono-27 and
bidisperse28,29 systems, and experimentally22,23 with a power-
law dependence on the width.27,30 Here we are interested to
investigate how the phase diagram will be modified when an
additional 1D periodic potential is present. For example, how
will the zigzag transition be modified by the periodic potential?

The present paper is organized as follows. In Sec. II,
we describe the model system and methods used in the
calculation of the properties. In Sec. III, we present the results
for the different ground-state configurations. In Sec. IV, the
normal-mode spectra for the one and two-chain regimes are
presented for different intensities of the periodic potential. Our
conclusions are given in Sec. V.

II. THE MODEL

Our system consists of identical pointlike particles inter-
acting through a screened Coulomb potential. The particles
are allowed to move in a 2D plane and are subject to an
external parabolic confinement in the y direction and a periodic
substrate potential along the x direction. A sketch of the present
model system is shown in Fig. 1. The total interaction energy
of the system is given by
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where ε is the dielectric constant of the medium in which the
particles are moving, λ is the Debye screening length, V ′

0 is the
strength of the periodic substrate potential, L is the periodicity
of the substrate potential, and r′

i = (x ′
i ,y

′
i) is the position of

the ith particle. To keep in Eq. (1) only the parameters that rule
the physics of the system, it is convenient to write the energy

FIG. 1. (Color online) A sketch of the model system.
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0)1/3, respectively, and the screening parameter as
κ = r0/λ. We also define the dimensionless strength of the
substrate potential V0 = V ′
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the expression for the energy is reduced to
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As can be observed from Eq. (2), the system is a function
of the parameters κ , V0, L, and the density. In our numerical
calculations, κ = 1, which is a typical value for dusty plasma
and colloidal systems. We introduce the distance a0, which is
defined as the distance between particles along the 1D chain
when V0 = 0. The density (n) is the ratio between the number
of chain Nch and a0, that is, n = Nch/a0. In the case V0 = 0,
the system self-organizes in a multichain-like structure.26

The model studied in this work is related to the Frenkel-
Kontorova (FK) model, which is a simple 1D model that
describes the dynamics of a chain of particles interacting
with nearest neighbors in the presence of an external periodic
substrate potential. This model was initially introduced in
the 1930s by Frenkel and Kontorova31 and was subsequently
reinvented independently by others, notably Frank and Van
der Merwe.32 It provides a simple and realistic description
of commensurate-incommensurate transitions when thermal
fluctuations are insignificant, therefore the system energy is
only characterized by the potential energy. The expression for
the potential energy of this one-dimensional model is given by

U =
∑

i

[
1

2
K(xi+1 − xi − a)2 + V (xi)

]
, (3)

where xi and a are the position of the ith particle and the natural
equilibrium distance between the particles, respectively. The
first (elastic) term in Eq. (3) takes into account a linear coupling
between the nearest neighbors, while the second, V (xi), is an
arbitrary function with period L, usually described as V (x) =
−V0cos(2πx/L). The main feature of this model consists in
the competition between the interparticle interaction and the
substrate periodic potential.

The FK model and our model system are similar, so
some structural properties already found in the FK model32

are expected to be observed. However, differently from the
FK model, we consider particles interacting not only with
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nearest neighbors, but also with further neighbors due to
the long-range nature of the interaction potential. Another
important point is that in the present work, the quasi-1D
character of our system makes it different from the strict 1D
FK model, that is, particles have the additional freedom to
move perpendicular to the chain, which leads to a rich set of
new phases.

The presence of two length scales in the FK model, that
is, the interparticle distance and the periodicity of the 1D
potential, is the reason for the complex behavior of the model.
The interparticle potential favors a uniform separation between
the particles, whereas the V (x) tends to pin particles at the
minima of the periodic potential. This competition between
both interactions is often called frustration or length scales
competition. If the potential V (x) = 0, then the distance
between the particles is independent of L and results in
a structure called a floating phase, where the equilibrium
distance between particles a can be an arbitrary multiple
(including irrational) of the substrate periodicity L. Therefore,
the floating phase is incommensurate except for specific values
of the ratio a/L.

