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Multiband s± Eliashberg theory and temperature-dependent spin-resonance energy in iron
pnictide superconductors
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The phenomenology of iron pnictide superconductors can be explained in the framework of a three-band s±
wave Eliashberg theory with only two free parameters plus a feedback effect, i.e., the effect of the condensate on the
antiferromagnetic spin fluctuations responsible for the superconductivity in these compounds. I have examined the
experimental data of four materials, LaFeAsO1−xFx , SmFeAsO1−xFx , Ba1−xKxFe2As2, and Ba(FexCo1−x)2As2,
and I have found that it is possible to reproduce the experimental critical temperature and gap values in a moderate
strong-coupling regime, λtot ≈ 1.7 − 2.0.
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The new class of Fe-based compounds,1–3 just like the
cuprates4 and the heavy fermions,5 all have some similar
characteristics. Two examples are the high values of rate
2�/Tc and the presence of the pseudogap.4,6,7 For all three
classes of material, it is proposed that the superconductivity
will be mediated by antiferromagnetic spin fluctuations.4,8,9

The most obvious difference is that almost all of the iron
compounds present a multiband behavior, while for high-Tc

cuprate superconductors (HTCS) and heavy fermions, this is
detected only in some particular cases. The multiband nature
of Fe-based superconductors may give rise to a multigap
scenario,10 and this is indeed emerging from many different
experimental data showing evidence for rather high gap
ratios of ≈2–3.11 In this regard, neither a three-band BCS
model9,12,13 nor a four-band Eliashberg model14 with small
values of the coupling constants and large boson energies are
adequate: the former can only account for the gap ratio and
Tc, but not for the exact experimental gap values, and the
latter provides a calculated critical temperature larger than
the experimental one. The high experimental value of the
larger gap suggests that high values of the coupling constants
might be necessary to explain the experimental data within
a three-band model;15,16 one has therefore to employ the
Eliashberg theory for strong-coupling superconductors.15,16

In my early works,15,16 I found that a three-band Eliashberg
model allows one to reproduce various experimental data.
This suggests that these compounds can represent a case
of dominant negative interband-channel superconductivity
(s± wave symmetry) with small typical boson energies
(≈10 meV) but too-high values of the electron-boson coupling
constants (1.9 � λtot � 5.9). The way to solve this problem
is suggested by the experimental measurements of Inosov
and coworkers.17 They found that the temperature evolution
of the spin-resonance energy follows the superconducting
energy gap, and this should indicate a feedback effect4,18,19

of the condensate on the spin fluctuations. This assumption
is the starting point of my argument. The procedure is as
follows: First, I choose the experimental low-temperature spin
resonance as representative of the boson energy, and I fix
the two remaining free parameters to reproduce the exact
experimental gap values; then, with the same parameters, I
calculate the critical temperature T ∗

c . I find T ∗
c � T

exp
c in all

cases where T
exp
c is the experimental critical temperature. In

the successive step, I use the same input parameters utilized
before except for the electron-boson spectral functions that
have an energy peak with the same temperature dependence
of the superconductive gap. Of course, at T = T ∗

c , the energy
peak is equal to zero, while at T = 0 K, the new spectral
functions are equal to the old ones. In this way, taking into
account the feedback effect of the condensate4,18,19 on the
antiferromagnetic spin fluctuations, I explain the experimental
data (the gap values and the critical temperature) in a model
that has only two free parameters in a moderate strong-
coupling regime (λtot ≈ 1.7 − 2).

I choose four representative cases (three hole type
and one electron type): LaFeAsO1−xFx , SmFeAsO1−xFx ,
Ba1−xKxFe2As2, and Ba(FexCo1−x)2As2. The electronic
structure of the hole-type compounds can be approximately
described by a three-band model9 with two hole bands
(indicated in the following as bands 1 and 2) and one equivalent
electron band (indicated as band 3),15,16 while the electron type
has one hole band (indicated in the following as band 1) and
two equivalent electron bands (indicated as bands 2 and 3).21

In the hole-type case, the s-wave order parameters of the hole
bands �1 and �2 have the opposite sign compared to the
electron band �3,20 while in the electron-type case, �1 has
the opposite sign compared to the two electron bands �2 and
�3.21 In such systems, intraband coupling could be provided
by phonons (ph), and interband coupling by antiferromagnetic
spin fluctuations (sf).20 I summarize the experimental data
relative to the following four considered cases:

