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Multiphase equation of state of hydrogen from ab initio calculations in the range
0.2 to 5 g/cc up to 10 eV
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We construct a multiphase equation of state (EoS) of hydrogen in the range 0.2 to 5 g/cc and up to 10 eV
based on ab initio electronic structure calculations. In the molecular solid, cold curve and phonon spectra
calculations are performed for various structures, proposed in the literature, to cover the stability field up to
500 GPa. A weak structural dependence is observed, and the solid EoS is averaged over these data. In the
dissociating molecular fluid and in the dense plasma, calculations are made to complete the abundant data set in
the literature. Two physical models are used to fit these calculations: a double-Debye model for the solid phase
and a one-component plasma model with a mass action law for dissociation to implicitly access the molecular
phase in the fluid state. The output of the calculations; energy, pressure, temperature, and density are perfectly
reproduced with thermodynamical consistency. This model also allows us to access to the total free energy. The
ionic quantum zero-point contribution is taken into account. The present hydrogen EoS is shown to reproduce
most of the existing experimental data very well: the solid compression curve, the Hugoniot curve, the sound
velocity in the molecular fluid, and the melting curve. The usefulness of this EoS is illustrated by the computation
of an interesting isotopic shift on the melting curve and of an isentropic compression path reaching temperatures
lower than 1000 K in the terapascal range.
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I. INTRODUCTION

The behavior of hydrogen at high pressures is the subject
of intense study not only because the metallization of element
one has remained elusive for the past 80 years, but also
because it is a central input in various fields ranging from
inertial confinement fusion (ICF) to the modeling of giant
planets, such as Jupiter. The equation of state (EoS) is
perhaps the most fundamental property to be determined.
That is, the relation between the density, the pressure, and
the temperature. In particular, a useful EoS should accurately
span the extreme diversity of states of hydrogen, from the
T = 0 K molecular solid, the atomic metal, the molecular
fluid for the strongly degenerate plasma, as well as describe
the transitions between them. Until now, the different EoSs of
hydrogen used in applications are mostly based on chemical
models, such as the SESAME,1 the Saumon-Chabrier,2 or the
Ross ones.3 They use physical models that are supposed to
correctly describe the underlying physics and with enough
independent parameters to adjust the EoS until it correctly
reproduces the available experimental data. In the case of
hydrogen, the EoS measurements remain scarce. The solid
EoS has been accurately measured to 120 GPa at 300 K
by single-crystal diffraction.4 The dense fluid EoS has been
measured along the principal Hugoniot up to 200 GPa using
various approaches; gas gun,5 Z pinch,6 converging shocks,7

and intense lasers,8,9 now approaching good agreement.10

On the other hand, ab initio calculations are proved to
be an accurate approach to constrain the EoS of hydrogen
over a large thermodynamical domain, out of experimental
reach. In the past years, because of the enormous progress
in computer capacity, first-principles calculations have been
performed to compute, with good confidence, EoS data points
for many systems.11–13 Density functional theory (DFT) or full
quantum Monte Carlo (QMC) simulations have already been

performed for dense hydrogen.14–24 These two calculations are
specialized and are adapted to complementarily describe the
various regions of the hydrogen phase diagram. The domain
of validity of the DFT and QMC simulations has recently been
discussed in the case of hydrogen.24,25 Hence, a table of data
points can be generated to reliably cover the EoS of hydrogen
from the solid to the dense plasma.

It is the aim of this paper to build a thermodynamically
consistent multiphase EoS of hydrogen adjusted on a complete
grid of ab initio data points. As described later, this has
been achieved in three steps. First, we have performed DFT
calculations to constitute a complete set of data points,
fully tested in terms of convergence, number of atoms, and
numerical uncertainties. In principle, the only approximation
of DFT calculations is the exchange-correlation functional.
The GGA functional has been selected here because it brings
good agreement with the solid experimental EoS. In the fluid
state, numerous data points have already been published from
DFT and from QMC simulations. These data are incorporated
here. Our simulations complete these various calculations with
special attention to the domain of the molecular dissociation.
In the solid phase, DFT calculations of the 0-K isotherm
and the phonon spectra have been performed for various
structures. Second, as in the chemical approaches, we use
physical models to fit the ab initio data set. In the solid phase,
we employ a double-Debye model.13 In the fluid phase, we use
a one-component plasma model and a mass action law, with a
fitted dissociation/ionization fraction to implicitly access the
molecular phase. A quantum zero-point ionic contribution
is also added. Such a parametrization allows obtaining an
expression for the ionic entropy. Third, the present EoS is
tested to reproduce all existing experimental data well.

The paper is organized as follows. In Sec. II, we describe
the solid phase calculations and the fit with the double-Debye
model. In Sec. III, the making up of the data set of the dense
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fluid, from the molecular state to the plasma state, is explained
and the associated free-energy model is described. The level
of accuracy for the present EoS to reproduce all experimental
data on hydrogen known so far is shown in Sec. IV. Two
applications are discussed in Sec. V.

II. MOLECULAR SOLID

Following Chisolm et al.,26 the total free energy in the
solid phase, F (V,T ), is decomposed as the sum of three
contributions,

F (V,T ) = E0(V ) + Fe(V,T ) + Fi(V,T ), (1)

where E0(V ) is the electronic ground-state energy when the
nuclei are fixed at their lattice sites, and where Fe(V,T )
and Fi(V,T ) are the electronic and ionic contributions,
respectively. This decomposition assumes that the Born-
Oppenheimer approximation is valid, thus, neglecting any
contribution that may come from the electron-phonon interac-
tions. Each contribution can be obtained directly using modern
electronic structure calculations. This has recently been done
by Correa et al.13 for the construction of a fully ab initio EoS
for carbon up to extreme pressures. Here, we follow a similar
approach.

In the solid, we limit our investigation to the molecular
phase. Correctly taking into account the quantum properties
of the atomic phase is beyond the scope of this paper.27 Also,
it is shown later that the molecular phase should melt before
it transforms into an atomic metal. The stability domain of
the molecular solid phase has been estimated to extend up
to at least 500 GPa, either by extrapolating experimental
data4 or by using the most recent calculations.16 Up to
300 GPa, at least three different phases have been observed
for molecular hydrogen. Phase I is an hcp structure with
freely rotating molecules.4,28 Phases II and III are associated
with quantum and classical ordering, respectively, of the
molecules.29 Phase II is a purely orientational transition on
the hcp lattice with a local order giving incommensurate
modulation of the structure.30 The volume discontinuity at the
transition is very small. The nature of phase III is still unknown
but should be obtained through a displacive path from phases I
and II. Numerous ab initio calculations16,31–34 have tried to
identify the structural changes of hydrogen under pressure,
but so far, no definite answer has emerged. This uncertainty is
in part due to the small enthalpy difference between the various
possible phases and also to subtle quantum effects that might
influence the answer, such as the quantum rotational state of
the molecules, which is beyond standard DFT modeling.