For large values of V (x), we expect that particles are located
at the minima of the substrate, commensurate structure, with
the average spacing between particles being a rational multiple
of L. We can observe a rich FK phase diagram in Ref. 32.
Aubry showed that when the parameter V0 is larger than a
critical value, the FK system may undergo a “transition by
breaking of analycity,” also known as the Aubry transition.33

The minimum energy configurations of the present model
system are obtained by numerical and analytical calculations.
In the numerical simulations, we typically considered 100–200
particles, together with periodic boundary conditions in the
unconfined direction, to mimic an infinite system. We do not
consider friction in the present paper. In spite of the primary
importance of friction to the motion of the particles in real
systems, the ground-state configurations are not affected by it.

Notice that the substrate is defined in terms of the
periodicity L. Comparing L and a0, we define here an initially
commensurate (IC) regime when L/a0 = p/q, with p and q

integers, and an initially noncommensurate (INC) regime of
the ordered structures when the ratio L/a0 is an irrational
number. It should be emphasized that in these cases, the
interparticle distance a0 is defined in the absence of a substrate
(V0 = 0). In the case V0 �= 0, it is expected that the mean
distance between particles along a given chain a changes as
a function of V0, driving the system to new commensurate or
noncommensurate configurations.

III. GROUND-STATE CONFIGURATIONS

In this section, we present the results obtained analyt-
ically and numerically for the ground-state configurations
(temperature T = 0). In the former, we calculate the energy
per particle for different configurations as a function of the
strength and periodicity of the substrate. We minimize such
expressions with respect to the distances between particles.
The configuration with lowest energy is the ground state.
To predict which structures should be taken into account
in the analytical approach, we also use molecular-dynamics
simulations as a complementary tool. The numerical method

can give us some hints about which structures to consider. It
should be noticed that one of the drawbacks of the numerical
technique is that in some cases there exists a larger number
of metastable states, mainly in the limit of high densities
where the system is found in a multichain structure. On the
other hand, the numerical approach is the only way to obtain
the ground-state configurations in incommensurate regimes,
which will be analyzed in the next sections.

We show here that, depending on the periodicity of the
substrate, we can tune the ground-state configuration, induce
structural phase transitions, and control the number of chains.
This is interesting from an experimental point of view, since
the number of chains can be associated with the porosity of
the system, making it a controllable filter.

The main features of the present model system can be
already found in simple configurations with one and two chains
(V0 = 0). For this reason, we limit ourselves to these cases,
because it simplifies the physical interpretation of our results.

A. Single-chain regime

As an example, we study in this section systems with
densities n = 0.5 and n = √

2/2, which are found in the
single-chain regime in the absence of the substrate (V0 = 0).26

For n = 0.5, we consider the commensurate ratios L/a0 = 1
and 2, while for n = √

2/2 we consider the noncommensurate
regime with L/a0 = √

2.
The simplest IC configuration is the trivial single-chain

regime (TSC), where each particle is positioned at each
minimum of the periodic potential. To exemplify such a case,
we consider here the system with n = 0.5 and L/a0 = 1. In
this case, the configuration remains the same for any value
of V0. According to the FK model, this is a commensurate
phase. Notice that cases in which L/a0 = 1/I , where I � 1 is
an integer, will exhibit the same behavior, since each particle
is positioned exactly in a minimum of the substrate potential.
On the other hand, the case L/a0 = I is very different and
the particle configuration depends strongly on V0, as will be
shown in the following.

In the IC case with n = 0.5 and L/a0 = 2, for small V0,
particles are located at the zeros of the substrate potential [see
inset (I) in Fig. 2(a)]. A sufficient increase of V0 forces the
system to a new single-chain configuration in which a pair of
particles is located at each minimum of the substrate [see inset
(II) in Fig. 2(a)].