1) the compound LaFeAsO0.9F0.1 (LaFeAsOF) with T A
c =

28.6 K where point-contact spectroscopy measurements gave
�1(0) ≈ 8.0 and �2(0) ≈ 2.8 meV;7

2) Ba0.6K0.4Fe2As2 (BaKFeAs) with Tc = 37 K where
angle-resolved photoelectron spectroscopy (ARPES) mea-
surements gave �1(0) = 12.1 ± 1.5, �2(0) = 5.2 ± 1.0, and
�3(0) = 12.8 ± 1.4 meV;22

3) the compound SmFeAsO0.8F0.2 (SmFeAsOF) with T A
c =

52 K (T bulk
c = 53 K) where, according to point-contact

spectroscopy measurements, �1(0) = 18 ± 3 and �2(0) =
6.2 ± 0.5 meV;23 and

4) the compound Ba(FexCo1−x)2As2 (BaFeCoAs) with
T A

c = 22.6 K (T bulk
c = 24.5 K) where, according to point-

contact spectroscopy measurements, �1(0) = 4.1 ± 0.4 and
�2(0) = 9.2 ± 1.0 meV.21
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T A
c is the critical temperature obtained by Andreev re-

flection measurements and T bulk
c is the critical temperature

extracted by transport measurements. Note that, only in the
case of ARPES, the gaps are associated to the relevant band.
Since point-contact spectroscopy measurements generally give
only two gaps, the larger one has been arbitrarily indicated as
�1, supposing that �1 ∼ |�3|.

To obtain the gaps and the critical temperatures within
the s± wave, three-band Eliashberg equations,24 one has to
solve six coupled equations for the gaps �i(iωn) and the
renormalization functions Zi(iωn), where i is a band index
(that ranges between 1 and 3) and ωn are the Matsubara
frequencies. If one neglects, for simplicity, the effect of
magnetic and nonmagnetic impurities, the imaginary-axis
equations15,16 are

ωnZi(iωn) = ωn + πT
∑
m,j

�Z
ij (iωn,iωm)NZ

j (iωm), (1)

Zi(iωn)�i(iωn) = πT
∑
m,j

[
��

ij (iωn,iωm)

−μ∗
ij (ωc)

]
�(ωc − |ωm|)N�

j (iωm), (2)

where �Z
ij (iωn,iωm) = �

ph
ij (iωn,iωm) + �sf

ij (iωn,iωm), and

��
ij (iωn,iωm) = �

ph
ij (iωn,iωm) − �sf

ij (iωn,iωm). � is the
Heaviside function and ωc is a cutoff energy. In particular,
�

ph,sf
ij (iωn,iωm) = 2

∫ +∞
0 d��α2

ijF
ph,sf(�)/[(ωn − ωm)2 +

�2]. μ∗
ij (ωc) are the elements of the 3 × 3

Coulomb pseudopotential matrix. Finally, N�
j (iωm) =

�j (iωm)/
√

ω2
m+�2

j (iωm) and NZ
j (iωm)=ωm/

√
ω2

m+�2
j (iωm).

The electron-boson coupling constants are defined as

λ
ph,sf
ij = 2

∫ +∞
0 d�

α2
ij F

ph,sf (�)

�
.

The solution for Eqs. (1) and (2) requires a huge number
of input parameters (18 functions and 9 constants); however,
some of these parameters are related to each other, some can
be extracted from experiments, and some can be fixed by
suitable approximations. As shown in Ref. 20, in the case of
pnictides, we can assume that: (i) the total electron-phonon
coupling constant is small;25 (ii) phonons mainly provide
intraband coupling; and (iii) spin fluctuations mainly provide
interband coupling. To account for these assumptions in
the simplest way, I will take λ

ph
ii = λ

ph
ij = 0 (upper limit

of the phonon coupling25 ≈0.35), λsf
ii = 0 (only interband

sf coupling), and μ∗
ii(ωc) = μ∗

ij (ωc) = 0.15 Within these ap-
proximations, the electron-boson coupling-constant matrix λij

becomes9,15,21

λij =

⎛
⎜⎝

0 λ12 λ13

λ21 = λ12ν12 0 λ23

λ31 = λ13ν13 λ32 = λ23ν23 0

⎞
⎟⎠ , (3)

where νij = Ni(0)/Nj (0), and Ni(0) is the normal density of
states at the Fermi level for the ith band. In the hole case, it is
λ21 = λ12 = 0, while in the electron case, it is λ23 = λ32 =
0. In the numerical simulations, I used the standard form
for the antiferromagnetic spin fluctuaction:26 α2