From the viewpoint of constructing an EoS, the aim is
not to determine the most stable structure but to show that
the EoS has a weak sensitivity on the detailed nature of the
best candidate structures. Also, in the theoretical framework
given by Eq. (1), it is important to consider structures as
dynamically stable so as to calculate the ionic contribution to
the free energy, Fi(V,T ). Consequently, we calculated the EoS
of solid molecular hydrogen using four different structures that
represent the diversity of possible structures so as to quantify
the sensitivity of the EoS to the structural uncertainty. More
specifically: We consider the m-hcp structure where the centers
of the molecules form an hcp lattice with a fixed molecular

TABLE I. Vinet fit parameters of the electronic ground-state
energy E0(V ), for various structures and using two approximations
for the exchange-correlation functional, LDA or GGA.

E0(0) eV/atm V0 cc/mol K0 GPa K ′
0 GPa

Pa3 LDA −15.534 10.98 2.10 6.04
Pa3 GGA −15.884 19.24 0.22 7.29
Pca21 GGA −15.878 20.92 0.17 7.34
m-hcp GGA −15.882 19.85 0.16 6.81
Cmca GGA −15.680 39.59 0.0047 9.60

orientation along the c axis; the orthorhombic Pca21 structure
with eight atoms per unit cell, which has been proposed as
a probable candidate for phase II;31,32,34,35 the Pa3 structure,
observed for a metastable solid of ortho-H2 at low temperatures
where the center of the molecules form an fcc lattice and their
axes are oriented along the body diagonal of the cube;36 and
the orthorhombic Cmca structure with eight atoms per unit
cell, which has been proposed as the structure of phase III.16,33

To perform the electronic structure calculations, we used
the ABINIT electronic structure code37 and a Trouiller-Martin
pseudopotential with a cutoff radius of 0.6aB to reach the
highest pressure.38 The cutoff energy was set to 240 hartree,
while the k-points sampling was varied from 63 for the
Pa3 structure to 143 for the Cmca structure. We used the
Perdew-Burke-Ernzerhof exchange-correlation functional39 in
the generalized gradient approximation (GGA) of the DFT
and the Ceperley-Alder functional40 for the local-density
approximation (LDA). For each density, the ionic positions
and, subsequently, the lattice parameters have been relaxed in
the three directions at fixed volume.

The ground-state energy E0(V ), calculated for the four
considered structures, is fitted by a Vinet form.41 A Vinet form
provides a simple parametrization of an EoS and expresses the
energy variation as a function of volume as

E0(X) = E0(0)

+ 4V0K0

(K ′
0 − 1)2

{
1 −

[
1 − 3

2
(K ′

0 − 1)(1 − X1/3)

]

× exp

[
3

2
(K ′

0 − 1)(1 − X1/3)

] }
, (2)

where X is the reduced volume that is defined as X =
V/V0, with V0 as the equilibrium volume. The bulk modulus
is expressed as K0 = −V ( ∂P

∂V
)0 and K ′

0 = ∂K0
∂P

. The four
parameters of the Vinet form are given in Table I for each
structure. We see that the equilibrium volumes and bulk moduli
obtained are rather close for the Pa3, the Pca21, and the m-hcp
structures, but significant deviations are noticeable in the case
of Cmca. The difference can be traced back to the difficulty of
relaxing the Cmca structure around its equilibrium volume
because this structure is only mechanically stable at high
pressure.16 Indeed, above 150 GPa, the energy and pressure
of the Cmca structure become rather close to the values of
the other three structures, despite the apparent difference of
the fit parameters shown in Table I. On the other hand, a
significant difference is observed between the LDA or the
GGA approximations. As shown by a recent systematic study
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on transition metals,12 the comparison between the calculated
and experimental EoS is a good test of the approximation used
for the exchange-correlation functional. It will be shown in the
following that the GGA approximation offers a much better
description of the hydrogen EoS than the LDA. The values
obtained for the equilibrium volumes also appear rather far
from the experimental value Vexp = 23.00 cc/mol.42 These
are, however, obtained without taking into account either the
contribution from the zero-point motion (ZPM) of the ions or
the dispersion forces that are not calculated correctly by the
DFT. The ZPM of the nuclei is large enough to significantly
affect the equilibrium volume of the various hydrogen isotopes
and, indeed, the calculated values around 20.00 cc/mol are
closer to the D2 equilibrium volume Vexp = 19.93 cc/mol,43

for which the ZPM contribution is much smaller. That ionic
quantum effect will be taken fully into account later by
calculating the ionic contribution to the free energy using
linear response theory and a double-Debye model fit of the
phonon spectra.

To obtain the phonon dispersion curves shown in Fig. 1,
we performed linear response calculations on the relaxed
structure found at a given volume. We used the approach
implemented in the ABINIT code based on density functional
perturbation theory (DFPT).44 In this method, the coefficients
of the dynamic matrix in reciprocal space are proportional
to the second derivative of the energy with respect to the
atomic displacements. The same numerical approximations,
as described previously for the energy calculation, have
been used. They give frequencies convergence to better than
0.04 THz over the whole phonon dispersion curves. We paid
particular attention to the stability domain for each structure.

Phonon calculations have been performed for the Pa3, the
Pca21, and the Cmca structures. The m-hcp structure is found
mechanically unstable up to at least 150 GPa and so was not
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FIG. 1. (Color online) Typical phonon dispersion spectra indicat-
ing the mechanical instability of the Pa3 and Pca21 structures at high
pressure.

considered for estimating the ionic free-energy contribution.
As shown in Fig. 1, an increase in pressure leads to the
appearance of an imaginary transverse acoustic mode in the
M → � direction for the Pa3 structure and in the X → U

direction for the Pca21 structure. This gives us an upper limit
for the stability of these two structures, up to 191 GPa for
the Pa3 structure and 158 GPa for the Pca21. This imaginary
mode is present in both the LDA and the GGA descriptions,
but it appears at lower pressure, P = 136 GPa, when the LDA
functional is used. These results for the Pca21 structure are
similar to those obtained by Zhang et al.45 with a soft mode
located at the X point (we note that Zhang et al. locate the soft
mode at the Y point for the Pca21 phase. The spectra being
identical otherwise, we attribute this difference to a simple
mislabeling in the paper). The Cmca phonon spectra are only
calculated in the stability domain of phase III, for which they
are a good candidate structure. They are found to be stable from
150 GPa to at least 500 GPa in the GGA approximation. Here,
the important point is that the stability domain of these various
structures overlap. So, the ionic free-energy contribution of
Eq. (1) can be estimated over the whole stability domain of
the molecular solid phase.