A further increase of V0 pushes each pair of particles
closer to each other, increasing the repulsive energy between
them. For V0 ≈ 0.8, a structural transition to the two-chain
configuration is induced [see inset (III) of Fig. 2(a)]. In
the two-chain configuration, the separation between particles
dx in each minimum of the substrate [inset(I), Fig. 2(a)]
becomes zero, which means particles become aligned along
the parabolic confinement potential in each minimum (y
direction). In this case, the separation between chains dy

does not change as a function of V0, since it is ruled only
by the competition between the repulsive interaction between
particles and the parabolic confinement, being independent of
the strength of the periodic potential. The structural transition
observed here is different from the one presented in Ref. 27,
where it was shown that in the absence of a periodic potential
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(a)

(b) (c)

FIG. 2. (Color online) (a) Nearest-neighbor separation between
particles in the x (dx) and y (dy) directions as a function of V0 for the
case n = 0.5 and L/a0 = 2. Three possible configurations are shown
as insets (I), (II), and (III). (b) The energy per particle and (c) the first
derivative of the energy with respect to the amplitude of the periodic
potential (V0).

and in the presence of a parabolic confinement, the structural
transition from the one- to the two-chain configuration is
continuous. In the present case, the transition from the one-
to the two-chain configuration is of first order. This is shown
in Figs. 2(b) and 2(c), where the energy (first derivative of
energy with respect to V0) is continuous (discontinuous) as
a function of V0. The transition found here cannot be related
to the Aubry transition since the mean particle separation is
commensurate with respect to the periodic potential. Notice
that in the two-chain regime, the system is reorganized in a
final commensurate configuration with a new ratio L/a = 1.
The system presents a commensurate-commensurate transition
between different orders of commensurability.

The structural transition observed in this case is not ob-
served in the standard 1D FK model, however in real physical
systems, even in quasi-1D chains (e.g., in biomolecules), be-
sides the longitudinal direction (along the chain), the particles,
atoms, or molecules can also move in one or two perpendicular
directions, and therefore generalizations of the standard 1D FK
model including transverse degrees of freedom are of great

interest. The FK model can be generalized to two-dimensional
versions in two different ways, leading to scalar or vector FK
models. In the scalar model,34 the atoms are arranged in a
2D array, but atomic motion is still one-dimensional. In the
vector FK models,35,36 the atoms can move in two dimensions,
and the substrate potential is periodic in two dimensions
as well.

The expression for the energy per particle, which is able to
describe all phases observed in the cases L/a0 = 2 and 1 in
the density interval corresponding to the one- and two-chain
regimes, is given by

E = n

2

∑
j

e−2κj/n

j
+ n

4

∑
j

e
− 2κ

n

√
[(j−1)+cx ]2+c2

y√
[(j − 1) + cx]2 + c2

y
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∑
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− 2κ

n

√
(j−cx )2+c2

y√
(j − cx)2 + c2

y

+ 4

(
cy

n

)2

− cos(πcx), (4)

where cx = dx/L and cy = dy/L are variational parameters.
Now we discuss the INC case with n = √

2/2 and
L/a0 = √

2. The same general behavior of previous cases
can be observed here, with several structural transitions ruled
by the strength of the periodic substrate V0 (Fig. 3). An
interesting feature is that for a large enough V0, the system

(a)

(b)

FIG. 3. Ground-state configurations for the case n = √
2/2 and

L/a0 = √
2 for (a) V0 = 0.17 and (b) V0 = 0.19.
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is found in a final commensurate regime with L/a = 1/2,
but now in the three-chain configuration with particles almost
uniformly distributed over chains. In this case, we observe
a noncommensurate-commensurate transition that takes place
for V0 ≈ 0.19. The commensurate phase is different from the
one predicted by the standard FK model, where the particles
are distributed randomly among the different substrate minima.
For a more comprehensive discussion about chaotic phases,
see, for instance, Ref. 32.

B. Two-chain regime

In this section, we consider as an example the system
with n = 1.0, where a two-chain configuration is found as the
ground state for V0 = 0. Different from what was observed in
the single-chain configuration (n = 0.5), when L/a0 = 1 the
system is always found in the two-chain configuration, but the
internal structure depends on V0. This is shown in Fig. 4(a),
where the relevant internal distances [see Fig. 4(b)] for the
ground-state configuration are presented as a function of V0.

For V0 ≈ 0.16, the system changes from a staggered (dx �=
0) to an aligned (dx = 0) two-chain configuration through a
second-order (continuous) structural transition, characterized
by a continuity (discontinuity) in the first (second) derivative
of the energy with respect to V0 [Fig. 4(d)]. Notice that the
distances (dx,dy) change continuously with V0, while in the
case with n = 0.5, L/a = 2.0 they exhibit a jump, which
is another way to find out the order of the structural phase
transition. The type of transition found in this case is not
an Aubry transition since the mean particle separation is
commensurate with respect to the substrate. These kinds of
particle configurations found here are also observed in the
quasi-1D-FK model (see, e.g., Ref. 37 for a detailed discussion
on transitions in 2D FK models).