ijF
sp(�) =

Bij��ij�(�max − �)/(�2 + �2
ij ), where Bij are the normal-

ization constants necessary to obtain the proper values of
λij while �ij are the peak energies. In all the calculations,
�ij = �0. The maximum sf energy is �max = 10�0, the
cutoff energy is ωc = 30�0, and the maximum quasiparticle
energy is ωmax = 40�0. For the typical sf energy �0, I use
the spin-resonance energy that has been measured, and for
all compounds examined, I assume the relation �0 = (2/5)Tc

that is available in the literature is correct.27 Band structure
calculations provide information about the factors νij that
enter into the definition of λij [Eq. (3)]. In the case of
LaFeAsO0.9F0.1, I know that ν13 = 0.91 and ν23 = 0.53;28 in
Ba0.6K0.4Fe2As2, ν13 = 1 and ν23 = 2;9 in SmFeAsO0.8F0.2,
ν13 = 0.4 and ν23 = 0.5;28 and in Ba(FexCo1−x)2As2, ν12 =
1.12 and ν13 = 4.50.28 I initially solve the imaginary-axis
Eliashberg equations [Eqs. (1) and (2)] to calculate the low-
temperature value of the gaps (which are actually obtained by
analytical continuation to the real axis by using the technique
of the Padé approximants) and so I fix the two free parameters
of the model, λ13 and λ23 (λ12). By properly selecting the
values of λ13 and λ23 (λ12), it is relatively easy to obtain the
experimental values of the gaps with reasonable values of

λtot =
∑

ij Ni (0)λij∑
ij Ni (0) (between 1.72 and 2.04).

However, in all the materials examined, the high
2�1,3/kBTc ratio (of the order of 8–9) makes it possible
to reproduce also the values of the large gap(s) only if the
calculated critical temperature T ∗

c is considerably higher than
the experimental one. To solve this problem, which is also
present in the HTCS, I assume there exists an effect of feed-
back4,18,19 of the condensate and, in a phenomenological
way, I introduce in the Eliashberg equation a temperature

TABLE I. The values of �0 and λij that allow reproduction of the experimental gap values. λtot is compared with λold
tot , which is the value

determined in the previous works.15,16,21 In the first rows, the sf spectral functions used have the usual shape, while those in the second rows
have the Lorentzian shape.

λtot λold
tot λ12/21 λ13/31 λ23/32 �0 (meV)

BaFeCoAs 1.87 0.76/0.85 1.21/5.44 0.00/0.00 9.04
2.83 1.93 0.91/1.02 2.08/9.35 0.00/0.00 9.04

LaFeAsOF 1.75 0.00/0.00 2.11/1.91 0.40/0.21 11.44
2.38 2.53 0.00/0.00 2.93/2.66 0.46/0.24 11.44

BaKFeAs 2.04 0.00/0.00 2.27/2.27 0.56/0.28 14.80
2.84 3.87 0.00/0.00 3.21/3.21 0.67/0.34 14.80

SmFeAsOF 1.72 0.00/0.00 1.55/3.88 0.42/0.84 20.80
2.39 5.90 0.00/0.00 2.23/5.58 0.49/0.98 20.80
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FIG. 1. (Color online) The calculated critical temperature Tc with
the feedback effect vs standard critical temperature T ∗

c in three
different situations: only interband sf coupling with standard spectral
functions (black squares), interband sf coupling with standard spectral
functions and small intraband ph coupling (red circles), and only inter-
band sf coupling with Lorentzian spectral functions (blue triangles).
The inset is the sf spectral function for the Ba(FexCo1−x)2As2 at
different temperatures (T < T ∗

c ) with the feedback effect.

dependence of the representative boson energy �0(T ) =
�0tanh(1.76

√
T ∗

c /T − 1) that reproduces both the approx-
imate gap temperature dependence in the strong-coupling
case19 and the experimental spin-resonance one.17 The primary
effect of this assumption is the lowering of the critical temper-
ature, leaving unchanged the gap values at T � T ∗

c , because
the critical temperature is roughly proportional to the electron-

boson coupling constant and to the representative boson energy
�0(T ) of the material: in this case, �0(T ) decreases and so
Tc. For a completely consistent procedure, �0(T ) = �0η(T )
should be used, where η(T ) is the temperature-dependence
part of the superfluid density ρ(T ) = ρ(0)η(T ), and ρ(0) is
the superfluid density at T = 0 K. η(T ) is a function of
�i(iωn) and so, in this way, the numerical solution of the
Eliashberg equations becomes remarkably more complex and
time consuming.