From the phonon spectra calculated using linear response
theory, the ionic contribution to the free energy can be
obtained directly within the framework of the quasiharmonic
approximation, as given by46

Fph(V,T ) =
∫ ∞

0
g(ω)

[
1

2
h̄ω + β−1 ln (1 − e−βh̄ω)

]
dω. (3)

In Eq. (3), g(ω) represents the phonon density of state (PDOS)
at a given volume V and is the direct outcome of DFPT
calculations.

Figure 2 shows the typical PDOS for the three structures
considered. These calculated PDOSs present a double peak
structure that is rather different from the usual Debye form. The
high-frequency region can be associated with the vibron modes
at around 4000 cm−1. The lower-frequency domain is associ-
ated with libron and phonon modes with frequencies centered
around 1000 cm−1. Following Correa et al., we employ a
double-Debye model, in which the PDOS is approximated by
two overlapping Debye peaks, each of which is characterized
by its own volume-dependent Debye temperature. Thus, the
calculated PDOS is fitted by a linear combination of two Debye
density of states given by

gV (ω) = ξA
V gA

V (ω) + ξB
V gB

V (ω), (4)

gA
V and gB

V are equal to 3ω2/ω3
D for ω < ωD and zero

otherwise. The coefficients ξA
V and ξB

V are calculated at each
volume where a phonon calculation is performed. They are
obtained by imposing the normalization condition ξA

V + ξB
V =

1 and requiring that the three phonon moments, θ0, θ1, and
θ2 are equal to those computed from the true PDOS at each
volume:

ln (θ0) = ξA
V ln (θA) + ξB

V ln (θB),

θ1 = ξA
V θA + ξB

V θB, (5)

θ2 = ξA
V θ2

A + ξB
V θ2

B.
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FIG. 2. (Color online) Phonon density of state for the Pa3, the
Pca21, and the Cmca structures at representative pressures, in black,
and comparison to their representation by a double-Debye model, in
red (see text).

In Eq. (5), θA and θB , respectively, are the Debye temper-
atures corresponding to the density of state gA

V and gB
V . The

moments θ0, θ1, and θ2 are defined as26

kBθ0(V ) = h̄e1/3 exp

(∫
log (ω)gV (ω) dω

)
,

(6)
kBθ1(V ) = 4

3

∫
h̄ωgV (ω) dω,

kBθ2(V ) =
(

5

3

∫
(h̄ω)2gV (ω) dω

)1/2

. (7)

In this formulation, the zero-point motion contribution to
the free energy is given by Fph(V,T ) = 9

8kBθ1. Following

Correa, one further imposes θA � θB with ξA
V = ln (θB/θ0)

ln (θB/θA)

and ξB
V = ln (θ0/θA)

ln (θB/θA) . Finally, the V dependence of the Debye

temperatures θA and θB is taken into account by assuming that
their respective Grüneisen parameters (γA,B,0) vary linearly
with volume,

−d ln (θ{0,A,B})
d ln (V )

= γ{0,A,B}(V ) (8)

= α{0,A,B} + β{0,A,B} ln (V ). (9)

The parameters of the double-Debye model fitting to the
PDOS of the three structures considered are given in Table II.

For the present scope of the paper, the selection criteria for
the double-Debye fit is how accurately they represent the ionic
contribution to the free energy. The ionic contribution to the
free energy is expressed as

Fh(V,T ) = ξA
V f A

h (V,T ) + ξB
V f B

h (V,T ), (10)

where f B
h (V,T ) and D(y) are given by

f
A,B
h = kBT

{
9

8

θA,B

T
+ 3 ln[1 − e−θA,B/T ] − D

(
θA,B

T

)}
,

(11)

D(y) = 3

y3

∫ y

0

x3

exp(x) − 1
dx.

In Fig. 3, the ionic contribution to the free energy calculated
from the ab initio PDOS and from the double-Debye model
are compared. They agree to better than 5 × 10−3 eV/atom for
each structure. Thus, the double-Debye model is extremely
well suited for modeling the ionic contribution to the free
energy of molecular solid hydrogen. It should be noted that the
electronic contribution to the free energy, as given by Fe(V,T )
in Eq. (1) is calculated to be extremely small in the stability
domain of the molecular phase, i.e., for temperatures below
0.2 eV. Thus, it is neglected.

Using the parametrization of the electronic ground-state
energy and that of the ionic free energy, the EoS is calcu-
lated at T = 300 K for the Pa3 and the Pca21 structures.
In Fig. 4, these EoSs are compared to the experimental
data47 (corrected with the new high-pressure scale12). The
difference between the various structures is smaller than
the difference obtained by using different functionals, GGA
or LDA. Good agreement with the experiment is obtained
with the GGA approximation. Consequently, we construct the
EoS of molecular solid hydrogen up to 500 GPa using the
GGA-DFT calculations described earlier for the m-hcp, the
Pa3, the Pca21, and the Cmca structures. For the cold curve
contribution, E0(V ), a Vinet form is fitted to the combined
data sets calculated for the m-hcp, the Pa3, the Pca21, and the
Cmca structures. For the ionic contribution, the parameters
of the double-Debye model are obtained by a mean-square
adjustment of the phonon moments, θ0, θ1, and θ2 calculated

TABLE II. Parameters of the double-Debye model fit obtained for various structures, Pa3, Pca21, Cmca, and two functionals, LDA and
GGA. The domain over which the fit has been performed is indicated.