Next, we consider the more complex case with n = 1.0 and
L/a0 = 2. Several interesting configurations are observed with
increasing V0, as shown in Fig. 5. Initially, particles move along
the x direction toward the minima of the periodic potential. At
the same time, each chain starts to break up into two chains
[Fig. 5(c)]. The structural transition found in this case is of
second order.

For larger V0, the two inner chains move toward each other
[see Fig. 5(d)] and merge into a single chain in the center
[see Figs. 5(d)–5(f)]. The particles in the outer chains move
toward the minimum of the periodic potential [see Figs. 5(d)–
5(f)]. With further increase of V0, the pair of particles in the
middle chain are pushed closer to each other and finally form
a row of four particles along the y direction and positioned
in each minimum of the periodic potential [see Figs. 5(g) and
5(h)]. The configurations presented in Fig. 5 indicate a tunable
porosity of the system as a function of V0. This is a very
interesting and useful feature for a filter or sieve, as pointed
out in Refs. 38 and 39, where superparamagnetic colloidal
particles were self-assembled in chainlike structures and used
for the separation of DNA molecules.

The movement of the different particles in the x and y
directions as a function of V0 is summarized in Fig. 6, where
structural transitions are indicated by vertical dashed lines. In
the x direction, we limited our analysis to the four particles
around the minimum located at x = 2. Three second-order

(a)

(c)

(b)

(d)

FIG. 4. (Color online) (a) Interparticle separation as a function
of V0 for n = 1.0 and L/a0 = 1. (b) A sketch of the two-chain
configuration with the distances dx and dy indicated. (c) The energy
per particle and (d) the second derivative of the energy with respect
to the intensity of the periodic substrate.

structural transitions are observed as a function of V0, and the
number of chains varies in the following sequence: 2 → 4 →
3 → 4 → 4.

Here, we observe that particles initially disposed in a
zigzag structure go to different configurations. These kinds
of particle distributions are also observed in the FK model
(see Ref. 40).

Finally, we consider as an example the case with n = 1.5
and L/a0 = 1.5, which exhibits a very interesting feature
not found in the previous cases. Here, we show that the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Ground-state configurations for the case n = 1.0 and
L/a0 = 2 for different values of V0. The vertical dashed lines in
(b) delimit the region where we analyze our system.

number of particles in the unit cell can be changed as a
function of V0. Initially (V0 = 0), the system is arranged in
two chains [Fig. 7(a)], which are displaced with respect to
each other over half the interparticle distance in each chain.
There are two particles per unit cell, which characterize an IC
configuration.

When V0 increases, the system transits to a four-chain
configuration through a second-order structural transition,
with the outer chains having twice as many particles as the
inner chains [Fig. 7(b)]. Alternatively, we can also view this
configuration as two chains of triangles, as indicated in the
shadowed region in Fig. 7(b). In this case, d2(=d5) > d3(=d4)
and the length of the unit cell is d1 = d2 + d3. There are six
particles in the unit cell, which is twice the number of particles
in the unit cell in the case V0 = 0.

With a further increase of V0, the y distance d6 between
the internal chains goes to zero and the system changes to the
three-chain configuration [Fig. 7(c)] with the same number of
particles in each one, and the central chain is shifted by a/2
along the x direction with respect to the outer chains, which
are aligned along the y direction. Notice that in this case there

(a)

(b)

FIG. 6. (Color online) (a) The lateral y position of chains for
the case n = 1.0 and L/a0 = 2. The vertical dotted lines represent
the values of V0 where structural transitions occur. (b) The particle
position in the x direction as a function of V0. The inset shows the
small V0 region.

are only three particles per unit cell. This is interesting since
the number of normal modes is now half that observed for
the configuration presented in Fig. 7(b), where the number of
particles in the unit cell is six. The reduction of the allowed
excitation modes is controlled by the strength of the periodic
potential, and this can be used as an important feature for
possible applications in phononics. For V0 � 0.5, particles
in different chains are all aligned along the y direction and
located in each minimum of the periodic substrate [Fig. 7(d)].
The trajectories of the different particles in the channel as a
function of V0 is visualized in Fig. 8.