I am aware that the temperature dependence of �0(T ) is
added ad hoc and is not obtained self-consistently, but this
is an attempt to determine if the chosen path can lead to
interesting results. What is important is that this mechanism
of feedback can justify the experimental values for the gaps,
their dependence on temperature, and the critical temperature
with a model that has only two free parameters. Moreover, the
parameters determined are reasonable, and λtot is very similar
for all four materials examined and in agreement with the
values proposed by other authors.26 I solve the Eliashberg
equations in three different situations: (1) where only sf
interband coupling is present and the sf spectral functions have
the usual shape, (2) where sf interband coupling with a small
ph intraband contribution are present and sf spectral functions
have the usual shape, and (3) where only sf interband coupling
is present and the sf spectral functions have the Lorentzian
shape. In the first case, the coupling constant λtot is in the
range 1.72–2.04. The results are almost independent from �max

because, for example, in the case of BaFeCoAs, multiplying
�max by a factor of two, I obtain the same values of the
gaps and Tc with λtot = 1.68, i.e., with a reduction of 0.18
which is very small. The agreement with the experimental
critical temperature is good. The small variation of the total

FIG. 2. (Color online) The calculated temperature dependence of |�i | from the solution of real-axis Eliashberg equations in the standard
case (open symbol) and when the feedback effect is present (solid symbol): |�1| black squares, |�2| red circles, and |�3| blue triangles.
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TABLE II. The calculated values of the gaps and of the two critical
temperatures with and without the feedback effect. In the first rows,
the sf spectral functions used have the usual shape, while those in the
second rows have the Lorentzian shape.

�1(meV) �2(meV) �3(meV) Tc(K) T ∗
c (K)

BaFeCoAs 6.63 −4.07 −9.18 26.07 33.00
7.02 −4.12 −9.18 23.73 28.95

LaFeAsOF 8.01 2.82 −7.75 29.37 37.22
8.01 2.77 −7.71 26.86 31.81

BaKFeAs 12.04 5.20 −12.00 43.66 55.26
12.04 5.24 −11.91 38.33 46.18

SmFeAsOF 14.86 6.15 −18.11 58.53 74.13
15.51 6.15 −18.00 52.80 63.82

coupling in the four compounds considered is noticeable. In
the second case, there is also an intraband phonon contribution,
equal in any band and in any compound, for simplicity, with
λ

ph
ii = 0.35 and �

ph
0 = 18 meV, which are the upper limits for

the ph coupling constants and the representative ph energies.25

The ph spectral functions have the Lorentzian shape,15 with
the peaks at the same energy, �ij = �

ph
0 , and with half width

always equal to 2 meV (ωc = 12�
ph
0 ). λtot and Tc are practically

the same as the previous case. This last fact indicates that
the effect of intraband phonon contribution is negligible.
In the third case (the Lorentzian shape of sf spectral functions),
the agreement with the experimental critical temperatures is

very good in all compounds, but the total coupling is larger
(2.38 � λtot � 2.84).

In Fig. 1 it is possible to see the linear relation between
Tc and T ∗

c in all three examined cases. Table I shows the
input parameters of the Eliashberg equations in the first and
third case examined for the four compounds. Table II shows
the calculated values of the gaps and the critical temperatures
Tc and T ∗

c obtained by numerical solution of the Eliashberg
equations. Once the values of the low-temperature gaps were
obtained, I calculated their temperature dependence by directly
solving the three-band Eliashberg equations in the real-axis
formulation, instead of using the analytical continuation to
the real axis of the imaginary-axis solution. Of course, the
results of the two procedures are virtually identical at low
temperature. In all cases, their behavior is rather unusual and
completely different from the BCS one, since the gaps slightly
decrease with increasing temperature until they suddenly
drop close to Tc as it is shown in Fig. 2. This arises from
a complex nonlinear dependence of the � vs T curves
on λij , and is possible only in a strong-coupling regime.29

Curiously, in all four compounds, the rate T ∗
c /Tc is 1.27.

In conclusion, I have shown that a simple Eliashberg three-
band model, with antiferromagnetic spin-fluctuation electron
coupling in a moderate strong-coupling regime with only two
free parameters and a feedback effect, can reproduce, in a
quantitative way, the experimental critical temperature and
the amplitude of the energy gaps.
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