θ
(0)
{0} (K) α{0} β{0} θ

(0)
{A} (K) α{A} β{A} θ

(0)
{B} (K) α{B} β{B} Range

Pa3 LDA 2810.45 0.089 0.454 1757.24 −0.128 0.661 6792.67 −0.046 0.018 0 � P � 136 GPa
Pa3 GGA 3147.61 0.162 0.308 2078.50 −0.079 0.543 7151.66 −0.099 0.082 0 � P � 191 GPa
Pca21 GGA 3141.01 0.286 0.310 1874.32 0.094 0.481 6188.82 −0.185 0.083 0 � P � 158 GPa
Cmca GGA 3973.49 1.108 −1.266 4367.74 4.436 −8.871 7318.06 1.809 −3.997 180 � P � 533 GPa
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FIG. 3. (Color online) Ionic contribution to the solid free energy
in various structures: calculations from the ab initio PDOS, as data
points, and their fit by a double-Debye model, as full lines.

for the three structures, Pa3, Pca21, and Cmca, at various
pressures over ranges given in Table II. The parameters of
these fits are given in Table III. It is seen that a 12-parameter
EoS can describe the ab initio-based EoS of molecular solid
hydrogen up to 500 GPa. Figure 5 shows the resulting 300-K
isotherm obtained using this structure-independent molecular
solid EoS compared to the 300-K isotherm obtained when
considering each structure separately. The solid EoS indeed
averages the EoS of the various structures. In the inset, it is
compared to the experimental T = 300 K X-ray data,4 and
the agreement is satisfactory. At present, it is impossible to
determine whether the small difference is due to the built-in
structural uncertainty or the approximations made in the GGA
functional.

III. LIQUID AND PLASMA STATES

Over the past ten years, a large amount of work has been
devoted to calculating the thermodynamics properties of warm
dense hydrogen using ab initio methods. This theoretical effort
has been spurred by a significant experimental extension of the
deuterium Hugoniot by laser-shock measurements, showing a
maximum compression ratio of about 6,8 whereas, ab initio
calculations were predicting a ratio closer to 4.5.17 Over the
same period, the experimental determination of the Hugoniot
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FIG. 4. (Color online) Comparison between the T = 300 K
isotherm for the Pa3 (GGA and LDA) and Pca21 (GGA) structures
and the experimental data4 corrected for the pressure scale.12

has been revisited by many groups and various techniques.
Now, it seems that an experimental consensus is emerging
for a maximum compression ratio along the experimental
hydrogen Hugoniot around 4.5.9,10 This agreement achieved
between calculations and experiments along the Hugoniot of
hydrogen is bringing some confidence to the adequacy of
ab initio approaches for describing dense hydrogen. Fur-
thermore, the comparison between these various calculations
based on different approximations has provided a better view
on the range of applicability of each approach. Path integral
Monte Carlo (PIMC) is accurate at very high temperatures
(above 20 000 K), whereas, for intermediate temperatures
and high pressures, the DFT molecular dynamics [quantum
molecular dynamics (QMD)] is the best adapted computational
method.19,24 A large body of calculations on the EoS of warm
dense hydrogen exists in the literature.20,21,23,24,48 Here, we
gather a selection of three ab initio EoS calculations in the
dense fluid, specifically: the QMD simulations, extended and
fitted by Holst et al.,23 which span in densities from 0.2c
to 5 g/cc for temperatures between 500 and 20 000 K; the
coupled electron-ion Monte Carlo(CEIMC) results of Morales
et al.,24 which provide a parametrization of the free energy
of the atomic liquid for densities between 0.7 and 2.4 g/cc
and temperatures between 2000 and 10 000 K; and the PIMC
calculations19 above 20 000 K and up to 125 000 K at various
densities between 0.195 and 2.695 g/cc.

TABLE III. Full parametrization of the ab initio-based solid molecular hydrogen EoS.

E0(V ) Fi(V,T )

E0(0) V0 K0 K ′
0 θ

(0)
{0} α{0} β{0} θ

(0)
{A} α{A} β{A} θ

(0)
{B} α{B} β{B}

−15.878 20.58 0.16 7.42 3609.41 0.457 0.146 1434.97 −0.253 0.599 4348.99 −0.622 0.336
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FIG. 5. (Color online) Comparison between the 300-K solid EoS
and those of various structures. Inset: relative difference between the
solid EoS and the experimental data of Ref. 4 (corrected for the new
high-pressure scale12).

These three ab initio data sets have been supplemented by
some ab initio simulations to quantify possible uncertainties
arising from the fits used to represent the published data.
Simulations have been performed in the NVT (canonical)
ensemble where the number of particles and the volume are
fixed, while a simple velocity scaling is applied to maintain
the ion temperature constant. A plane-wave cutoff of 240
hartree was necessary to obtain convergence for the pressure
and for the internal energy to better than 1%. We performed
the simulations using 144 atoms in the simulation cell and
a 2 × 2 × 2 k-point grid as given in the Monkhorst-Pack
scheme. We checked that these simulation parameters were
optimized by increasing the number of atoms to 512 for
a few representative points. The present set of data points,
covering the range 0.2 to 5 g/cc over the temperature domain
300–10 000 K, is plotted in Fig. 6. Very good agreement
between our QMD simulations data and the fitted QMD results
of Holst et al.23 by a density expansion is observed below
1.4 g/cc. However, Holst’s et al. parametrization seems to
generate some unphysical oscillations at higher densities. Very
good agreement is also obtained between our data and the
CEIMC calculations.

A. Parametrization of the free energy

There is no universally applicable model, such as the Debye
model for the solid, to describe the free energy of a fluid or
a plasma. However, the free-energy form of a plasma, even
strongly coupled and degenerate, is well documented in the
literature. The free energy can be written as the sum of three
terms,

F = F
(i)
id + F

(e)
id + Fex, (12)

where F
(i)
id and F

(e)
id , respectively, denote the ideal free

energy of the ions and electrons (including entropy of spin)
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FIG. 6. (Color online) Variation of the internal energy versus
temperature for various densities: the present QMD simulation
data; the fitted QMD calculations of Holst et al.;23 the fitted
CEIMC calculations of Morales et al.24 The full line is the present
ab initio-based EoS.

and Fex is the excess free energy arising from Coulombic
interactions. The H plasma is essentially characterized by
the density parameter rs = ae/a0, where a0 is the Bohr
radius, ae = ( 4

3πne)−1/3 is the electron sphere radius, ne is
the electron density, and � = (e)2/aikBT is the Coulomb
coupling parameter, where ai is the ionic sphere radius. In
the case of hydrogen, ai = ae. Chabrier and Potekhin49 have
proposed an analytic form for Fex , which should be valid at
any temperature for a fully ionized plasma since the attractive
Coulombic interaction per electron is very weak compared to
the Fermi energy. In this case, the ion-electron interaction can
be treated within the linear screening theory,50 and thus, Fex

can be separated in three terms:

Fex = Fii + Fie + Fee. (13)