Again, for V0 � 0.5 the relation between the periodicity of
the substrate and the distance between particles is different
from the case V0 = 0. This is interesting since we can change
the commensurability of the system by changing only the
strength of the substrate potential.

As presented in Figs. 2(a), 4(a), and 5(h), for a critical
value of V0 the present model system is found in the
special configuration where particles become aligned along the
confinement direction. Such a y-aligned configuration (YAC)
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) Ground-state configurations for different
values of V0 for n = 1.5 and L/a0 = 1.5. In (b) the relevant distances
that define the configuration are presented.

occurs if the condition L/a0 = p, where p is an integer (� 1),
is satisfied. In this case, if N is the number of chains of the
initial structure (V0 = 0), then we find that the number of
particles aligned along the y direction in each minimum of the
substrate potential is Np, which is also the number of chains.
The critical value of V0 for which the YAC phase is induced
(Vc) is obtained by adding the interaction energy between
particles and the confinement energy. A general expression for

FIG. 8. (Color online) Displacement of the particles for different
values of V0 near the potential minimum for the case n = 1.5 and
L/a0 = 1.5.

the YAC is given by

Vc = n
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Np∑
l=q+1

∑
j

×e−kNp/n
√

j 2+(p−q)2c2

√
j 2 + (p − q)2c2

+ n

N2p2

Np−1∑
q=1

Np∑
l=q+1

×e−k(l−q)cNp/n

(l − q)c
+ 2c2Np

n2

Np/2∑
l=1

l2 (6)

if Np is an odd number.
The critical value of V0 and the separation between particles

in each minimum d in the YAC phase at Vc are presented in
Fig. 9. A sketch of the configuration in each minimum of the
periodic substrate with all relevant parameters is also shown
as the inset in Fig. 9(b). A power-law dependence of Vc and
d/L on the density is found, with the product Vcd/L ≈ const.

IV. PHONON SPECTRUM

Next, we analyze the V0 dependence of the normal-mode
spectrum. We follow the standard harmonic approximation
and take into account the periodicity of the system in the
unconfined direction (x axis).

The number of particles in the unit cell and the number
of degrees of freedom per unit cell determines the number of
branches in the phonon spectrum. If l is the number of particles
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(a)

(b)

FIG. 9. (Color online) (a) Critical value of V0 as function of
density for the YAC phase. (b) The distance between the particles
along the y direction at V0,c as a function of the density in the
YAC phase. The inset shows a sketch of the general ground-state
configuration with all relevant parameters. The red line in both figures
is a linear fit.

per unit cell, there will be 2l branches in the phonon spectrum,
from which half of those branches corresponds to oscillations
along the chain, that is, longitudinal modes, while the others
are associated with vibrations along the confinement direction
(y axis, transverse modes). If particles in the unit cell oscillate
in-phase, the mode is dominantly acoustical, while the opposite
out-of-phase oscillation corresponds to an optical mode. In
general, a normal mode can be classified in one of the following
classes: longitudinal optical (LO), longitudinal acoustical
(LA), transverse optical (TO), or transverse acoustical (TA).

In the harmonic approximation, the normal modes are
obtained by solving the system of equations

(ω2δμν,ij − Dμν,ij )Qν,j = 0, (7)

where Qν,j is the displacement of particle j from its equilib-
rium position in the ν direction, μ and ν refer to the spatial
coordinates x and y, δμν,ij is the unit matrix, and Dμν,ij is the
dynamical matrix, defined by

Dμν,ij = 1

m

∑
u

φμ,ν(u)e−iuqa, (8)

where u is an integer assigned to each unit cell. The force
constants are given by

φμ,ν(u) = ∂μ∂ν

exp[−κ
√

(x − x ′)2 + (y − y ′)2]√
(x − x ′)2 + (y − y ′)2

, (9)

with (x − x ′) the distance between particles along the x axis
and (y − y ′) the interchain distance with (x,y) and (x ′,y ′) the
equilibrium positions of the particles in the unit cell, and

φμ,ν(u = 0) = −
∑
u �=0

φμ,ν(u). (10)

The phonon frequency is given in units of ω0/
√

2. As an
example, the complete dynamical matrix for the one- and two-
chain regimes is given in the Appendix.

The frequencies for the one-chain configuration in the case
V0 = 0 are given by ωl = √

A1 for the acoustical branch and
ωt = √

1 + A2 for the optical branch, where A1 and A2 are
given in the Appendix.