The free energy of ion-ion interaction Fii is described
by the standard DeWitt-Slattery-Chabrier model (DWSC),51

particularly suitable for 1 � � � 160. The free energy of
electron-electron interaction Fee is given by the Ichimaru,
Iyetomi, and Tanaka formula (IIT)52. The linear-response
treatment of the ion-electron interaction is suitable at large
densities due to the weak electronic polarization by the ionic
charge distribution, and Kohanoff and Hansen53 have shown
that it becomes rapidly unreliable at densities below 20 g/cc
for hydrogen. Indeed, as the density decreases, the electron
gas becomes more and more polarized because of its strong
inhomogeneity, especially in the domain of strong degeneracy
(i.e., T � TF ). However, as the temperature increases, the
polarizability of the electron gas decreases, and the effective
interionic potential becomes indistinguishable from a Yukawa
potential at T ∼ TF .54 For the lowest density (0.2 g/cc)
of our domain of study, TF ∼ 100 000 K. So, as long as
T � 100 000 K, the model of Chabrier and Potekhin should
be suitable in the range of density considered here. Indeed, we
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fully ionized dense plasma model,49,55 and the present ab initio-based
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can see in Fig. 7 that the internal energy given by this model is
in good agreement with PIMC calculations in the 100 000-K
range for the lowest densities, and this agreement extends
toward lower temperatures when the density increases. In
the present domain of investigation where the linear-response
treatment of the ion-electron interaction is not suitable, the
excess free energy cannot be separated as in Eq. (13).

Consequently, we have fitted the ab initio data by a
functional form for the whole excess free energy, which
still keeps the DWSC form but implicitly contains all the
interactions between the species. The departure from a real
one component plasma (OCP) model is in the dependence of
the coefficients on the density, considered here as adjustable
parameters. The Fex form adjusted for the ab initio data in the
fully dissociated fluid is

Fex(ρ,T ) = NkBT a(ρ)�

+NkBT

{
b(ρ)

s
�s + c(ρ) ln (�) + d(ρ)

}
+ δFee(ρ,T ). (14)

This expression represents the free energy of an atomic
partially ionized fluid. Its first line contains all the 0-K
contributions. The second line represents the thermal ionic
contributions, including e-e and e-i interactions. The third
line is the thermal electronic contribution given in the IIT
model [δFee (ρ,T ) = Fee(ρ,T ) − Fee(ρ,0)]. This expression
of δFee (ρ,T ) was chosen as it is the dominant contribution at
high temperature, thus, recovering the results of Chabrier and
Potekhin’s model in this limit. It is important to point out that
the quality of the fit for the ab initio internal energy should
guarantee that we have a good description of the free energy
of the system. This is because the excess internal energy, given

by a functional form of � and ρ, uniquely determines the free
energy, Fex , of the plasma through

fex(�,ρ) =
∫ �

0

uex(�′,ρ)

�′ d�′, (15)

where fex = Fex/NkBT and uex = Eex/NkBT are dimen-
sionless quantities.

The free-energy form given by Eq. (14) does not account
for the formation of H2 molecules. A functional form that
reproduces the free energy of the molecular fluid as well
as the dissociating molecular fluid would be too complex to
build. Consequently, we describe the dissociating molecular
hydrogen fluid with a simple chemical equilibrium between
a molecular and an atomic fluid for which the free energy is
given by Eqs. (12) and (14). We relate the free energy of this
fluid to the molecular fluid free energy through the mass action
law under the assumption of a linear mixing of the molecular
and the atomic species. The mass action law then gives

q2
a

qm

= N2
a

Nm

= 2Nα2

1 − α
, (16)

where N is the total number of H atoms, qa and qm,
respectively, are the atomic and molecular partitional functions
[with the usual relation F = −KBT ln (q)] and α is the
dissociation fraction. qa is explicitly given by the free energy
from Eqs. (12) and (14). Using Eq. (16), we can write the total
free energy for a partially dissociated liquid as

F (ρ,T ) = F
(i)
id + F

(e)
id

+NkBT

{
a(ρ)� + b(ρ)

s
�s + c(ρ) ln(�) + d(ρ)

}

+ δFee(ρ,T ) + NkBT

{
ln α + 1 − α

2

}
. (17)

The dissociation fraction α is used as an adjustable function
of density and temperature. We assume that the degree of
dissociation can be described by a Fermi function. This form
was used to fit the dissociation fraction extracted from the
QMD simulations by Holst et al.23 So α is given by

α(ρ,T ) = 1

e[B(ρ)/T −C(ρ)T ] + 1
, (18)

where B(ρ) and C(ρ) are two adjustable functions. An
interesting property of this Fermi function is its limit at
T = 0 K (hence, for a fraction of dissociation going to 0),

lim
T →0

(
kBT

{
ln α + 1 − α

2

})
= −kBB(ρ), (19)

which corrects the atomic free energy to give the molecular free
energy. As shown in Sec. IV, this provides a very satisfactory
representation of the free energy of the molecular fluid.

From the free energy expression given by Eq. (17), the
expression for the internal energy E = F − T ( ∂F

∂T
)ρ and the

pressure P = ρ2( ∂F
∂ρ

)T are straightforwardly obtained. These
two expressions are used to adjust the a, b, c, d, B, and C

density functions and the parameter s to reproduce the QMD
and PIMC results [see Eqs. (20)–(30)]. The hydrogen density

094101-7



L. CAILLABET, S. MAZEVET, AND P. LOUBEYRE PHYSICAL REVIEW B 83, 094101 (2011)

ρ is expressed in g/cc (for another isotope: ρ = mH

misotp
ρisotp)

and � = 2.268 79 × 105ρ1/3/T (K),

a(ρ) = −0.731 807 + (−3.084e − 3)ρ + 0.352 77 ln (ρ)

+ (8.8546e − 3)[ln (ρ)]2 + 0.014 805 267[ln (ρ)]3,

(20)

b = 0.275 457 265, (21)

c = −0.320 95, (22)

s = 0.321 308, (23)

d(ρ) = d0 + 32.1514

16.3339
exp (−16.3339ρ) + dc(ρ), (24)

d0 = −0.274 3876, (25)

if ρ � 0.337,

dc(ρ) = −0.163 699 29ρ, (26)

if 0.337 � ρ � 0.419,

dc(ρ) = −0.163 699 29ρ + 2.394 940 122ρ

(
ρ

2
− 0.337

)
,

(27)

if 0.419 � ρ,

dc(ρ) = 0.032 6858ρ, (28)

B(ρ) = exp (9.148 95 − 2.069 13ρ), (29)

C(ρ) = exp (−8.6253 + 2.8804ρ). (30)

The constant d0 is computed to obtain the same free energy
of hydrogen in the dissociated regime as the one computed by
Morales et al.24

We can see both in Fig. 6 and in Fig. 7 that our
parametrization of the free energy reproduces the QMD and
CEIMC calculations at low temperature and the PIMC at
higher temperature. The accuracy of our fit is better than 2%
over the whole density range and for temperatures up to 2 eV
(that covers the conditions of the interior of giant planets).
The worst accuracy (≈5%) is obtained when we extend the
QMD calculations by the PIMC calculations, specifically for
temperatures in a range of 5–7 eV.