The frequencies for the one- and two-chain configurations
when V0 �= 0 are given by

ωl =
√

1

4
(B1 + B3 ±

√
B2

1 + 4B5B7 − 2B1B3 + B2
3 + sub)

(11)

for the longitudinal modes, and by

ωt= 1

2

√
4 + B2 + B4 ±

√
B2

2 + 4B6B8 − 2B2B4 + B2
4 (12)

for the transverse modes. The expressions for B1,B2, . . . ,B8

are given in the Appendix. Here, sub = 8V0π
2cos(πcx) is the

term related to the substrate. The wave number k for the one-
and the two-chain regimes is in units of 2π/L, where L is also
the length of the unit cell in the x direction.

In Fig. 10(a), the phonon spectrum for the one-chain
configuration is presented for different values of V0 and
fixed density n = 0.5 and L/a0 = 1. In this case, there is
one particle per unit cell located in each minimum of the
substrate resulting only in one longitudinal mode and one
transverse mode. The frequency of the longitudinal mode
increases with increasing V0, and there is a gap opening at
k = 0. The reason is that the periodic potential acts locally

FIG. 10. (Color online) The phonon spectrum for different values
of V0 in the case n = 0.5 and L/a0 = 1.
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as a parabolic confinement potential V (x) � V0
2π2

L2 x2 with
frequency ω = √

V0/m 2π
L

. The k = 0 gap corresponds to
this frequency. The transverse mode corresponds to particle
oscillations in the y direction and is therefore practically
independent of V0.

In Fig. 11, the dispersion curves for n = 0.5 and L/a0 = 2
are presented for different values of V0. As observed in Fig. 2,
the presence of the substrate (V0 �= 0) modifies the number of
particles in the unit cell so that the number of branches of the
phonon spectrum is increased as compared to the case V0 = 0
[Fig. 11(a)]. For V0 �= 0, there are two particles per unit cell
and consequently four branches in the phonon spectrum. As V0

increases, the frequency of the LA mode also increases, which
can be explained keeping in mind that for low values of V0,
there is a small electrostatic repulsion between neighboring
particles, so that particles oscillate horizontally without major
difficulties. The opposite behavior is found for the TO mode,
that is, it decreases with increasing V0. The distance between
adjacent particles in the same substrate minimum becomes
smaller, and the repulsive force between them increases and
acts as a retarding force.

The LO mode has a rather different behavior as compared to
the TO mode, that is, there is a hardening of its frequency when
V0 increases, which is a consequence of the larger repulsion
due to the closer proximity between particles. For a sufficiently
strong V0 ≈ 0.2 [Fig. 11(c)], the normal-mode spectrum
becomes discrete, that is, frequencies become independent of
k, which means the group velocity is zero and the modes
are localized. In this case, the oscillations of the particles in
each minimum of the substrate become independent and there
is no wave propagation along the channel. A structural phase
transition to the two-chain configuration, with particles aligned
along the y direction (YAC phase) in each minimum of the
substrate (Fig. 2), occurs for V0 � 0.8. The longitudinal mode
frequency becomes much harder than the transverse ones due
to the strong confinement imposed by the periodic substrate.

Now we discuss the dispersion curves for the system with
density n = 1.0 and L/a0 = 1 (Fig. 12). As presented in Fig. 4,
particles remains in the two-chain configuration for all V0 with
changes only in the internal structure. Again, the substrate
potential induces gaps in the normal-mode frequencies as
presented in Fig. 12. The TA, TO, LA, and LO modes increase
with increasing V0.

In the case of the LA mode, for low values of V0, particles
are not aligned, having more freedom to oscillate in the
horizontal direction. When V0 increases, the electrostatic force
becomes larger (particles are now aligned), making oscillations
along the channel more difficult.