Finally, in Fig. 8, it is interesting to compare the effective
dissociation fraction obtained through the fit of the QMD ther-
modynamical quantities using Eq. (17) with the microscopic
dissociation fractions that can directly be computed. Holst
et al.23 have used two criteria to estimate the fraction of H2

molecules in their QMD simulation. In the first criterion, the
number of molecules is calculated by counting the number
of atoms located within a radius rbond and which last for
a time greater than ten vibrational periods. The second
criterion uses values of the coordination number K(r) =
N−1

V

∫ r

0 4πr ′2g(r ′) dr ′, which is a weighted integral over the
correlation function, g(r), calculated in a supercell of volume
V and containing N atoms. The microscopic dissociation
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FIG. 8. (Color online) Dissociation fraction versus temperature.
The fitted parameter α is compared to the microscopic quantity, as
obtained by Holst et al.23 using two microscopic criteria.

fraction is plotted in Fig. 8, and it is compared to the estimation
of the effective thermodynamical dissociation fraction of our
model. They follow a similar trend with temperature at a
given density. Our model identifies a similar transition from
the molecular fluid to the fully atomic state as given by the
microscopic output of the simulations. In particular, we see
that the molecular to atomic transition is getting more abrupt as
the density increases. But we should again stress that, although
this dissociation fraction may carry some microscopic physical
meaning, it formally remains an adjustable parameter that
compensates for drastic approximations of our model of free
energy, such as the linear mixing approximation and the simple
chemical evolution of fluid hydrogen.

B. Quantum corrections to classical ionic behavior

In the QMD simulations, the ions are described classically.
The quantum contribution associated with the ionic motion
of the proton are not negligible in dense hydrogen fluid
in the 1000-K range in both the molecular and the atomic
states. Thus, it is important to take into account this quantum
correction to bring the present fluid EoS to the same level
as the EoS obtained in the solid phase. A well-known
approach to estimate the first-order quantum correction from
a classical simulation is to use the Wigner56 and Kirkwood57

h̄2 development of the free energy. The quantum correction is
then expressed as

Fq = 1

24
Nh̄2(kBT )2

〈
f 2

i

〉
/m. (31)

However, in order to match the present functional form
of the fluid free energy, it was more convenient to estimate
the ionic quantum correction differently. Following Eq. (17),
F qc(ρ,T ) is expressed as

F qc(ρ,T ) = F qc
a (ρ,T ) − kBT

{
αq − αc

2
− ln

(
αq

αc

)}
, (32)
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where F
qc
a (ρ,T ) is the ionic quantum correction in a fully

dissociated fluid and αq and αc, respectively, are the effective
dissociation fraction when ionic quantum corrections are taken
into account or not. F

qc
a (ρ,T ) is expressed as the quantum

correction of a three-dimensional Einstein oscillator associated
with the effective average motion of the proton. E(ρ) being
the temperature of this oscillator, the quantum correction to
the atomic partition function is given by

qqc
a =

(
exp [−E(ρ)/2T ]

1 − exp [−E(ρ)/T ]

E(ρ)

T

)3

, (33)

and

F qc
a (ρ,T ) = −KBT ln

(
qqc

a

)
. (34)

The effective Einstein frequency associated with the proton
motion can be computed directly in the QMD simulation
following the method proposed by Berens et al.58 to calculate
the ionic quantum correction in water. It is obtained from the
ratio of the average of the square of the force on the protons
over the average of the square of their velocity, as

2
E(ρ) =

〈
f 2

i

〉
m2

〈
v2

i

〉 h̄

kB

. (35)

Over the density range of the present simulations, E(ρ) (in K)
is well reproduced by the following linear fit:

E(ρ) = 452.79 + 390.49ρ. (36)

If we assume that the main zero-point ionic contribution in
the molecular phase is due to the vibron mode, the quantum
correction to the molecular partition function can then be
written as

qqc
m = exp (−vib/2T )

1 − exp (−vib/T )

vib

T
. (37)

Neglecting the temperature and density variation of the vibron,
νH2 ≈ 4155.2 cm−1 and νD2 = √

2νH2 , we can rewrite the mass
action law as (

qc
aq

qc
a

)2

qc
mq

qc
m

= N2
a

Nm

= 2N (αq)2

1 − αq
, (38)

where qc
a and qc

m are the classical partition functions of the
atomic and molecular fluids. By combining Eqs. (16) and
(38), αq , the dissociation fraction when the ionic quantum
corrections are taken into account, can straightforwardly be
related to the dissociation fraction obtained for classical
protons and to q

qc
a and q

qc
m by

(αq)2

1 − αq
= (αc)2

1 − αc

(
q

qc
a

)2

q
qc
m

. (39)

We check that this alternative estimation of the quantum
ionic contribution to the free energy as given by Eq. (32)
is in very good agreement with the one directly computed
with the Wigner-Kirkwood formula given in Eq. (31). In
Fig. 9, we plotted the temperature evolution of the effective
dissociation fraction, αq , at three densities and compared it to
its classical estimation. Following the preceding observation
that the effective dissociation parameter of the model follows
a similar trend as the real microscopic dissociation parameter,
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FIG. 9. (Color online) Influence of the quantum corrections on
the dissociation fraction for three densities; the classical dissociation
fractions as a solid line and the dissociation fractions with quantum
corrections as a dashed line.

we can infer that the ZPM correction favors the dissociation
of the H2 molecules. This effect becomes stronger when the
density increases. In fact, it can be intuitively explained by the
gain of zero-point energy when a molecule dissociates.

IV. COMPARISON WITH EXPERIMENTAL DATA

In Secs. II–IV, we described how two forms of the free
energy, one for the solid and one for the fluid, can reproduce
the ab intio electronic structure calculations. We stress that
no experimental data have been used to fit the parameters of
the free-energy forms. The comparison of the present ab initio
EoS with experiments should now be made to test its accuracy.
It should be stressed that since the level of approximation
of the ab initio calculations applies almost evenly over the
thermodynamic domain investigated, the validation of the
accuracy of the EoS over a small experimental domain should
bring some confidence for similar accuracy over the full
domain of investigation. Consequently, in this section, we
will compare the output of the present EoS to the main
thermodynamic measurements available on hydrogen at high
pressure. These are the following: the determination of the
solid EoS at 300 K, the sound velocity measurements in
the molecular fluid, the Hugoniot curves of cryodeuterium
and cryohydrogen, and the melting line of hydrogen. The
comparison is very satisfactory, and it is made in the region
where the properties should be less accurately captured by
DFT due to the known dispersion forces or gap problems.
The comparison with the 300-K solid EoS has been discussed
already in Sec. II since it has been used to select the GGA
approximation for the exchange-correlation functional.
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FIG. 10. (Color online) Adiabatic sound velocity of fluid H2

versus pressure at various temperatures. The experimental points of
Ref. 59, plotted as red dots with associated error bars, are compared
to the calculated values for the same P and T .

A. Sound velocity in the dense molecular fluid

From Eq. (17), the molecular free energy is obtained in
the limit where the fraction of dissociation tends to 0. This
description of the fluid molecular free energy is tested on the
Brillouin scattering measurements of the sound velocity of
fluid molecular hydrogen in the pressure range (1–12 GPa)
and temperature (293–526 K).59 The adiabatic sound velocity
is calculated using the present EoS and the following formula:

cu =
√√√√(

∂P

∂ρ

)
S

. (40)

Figure 10 shows that very good agreement is obtained
between the calculated and experimental sound velocities.

B. Cryo-Hugoniot of H2 and D2

Dynamical measurements of the velocities in a planar
shock experiment provide an absolute determination of the
EoS data of a dense fluid. Specifically, the compression ratio
versus pressure is generally the significant output. Planar shock
measurements have been accurately made on cryotargets of
D2 and H2 using a two-stage light gas gun.5,60 In Fig. 11,
these dynamic experimental data are compared to the Hugoniot
curve calculated for H2 and D2 at the same initial density as
the experimental one, using the present EoS and the SESAME
EoS.1 In this pressure range, both fluids are molecular, with a
negligible dissociation fraction. Very good agreement between
experimental data and the calculated Hugoniot is observed.
The SESAME Hugoniot seems to fit the experimental data
a little better. This should not be surprising since these
experimental data have been used to fit this chemical model.
The difference between the compression ratio of H2 and of D2

versus pressure along the Hugoniot appears because the initial
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FIG. 11. (Color online) Principal Hugoniot curve of H2 and of
D2 in the molecular fluid domain. The pressure is plotted versus
the compression ratio. The prediction of the present EoS, as a full
line, is compared to the experimental data.5,60 The dashed line is the
SESAME EoS.1

density of cryo-H2 and of cryo-D2 is different. This difference
reflects the effect of the initial density on the compression ratio
along the Hugoniot rather than the isotopic shift between the
EoS of H2 and of D2, which is much smaller.

Over the past ten years, the Hugoniot of cryo-D2 has been
extended up to about 200 GPa using various experimental
approaches. The latest set of data points as obtained by laser-
driven compression with the Nova laser8,61 and the Omega
laser9 (possibly slightly shifted by a correction on the EoS of
the quartz standard10) by explosive-driven compression7,62,63

and by Z-pinch-driven compression10 are compared in Figs. 12
and 13 to the calculated Hugoniot obtained with the present
EoS. Above 20 GPa, the Hugoniot probes the evolution from
a molecular fluid to a fully dissociated plasma. It is observed
that the Hugoniot generated with the present EoS agrees very
well with the body of experimental data, except for the NOVA
data.8,61 The predictions of various chemical models are also
plotted for comparison, namely, the SESAME,1 the Ross,3 the
Saumon-Chabrier-van Horn,2 and the fluid variational theory
(FVT)64 ones. They generally tend to predict a too large
maximum compression ratio at high pressure. The SESAME
EoS that seems to be in better agreement tends more slowly
toward the limit of compression of an ideal gas above 120 GPa.
If all chemical models agree in the molecular fluid regime, they
diverge in the domain of maximum compression. This reflects
the difficulty of correctly describing the transition to the dense
plasma state.

The principal Hugoniot of D2 has been obtained previously
by various ab initio calculations. As seen in Figs. 14 and
15, the present EoS is in good agreement with these previous
calculations. Yet some differences exist that are essentially due
to the form of the fit of the ab initio data and to the treatment of
the quantum corrections. We believe that the present paper is an
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FIG. 14. (Color online) Comparison between different ab initio
computations of the principal Hugoniot for D2: present EoS, restricted
path integral Monte Carlo (RPIMC),19 and QMD.17,21,23 Inset: The
isotopic shift in the maximum compression rate along a Hugoniot
starting at the same molar volume in D2 and H2 at 300 K.

improvement over the previous calculations concerning these
two issues. Furthermore, the present free-energy model allows
one to compute the isotopic shift on the EoS of dense fluid
hydrogen. The influence of the ZPM on the principal Hugoniot
of hydrogen in the region of its compression ratio maximum is
plotted in the inset of Fig. 14. We generate the Hugoniot curve
of H2 and D2, starting at the same molar volume and the same
initial pressure (3 kbar) at 300 K. This is essentially what can
be measured in a laser-shock compression on precompressed
targets.65 Here, a small isotopic shift is predicted, essentially
due to the difference in the reference energy between the two
isotopes.

C. Multiple-shock experiments

Numerous experiments have been carried out that explore
the double- and multiple-shock properties of hydrogen. In ICF
applications, the timing of multiple shocks is critical. However,
we have not included the output of these experiments in the
systematic test of the present EoS because their observables are
not unambiguously nor simply related to the thermodynamical
data of the EoS. In the case of the reshock experiments,
the observables are based on the combination of the EoS of
hydrogen and of the EoS of the anvil for the reshock (i.e., the
EoS of quartz in the study of Boehly et al.67 and the EoS of
quartz, sapphire, and Al in the study of Knudson et al.6). In
these experiments, the accuracy of the EoS of the anvil is also
an important input. Similarly, the comparison of our EoS to the
multishock experiments would require a specific explanation
on the geometry of multiple shocks, which is beyond the scope
of this paper.
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present EoS, RPIMC,19 and QMD.17,21,23 Inset: Comparison with
RPIMC calculation up to 125 000 K.