The LO mode also increases with increasing V0. This is a
consequence of the strength of the substrate potential, which
traps particles in their equilibrium positions, reducing the
out-of-phase oscillations of the particles. The TO frequency in-
creases slightly, since the out-of-phase motion is more difficult
to occur. The TA frequency branch is almost independent of
V0 because it corresponds to oscillations in the y direction and
is therefore determined by the harmonic confinement potential
with frequency ω0.

For the YAC phase, V0 > 0.16, the normal-mode spectrum
becomes discrete [Fig. 12(d)]. The modes are almost constant

FIG. 11. The phonon spectrum for different values of V0 in the
case n = 0.5 and L/a0 = 2.
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(a)

(b)

(c)

(d)

FIG. 12. The phonon spectrum for different values of V0 in the
case n = 1 and L/a0 = 1.

due to the strong confinement potential imposed by the
substrate and the harmonic trap.41−43

V. CONCLUSIONS

We investigated the structural and dynamical properties of
a two-dimensional system of repulsive particles confined by a
parabolic channel and submitted to a one-dimensional periodic
potential (substrate). The ground-state configurations (T =
0) were obtained analytically and numerically, where for the
latter we used molecular-dynamics simulations. The phonon
spectrum were also calculated analytically for the one- and
two-chain configurations within the harmonic approximation.

The main features of the structure and normal-mode
spectrum were studied (for different densities) as a function
of the periodicity (L) and strength (V0) of the substrate, which
are experimentally tunable parameters in systems such as,
for example, colloids in the presence of a periodic light field
composed of two interfering laser beams. An interesting set
of ground-state configurations with controllable porosity was
observed mainly as a function of V0 through several first- or
second-order structural transitions. The structures are mainly
ruled by the fact that particles tend to go to the minima of
the periodic substrate, modifying the symmetry of the ordered
structures. However, for small V0, the interparticle repulsive
interaction dominates and particles can be found over all
possible positions in the periodic potential, including regions
near to the maxima. For large V0, particles are more and more
attracted to the wells of the periodic potential.

For some specific cases, we found structural transitions
where the number of particles in the unit cell of the periodic
system is changed, implying, for example, a different number
of branches in the phonon spectrum, which is an interesting
aspect of the dynamical behavior of the system, and which
may be useful for applications in phononics.

The normal-mode frequencies depend on the linear density
of the system, periodicity, and strength of the periodic
substrate. We observed gaps in the phonon spectrum, which
indicate that there are frequencies blocked by the crystal. For
V0 beyond a critical value and for specific values of the ratio
L/a0, the system is found in a special configuration where
particles are aligned in each minimum of the periodic substrate
along the y direction (YAC phase). For such a configuration,
the normal-mode frequencies become independent of the wave
vector, which means there is no wave propagation along the
channel since the group velocity is zero. The modes are
localized and the phonon spectrum becomes discrete. In this
case, the oscillations of particles in different minima of the
substrate are independent. In the YAC regime, the discrete
normal-mode spectrum indicates that the system can be seen
as a set of independent clusters.

Our model system of Yukawa particles can be real-
ized experimentally using a dusty plasma15,16 or colloidal
systems.17,18 In the former, the dust particles are confined to a
two-dimensional layer through a combination of gravitational
and electrical forces. By microstructuring a channel in the
bottom electrode of the discharge, it is possible to laterally
confine the dust particles, as was realized in Refs. 19–23.
The strength of the 1D confinement potential can be varied
by the width of the channel or the potential on the bottom
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electrode. When the width of the channel is microstructured
into an oscillating function along the channel, it will result in
a periodic potential along the channel.

In the latter, one can also confine charged colloids, which
move in a liquid environment containing counterions, into
microchannels as recently realized experimentally in Ref. 24.
In this case, the intercolloid interaction can be modeled
by a screened Coulomb interaction and the confinement
potential is a hard-wall potential. By changing the depth
profile of the microchannel, it was shown in Ref. 25 that the
confinement potential can be tuned into a harmonic potential.
Microstructuring the width of the channel into an oscillating
function along the channel will result in an additional periodic
potential along the channel.

Here, we conclude that the structural and dynamical
properties of one-dimensional systems subject to periodic
substrates can be tuned by the strength of the periodic potential.
The present results indicate a rich set of configurations in
which colloids can be manipulated in the presence of external
fields. The tunable phonon spectrum is a very interesting
feature for phononic or photonic6 band-gap materials.
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APPENDIX

The matrix ω2I − D (where I is the unit matrix and D
is the dynamical matrix) is used in the calculation of the
normal modes for the one- and two-chain configurations. The
dynamical matrix for the one-chain configuration when V0 = 0
is

[
ω2 − A1 0
0

(
ω2 − ω2

0

) − A2

]
,

where the quantities A1 and A2 are given by

A1 =
∞∑

j=1

n3 e−κj/n

j 3

[
2 + 2κj

n
+ κ2j 2

n2

]
[1 − cos(kπj )]

+V0πn2cos(πj ), (A1)

A2 =
∞∑

j=1

n3 e−κj/n

j 3

[
1 + κj

n

]
[1 − cos(kπj )], (A2)

where j is an integer.
The dimensionless wave number k is in units of 2π/L.

The dynamical matrix to one-chain V0 �= 0 and two-chain
configuration is

⎡
⎢⎢⎣
ω2 − B1 − sub 0 −B5 0
0 �ω2 − B2 0 −B6

−B7 0 ω2 − B3 − sub 0
0 −B8 0 �ω2 − B4

⎤
⎥⎥⎦,

where �ω2 = ω2 − ω2
0. The quantities B1, B2, B3, B4, B5, and

B6 are given by

B1 =
∞∑

j=1

n3 e−2κr/n

(2r)3

[
(j − cx)2

(
3

r2
+ 6κ

nr
+ 4κ2

n2

)

−
(

1 + 2κr

n

)]
+

∞∑
j=1

n3 e−2κj/n

(2j )3

×
[

2 + 4κj

n
+ (2κj )2

n2

]
[1 − exp(ikjL)], (A3)

B2 =
∞∑

j=1

n3 e−2κr/n

(2r)3

[
3c2

y

r2
+ 4κ2c2

y

n2
+ 6κc2

y

nr
−

(
1 + κr

n

)]

−
∞∑

j=1

n3 e−2κj/n

(2j )3

[
1 + 2κj

n

]
[1 − exp(ikjL)], (A4)

B3 =
∞∑

j=1

n3 e−2κr1/n

(2r)3

[
(j − 1 + cx)2

(
3

r2
+ 6κ

nr
+ 4κ2

n2

)

−
(

1 + 2κr1

n

)]
+

∞∑
j=1

n3 e−2κj/n

(2j )3

×
[

2 + 4κj

n
+ (2κj )2

n2

]
[1 − exp(ikjL)], (A5)

B4 =
∞∑

j=1

n3 e−2κr1/n

(2r1)3

[
3c2

y

r2
1

+ 4κ2c2
y

n2
+ 6κc2

y

nr1
−

(
1 + κr1

n

)]

−
∞∑

j=1

n3 e−2κj/n

(2j )3

[
1 + 2κj

n

]
[1 − exp(ikjL)], (A6)

B5 =
∞∑

j=1

n3 e−2κr/n

(2r)3

[
(j − cx)2

(
3

r2
+ 6κ

nr
+ 4κ2

n2

)

−
(

1 + 2κr

n

)]
{exp[ikL(j − cx)]}, (A7)

B6 =
∞∑

j=1

n3 e−2κr/n

(2r)3

[
3c2

y

r2
+ 4κ2c2

y

n2
+ 6κc2

y

nr

−
(

1 + κr

n

)]
{exp[ikL(j − cx)]}, (A8)

B7 =
∞∑

j=1

n3 e−2κr1/n

(2r)3

[
(j − 1 + cx)2

(
3

r2
+ 6κ

nr
+ 4κ2

n2

)

−
(

1 + 2κr1

n

)]
{exp[ikL(j + cx)]}, (A9)

B8 =
∞∑

j=1

n3 e−2κr1/n

(2r1)3

[
3c2

y

r2
1

+ 4κ2c2
y

n2
+ 6κc2

y

nr1

−
(

1 + κr1

n

)]
{exp[ikL(j + cx)]}, (A10)

where r =
√

(j − cx)2 + c2
y , r1 =

√
(j − 1 + cx)2 + c2

y , the

dimensionless wave number k is in units of 2π/L, i = √−1,
and sub = 8V0π

2cos(πcx).
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