D. Melting curve

The computation of the melting curve is known to be a
sensitive test of the free-energy description of the solid and
the liquid phases. Using the free-energy functionals of the
solid and liquid states previously given, the melting curve
of hydrogen can be calculated by equalizing the Gibb’s free
energies. The calculated melting curve obtained presents a
maximum, and it is well parametrized using the functional
form given by Kechin68 as

Tm = T0(1 + P/a)b exp (cP ), (41)

where Tm is in (K), T0 = 4.852 66, a = 0.022 8677, b =
0.747 862, and c = 0.009 826 57 for H2. The extrapolation of
the melting curve, obtained from measurements up to 20 GPa
(Ref. 69) suggested that the melting curve of hydrogen could
have a maximum at about 1100 K and 120 GPa. Subsequent
measurements extended the melting curve of hydrogen to
higher pressures and confirmed the existence of a maximum.
These various experimental data69–72 are compared to the
present calculated melting curve in Fig. 16. The agreement is
indeed very good with the calculated melting line, interpolating
through the scatter of the various experimental measurements.
It should be recalled that the measurements of the melting
points of hydrogen above 500 K are challenging, and the
accuracy of the experimental data is still being discussed.73

The QMD calculation of the melting line has been performed
by Bonev et al.22 using the two phases simulation approach
and the GGA approximation for the exchange-correlation
function. With this method, melting was determined when
the interface between an hcp solid and a fluid was seen to be
stable during an isothermal-isobaric (NPT) simulation. Their
calculation established the existence of a maximum on the
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FIG. 16. (Color online) Melting curve of H2 solid. The various
symbols represent various experimental determinations.69–72 The red
(top) line is the present free-energy determination. The black (middle)
line is the moving interface determination of Bonev et al.22 The
blue (bottom) line is the present free-energy determination of the D2

melting.

high-pressure melting curve located at about 90 GPa and a
temperature around 900 K. We compare these results to ours
in Fig. 16, and we see that the melting curves are rather similar,
with the most noticeable difference concerning the prediction
of the maximum temperature reached. It is worth pointing
out that, although both calculations are based on the QMD
approach with the same exchange-correlation functional, there
exist several differences between them that may explain this
discrepancy. Specifically, the moving interface method may
suffer from finite-size effects, which are hard to quantify
but do not affect the free-energy results. Conversely, the
free-energy method may suffer from uncertainty coming from
the functional chosen for exchange and correlation effects.
The molecular dynamics approach accounts for anharmonicity,
while the free-energy formulation neglects this effect as it
is based on a DFPT description of the solid phase. Finally,
Bonev’s calculations are classical simulations that do not take
the ZPM into account. As will be seen in Sec. V, taking
the ionic ZPM into account leads to a significant isotopic
shift on the melting curve of hydrogen that is of similar
magnitude to the difference between the present and Bonev’s
calculations.

V. TWO PREDICTIONS

A. Isotopic shift on the melting curve

The insertion of the ZPM contribution to the free energy
of solid and fluid hydrogen, as described in Secs. II and III,
allows one to address the question of the magnitude of the
isotopic shift on the melting curve. The calculated melting

094101-12
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FIG. 17. (Color online) Isentropic compression trajectories in
the liquid, using the initial conditions indicated in the figure and
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curve of deuterium is also well parametrized using the Kechin
functional form with the following parameters: T0 = 10.529,
a = 0.035 0601, b = 0.647 859, and c = 0.006 5481 for D2.
In Fig. 16, the D2 melting curve is compared to the H2 melting
curve. A significant isotopic shift is observed, presenting an
unexpected feature. At a given low pressure, the melting
temperature of D2 is lower than the melting temperature of
H2, in agreement with the original prediction using molecular
pair interaction.74 But above 120 GPa, the two melting curves
cross, and solid D2 melts at a higher temperature than solid
H2. This inversion of the quantum isotopic shift should be
related to the change of nature of the molecular fluid that
is dissociating. It should be noted that the magnitude of this
isotopic shift is only semiquantitatively correct, especially on
the molecular fluid side for which some contributions to the
quantum correction have been discarded. The crossing of the
two melting curves is certainly an intriguing prediction that
should stimulate its experimental observation.

B. Isentropic compression path

Having a free-energy form of the EoS of hydrogen allows
for the computation of compression paths for hydrogen, which
can be very useful for designing dynamic experiments. As an
example, in Fig. 17, we show an isentropic compression of

deuterium starting from a solid state at 6 GPa and 300 K that
goes to a density of 10 g/cc. The temperature along a given
isentrope is obtained by using the following formula:

T = T0 exp

[∫ V

V0

(
∂P

∂E

)
V

dV

]
, (42)

where T0 and V0, respectively, are the initial temperature
and the initial volume. As seen in Fig. 17, the calculated
isentropic path in the P -T diagram is significantly different
from the one calculated with the most advanced SESAME
EoS.1 A very interesting output of this calculation is that
the temperature increase is quite modest. Hence, if a near-
isentropic compression of hydrogen could be designed, a very
interesting domain of the phase diagram of hydrogen would be
probed. Also, a significant discontinuity is predicted at melting
that should be observable.

VI. CONCLUSION

To summarize, we have built a multiphase EoS of hydrogen
isotopes entirely from first-principle calculations. The ZPM
of the nuclei is taken into account. It covers a large phase
space of hydrogen, from the T = 0 K solid up to the dense
plasma domain where established approximations are shown
to be valid. A complete QMD data set has been constructed in
the molecular solid phase. Some QMD data calculations have
been performed in the fluid state to complete the extensive
body of literature. Physical models fitted on these data allow
one to obtain a description of the free energy. The accuracy of
this EoS is tested on all the thermodynamic measurements
of dense hydrogen available to date. The comparison is
very satisfactory, and it is made in the region where the
properties should be less accurately captured by DFT due to
the known dispersion forces or gap problems. Also, because
of the homogeneity of the approach over the whole phase
space considered here, the experimental validation of the EoS
over a restricted experimentally accessible domain should be
extended with confidence to the untested domain. The present
form of the EoS should make it easily usable by others. In
particular, it should now be applied to important applications
for which the domain of the hydrogen EoS covered here is a
central input, such as ICF or planetary interiors. Also, we think
that it should prove useful for designing dynamic compression
measurements of hydrogen that are becoming feasible with the
use of large laser facilities,75 as illustrated by the significant
effect shown on the calculation of an isentrope path. Finally,
an interesting prediction of a measurable isotopic shift on the
hydrogen melting curve is made that would be a definitive test
of the present EoS.
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